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Binding site characterization – similarity,
promiscuity, and druggability†

Christiane Ehrt, a Tobias Brinkjost ab and Oliver Koch ‡*a

The elucidation of non-obvious binding site similarities has provided useful indications for the establishment

of polypharmacology, the identification of potential off-targets, or the repurposing of known drugs. The

concept underlying all of these approaches is promiscuous binding which can be analyzed from a ligand-

based or a binding site-based perspective. Herein, we applied methods for the automated analysis and

comparison of protein binding sites to study promiscuous binding on a novel dataset of sites in complex

with ligands sharing common shape and physicochemical properties. We show the suitability of this dataset

for the benchmarking of novel binding site comparison methods. Our investigations also reveal promising

directions for further in-depth analyses of promiscuity and druggability in a pocket-centered manner.

Drawbacks concerning binding site similarity assessment and druggability prediction are outlined, enabling

researchers to avoid the typical pitfalls of binding site analyses.

Introduction

In the context of modern rational drug discovery and design,
“druggability” and “promiscuity” are often occurring terms in
the literature and have to be considered to ensure the success
of drug development and the safety of the resulting
compounds.

In general, promiscuous binding is defined as the ability
of a small molecule to bind to and to modulate multiple tar-
gets.1 In the context of drugs, the term “polypharmacology”
describes the beneficial and intentional modulation of multi-
ple targets by one compound leading to additive or synergis-
tic effects or improved efficacy.2 The prerequisite for poly-
pharmacology is promiscuous binding which is mediated by
distinct interactions to the different targets3 and which is of-
ten an interesting starting point for drug repurposing.4 How-
ever, promiscuous binding is also the basis for the binding
to unwanted targets (off-targets) resulting in adverse drug re-
actions. In the case of drugs that also address antitargets,
e.g., hERG or the 5-HT2B receptor, or a broad spectrum of
unrelated targets,5 the term “promiscuity” often carries a neg-
ative connotation (“harmful promiscuity”).6 However, it was
shown that ligand promiscuity across different target families

is a rare phenomenon as compared to the binding of ligands
to multiple targets of one family.1 Irrespective of the molecu-
lar and therapeutic consequences of the multi-target activity
of a compound, we will use the word “promiscuity” herein.
This term is not to be confused with the non-specific binding
of small molecules as our analyses are based on known pro-
tein–ligand complexes.

As previously shown, one key to promiscuity is binding
site similarity.4 However, the definitions of site similarity are
manifold and based on different fundamentals. Whereas
many binding site comparison methods rely on residue simi-
larities, some of the approaches that exploit surface proper-
ties and interaction patterns are apparently better suited to
detect similarities between unrelated proteins binding to sim-
ilar or even identical ligands.5,6 In contrast, Sturm and co-
workers could show that binding site similarity does not al-
ways account for binding sites complexed with promiscuous
compounds.7 An obvious reason is the flexibility of otherwise
identical ligands.4 Furthermore, the interactions to the target
sites can be mediated by different functional groups of iden-
tical ligands.8

The counterpart to promiscuous binders is promiscuous
proteins.9 Promiscuous protein binding sites often contain
structural motifs that bind to many different ligands which
are characterized by one or a small set of common functional
groups. For example, positively charged compounds with two
or more aromatic rings were identified to be promiscuous in
an analysis of the available bioactivity data.10 Aminergic
G protein-coupled receptors (GPCRs) and amine transporters
contain a complementary structural motif responsible for the
binding of ligands with these characteristics.
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However, compounds forming aggregates, non-specifically
inhibiting a large spectrum of proteins,11,12 and “frequent
hitters”, like Pan-Assay Interference Compounds (PAINS),13,14

can lead to misleading results in the analysis of bioactivity
data. As it is difficult to exclude such compounds from
datasets for ligand-based bioactivity analyses of promiscuity,
a protein-focused analysis as presented here might provide
better insights into promiscuous binding.

We focus on binding site similarity and description for
the analysis of promiscuity. Several tools are available to elu-
cidate common binding site properties,15 but their perfor-
mance highly relies on the applied datasets for validation,
the analyzed properties, and the representation of these prop-
erties.16 The question “How to measure binding site similar-
ity?”17 remains elusive and can only be answered by consider-
ing the complexity and flexibility of binding sites. Here, we
use the structures of the small molecule-protein complexes
as stored in the sc-PDB18 to elucidate similar binding sites of
distant proteins starting at a ligand-based perspective and
then re-evaluating the results with a number of successfully
applied binding site comparison tools.

The second part of our analyses focuses on binding site
descriptors, as they were successfully applied for druggability
assessment. The term druggability in the context of binding
sites refers to their ability to accommodate compounds with
drug-like properties leading to a modulation of protein func-
tion.19 The prediction of druggable and non-druggable bind-
ing sites by means of machine-learning techniques based on
binding site descriptors is nowadays possible on the fly and
the actual challenge is to choose the appropriate tool.20 The
ambiguity of pocket definition and protein flexibility addi-
tionally hamper the predictiveness and robustness of these
prediction methods. Moreover, several contradictory guide-
lines with respect to binding site druggability were defined in
the past.21 Our analysis of different methods based on the
sc-PDB database of VolSite22-defined druggable binding sites
underlines the necessity of a cautious application and evalua-
tion of druggability prediction approaches. Nevertheless, we
conclude our analysis by showing how binding site descrip-
tors can be exploited to elucidate potential reasons for pro-
miscuity, not from a ligand-based, but from a pocket-based
point of view.

The overall outcome of this analysis highlights the tightrope
that a medicinal chemist must walk when analyzing the simi-
larity, promiscuity, and druggability of binding sites. Neverthe-
less, our results provide rationals for the choice of appropriate
methods and elucidate potential pitfalls that should be consid-
ered to ensure the reliability of the conclusions drawn from
binding site similarity and property analyses.

Experimental
Dataset preparation

The basic hypothesis that physicochemically similar ligands
that bind in comparable conformations indicate related bind-
ing sites or similar protein–ligand interaction patterns led to

the development of our so-called ROCS dataset. It was gener-
ated to evaluate whether binding site comparison tools en-
able the researcher to discriminate between binding sites of
unrelated proteins in complex with highly similar small
molecules (the active site pairs) and those of dissimilar li-
gands (the decoy site pairs). Fig. 1 summarizes the steps that
led to the final dataset. The OpenEye tool ROCS (Rapid Over-
lay of Chemical Structures)23 was applied to screen for shape
and physicochemical similarities between the ligands in the
sc-PDB.18 The complete structure library was downloaded
(04/2017) and the ligand MOL2 files were used for an all-
against-all comparison with ROCS. The results were filtered
with respect to the TanimotoCombo similarity score to obtain
similar and dissimilar ligand pairs. Active (similar) pairs
show a TanimotoCombo of at least 1.4, while decoy (dissimi-
lar) pairs are characterized by a TanimotoCombo below 0.2.
Pairs of sites in proteins with identical UniProt24 accession
codes were excluded. The remaining protein structure pairs
of the active and decoy pairs were used as input for TM-
align25 to exclude protein pairs with high overall similarity.
To this end, all chains involved in ligand binding as docu-
mented for the sc-PDB were used as input structures. Protein
pairs with a TM-score above 0.3 were excluded. The resulting
dataset comprises 15 339 active site pairs of dissimilar pro-
teins binding to similar ligands and 56 179 decoy site pairs of
unrelated proteins binding to dissimilar ligands.

The datasets of protein structures with identical sequences
(X-ray dataset) and NMR ensemble models (NMR dataset)
and the preparation of the dataset structures are described in
an earlier publication.16

Dataset analyses

The ligands of the unrelated structures in complex with
conformationally and physicochemically similar ligands were
extracted from the sc-PDB, saved to an SDF file, and

Fig. 1 The workflow for the generation of the ROCS dataset.
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processed with KNIME26 as follows: the ECFP4 fingerprints27

of all molecules were calculated using the CDK toolkit.28 The
Tanimoto coefficient-based similarity matrix was calculated
and the k-Medoids algorithm was applied to cluster the mole-
cules. After a visual inspection of the resulting clusters with
varying partition counts k, a partition count of 10 was chosen
for the clustering of all molecules in the dataset. Descriptors
for the clustered molecules were calculated with the RDKit29

descriptor calculation node. The RDKit MCS node was ap-
plied to extract the common SMARTS patterns of the mole-
cules in the individual clusters.

The ligands of the similar site pairs were searched in the
PDB and the ChEMBL database30 to calculate the number of
targets per compound. With respect to the ChEMBL search, a
protein was assumed to be a target of the ligand if either the
IC50 or the Ki or the Kd value was at least 10 μM.

The analysis of the target types was realized by annotating
the structures in the PDB with the following target families:
protein kinase (GO-ID 3672), protease (GO-ID 8322), tran-
scription factor (GO-ID 3700), GPCR (GO-ID 4930), ion chan-
nel (GO-ID 5216), transmembrane transporter (GO-ID 22857),
and nuclear receptor (GO-ID 4878). If the protein could not
be assigned to any of these classes, it was annotated as an en-
zyme if its EC Number was available from the PDB. Other-
wise, it was classified as “other”. Enzymes were further classi-
fied by the first two digits of their EC number.

The protein structures of the PDB, the sc-PDB, and the ROCS
dataset (the complete set, and the structures of the active and
decoy pairs) were sequence-culled using the PISCES server.31

The sequence identity threshold was set to 25% and the num-
ber of protein chains in the sequence-culled sets was counted.

The search for typical antitargets as previously defined in
different publications32–34 was performed based on the corre-
sponding UniProt accession codes.

Benchmark analyses

The binding site comparison methods were selected based
on their successful applications in projects related to differ-
ent questions arising in medicinal chemistry.35 They were
grouped according to the underlying approach: residue-based
(Cavbase,36,37 FuzCav,38 PocketMatch,39 RAPMAD,40

SiteAlign,41 SMAP,42 TM-align25), surface-based (ProBiS,43

VolSite/Shaper,22 SiteEngine,44,45 SiteHopper46), and
interaction-based (Grim,47 IsoMIF,48 KRIPO,49 TIFP47). Details
regarding their application and usage can be found else-
where.16 In contrast to these earlier studies, the recent IChem
version 5.2.850 was applied herein (necessary for the compari-
sons with FuzCav, VolSite/Shaper, Grim, and TIFP) to ensure
the reproducibility of the results. With respect to TM-align, it
is worthwhile mentioning that only the residues in a 10 Å en-
vironment of the ligand atoms were used for the binding site
comparison.

The ROC curves were generated using KNIME.26 The AUC
values, the statistical significance of the area under the ROC curve
(AUC) values and their differences for the methods can be found

in the ESI† (Tables S3 and S4). They were calculated according to
DeLong and colleagues51 using the pROC package52 in R.53

Binding site analyses

VolSite,22 DoGSite,54 and dpocket (as included in the second
version of the fpocket55 software) were applied with default
settings to derive the descriptors and druggability scores for
the binding sites under investigation. The ligands utilized for
the binding site comparisons were used to define the corre-
sponding sites. For VolSite, the sum of the number of hydro-
gen bond and charged site points divided by the number of
all site points was used as the measure of the site polarity.
The number of hydrophobic site points divided by the num-
ber of all site points was used as the measure of the hydro-
phobicity. For DoGSite, the number of hydrogen bond donor
and acceptor atoms divided by the number of all site atoms
was used as the measure of the site polarity. All pocket de-
scriptors were rescaled using a min-max normalization based
on all sites of the respective datasets to ensure comparability.

A more detailed analysis was performed for the active
(similar) site pairs of the ROCS dataset. We calculated the
SiteHopper scores for these pairs and split the pairs into two
categories. The first group consists of site structures with a
predominant shape similarity. In this group, sites were in-
cluded whose ShapeTanimoto was at least two times as high
as the ColorTanimoto. The remaining sites were assigned to
the second group. We excluded sites which were found in
both groups and calculated the dpocket descriptors for the
remaining pockets in both groups to highlight differences be-
tween both types of site pairs.

An additional analysis focused on the ligands of active
site pairs with a PatchScore below 0.82 (dissimilar site pairs).
The properties of their ligand binding sites as stored in the
sc-PDB were calculated with VolSite, DoGSite, and dpocket.
Ligand-specific sites with a median DoGSite-derived polarity
below 0.4 and a median hydrophobicity above 0.5 were
analysed separately. For comparison purposes, these descrip-
tors were also calculated for all structures in the sc-PDB.

Results and discussion
The ligand-based elucidation of binding site similarities

The starting point of the analyses presented herein was the
sc-PDB18 – a database of binding sites predicted as being
druggable. The general advantage of restricting all analyses
to this structural subspace can be found in the absence of
biologically irrelevant ligands as well as the availability of
unique site identifiers for proteins with multiple binding
sites. An earlier analysis of the corresponding ligands shows
that a number of promiscuous ligands can be found.7 Never-
theless, identical ligands do not necessarily bind with compa-
rable conformations.4,56 Moreover, their relative orientation
within the binding site has a significant impact on the defini-
tion of promiscuity. While the latter point is not addressed
within this study but was analyzed elsewhere,57,58 we tried to
tackle the first one.
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Given the ligand coordinates as stored in the sc-PDB, a
ROCS23-based small molecule similarity search was
performed to identify ligands with a similar shape and simi-
lar physicochemical properties indicating a similar binding
mode to the corresponding sites. Altogether, we found
149 032 pairs of binding sites with ligands showing a
TanimotoCombo (Tcombo) of at least 1.4. An analysis of the
ShapeTanimoto (Tshape) and ColorTanimoto (Tcolor) with
respect to the binned Tcombo values shows that especially
for lower Tcombo values, the shape similarity dominates the
overall similarity (see Fig. S1, ESI†).

The focus of this study was on sequentially and structurally
unrelated proteins binding to similar ligands. Therefore, the
binding site pairs corresponding to the ligand similarities were
analyzed with respect to the relationship of the corresponding
proteins. We excluded binding site pairs of proteins with identi-
cal UniProt24 accession codes leading to 139378 remaining bind-
ing site pairs with similar ligands, but dissimilar proteins. The
complete protein structures of these pairs were compared using
TM-align to exclude pairs with a high overall similarity. Taking a
maximum TM-score threshold of 0.3 into account,59 only 15339
binding site pairs of structurally unrelated proteins binding to
similar ligands remained. The contributions of the similarity
measures Tshape and Tcolor to their overall similarity was also
analyzed for this filtered dataset (Fig. S1, ESI†). Intriguingly,
the exclusion of structurally related protein pairs by means of
TM-align comparisons did not lead to a significantly different
distribution of the shape and physicochemical similarities.

We then analyzed the dataset of active site pairs with re-
spect to the chemical space and ligand properties. An ECFP4
fingerprint-based similarity analysis and subsequent cluster-
ing of the corresponding ligands (Fig. 2 and S2, ESI†) shows
distinct clusters of small molecules which include mainly co-
factors, but also fragments (cluster 1), a class of aromatic,
condensed, and heterocyclic ring systems which can in most
cases be assigned to the classes of flavonoids and iso-
flavonoids (cluster 4), steroids and lipids (clusters 2, 3, and 6),
and a group which mainly includes flavone scaffolds (cluster
8). Within the groups of cofactors, guanosine-related com-
pounds (cluster 7), adenosine-related compounds (cluster 9),
and phosphorylated adenosine-related compounds (including
NAD and FAD, cluster 10), as well as thymidine-related
compounds (cluster 5), were found. This diversity underlines
that the dataset is not biased toward one specific compound
class, although cofactor-related compounds are clearly over-
represented. Many of the compounds were already analyzed
in a previous study that focused on promiscuous ligands in
the sc-PDB.7 In that study, the compounds with the following
PDB-IDs were characterized as “super-promiscuous” ligands
of distant binding sites: AE2, ASD, STR, CHD, RTL, RBF, QUE,
and DES. These compounds except for AE2, RBF, and RTL are
also included in our filtered dataset. The name “super-
promiscuous” is derived from the finding that they bind with
identical chemical moieties to unrelated sites without signifi-
cant conformational changes. This suggests that they show
unique properties when compared to other ligands.

The question arises of whether this ligand type predomi-
nates the active ligands (i.e., the ligands corresponding to the
active site pairs) as their similarities evolve from their “pro-
miscuous” properties. In the previous study,7 the identified
compounds binding to multiple targets were characterized by
their three-dimensionality (number of carbon atoms with sp3

hybridization divided by the total number of carbon atoms)
and hydrogen bond propensity (number of hydrogen bond
donors or acceptors divided by the total number of atoms).
We analyzed these properties for the compounds of our
dataset (Table 1). A group of high three-dimensionality and
low or high hydrogen bond propensities was identified in the
analysis of Sturm and co-workers which corresponds to clus-
ters 2, 3, and 6 (mainly lipids) and cluster 4 (mainly flavo-
noids) in our dataset, respectively. Another group was charac-
terized by an extraordinarily low three-dimensionality and
low hydrogen bond propensities. Members of clusters 1 and
8 can be assigned to this category, although their hydrogen
bond propensities is high. In the case of cofactors, a medium
three-dimensionality as well as a high hydrogen bond

Fig. 2 SMARTS patterns of maximum common substructures within
the clusters derived from the ligands of the active site pairs in the
ROCS dataset. The percentage of dataset compounds per cluster is
given in parentheses.
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propensity was observed in the earlier study which also holds
true in the case of our dataset (clusters 5, 7, 9 and 10). The
“super-promiscuous” ligands are found spread across clusters
1, 3, 4, 5, and 6.

The compounds of clusters 7 and 10 show the highest
mean number of targets per ligand as calculated from the
data in the PDB (Fig. S3, ESI†). This can be attributed to the
overrepresentation of cofactors in these compound groups.
However, the analysis of the ChEMBL30 data shows a consid-
erably high average number of targets for the compounds in
clusters 3 and 4. The targets of the compounds of cluster 3
are mainly members of the cytochrome P450 family, the nu-
clear hormone receptor family, the GPCR family, and the family
of transmembrane transporters. In contrast, the targets of the
compounds of cluster 4 are more broadly distributed, includ-
ing enzymes such as protein kinases, carbonic anhydrases,
peptidases, lipoxygenases, but also GPCRs, nuclear hormone
receptors, andmembers of the cytochrome P450 family.

Lipophilicity and the correlation with promiscuity is an-
other property that is controversially discussed in the litera-
ture.60,61 The different results hint at a dependency on the
dataset and a general infeasibility to derive general trends.
Table 1 shows that the retrieved clusters exhibit highly differ-
ent mean TPSA and S logP values and there is even a high
variation observed within the clusters. The mean S log P
values range from −2.15 to 3.85 and the mean TPSA from

49.9 to 269.61 Å2. A general correlation between lipophilicity
and promiscuity in this dataset can be excluded. However,
for clusters 1, 2, 3, 6, and 8, this relationship was verified.
For cluster 4, the missing three-dimensionality might explain
the promiscuity of this compound class. In contrast, the com-
pounds in clusters 5, 7, 9, and 10 show a high three-
dimensionality and polarity. Their binding to unrelated pro-
teins is explicable by their conserved function in nature
(mainly cofactors and cofactor-related compounds).

From a target-based viewpoint, the distribution of enzymes
in general, protein kinases, proteases, transcription factors,
GPCRs, ion channels, transmembrane transporters, and nu-
clear receptors in the ROCS dataset is similar to that of the
complete sc-PDB (Fig. S3, ESI†). As compared to the distribu-
tion in the PDB, we find a significantly higher percentage of
enzymes in general and protein kinases in particular, whereas
the percentage of ion channels and transmembrane trans-
porters is even lower than in the PDB. Glycosylases, pepti-
dases, and C–O lyases are underrepresented in the similar site
pairs as compared to the sc-PDB, while enzymes that transfer
one-carbon groups, phosphatases and C–N bond synthetases
are overrepresented (Table S1, ESI†). This overrepresentation
results from the high occurrence of the compounds SAM,
SAH, and ADP in the structures of these enzymes.

Of the 54 234 unique proteins in the PDB (in terms
of their UniProt24 accession codes), 3701 are included in the
sc-PDB. The ROCS dataset consists of 2930 unique protein
structures and the subsets of proteins with similar and dis-
similar sites include 1254 and 2381 unique proteins. The di-
versity of the targets was assessed by a sequence culling of
the datasets with PISCES.31 The sequence-culled sets of the
PDB, the sc-PDB, and the ROCS dataset contain 12 225, 1429,
and 846 unique entries. This reduction in diversity can be at-
tributed to the necessity of ligand-occupied and druggable
sites for the ROCS dataset and the restricted number of pro-
tein structures for certain protein classes, e.g., transmem-
brane proteins.

An analysis of the proteins with similar sites reveals that
most pairs are composed of proteins from different target
families. Thus, our dataset reflects difficult cases of cross-
target family binding which are not readily detectable based
on already available knowledge.

Concluding this analysis, we looked for pharmacological
interesting similarities within the dataset. Several typical
antitargets32–34 were found in the dataset of similar site pairs.
They include several sulfotransferases and nuclear receptors
in complex with different steroid hormones or related com-
pounds as well as cAMP-specific 3′,5′-cyclic phosphodiester-
ase 4D (see Table S2 in the ESI† for some examples).

From a ligand-based point of view, several similarities be-
tween the sites of unrelated proteins were identified. A search
with DrugBank62 molecules that are known as ligands in the
PDB (https://www.rcsb.org/pdb/ligand/drugMapping.do) re-
vealed several intriguing binding site similarities. Fig. S4 and
S5 in the ESI† present the ligand-based superimpositions of
the protein binding sites and the structures of the ligands.

Table 1 Mean (ø) TPSA, S logP, three-dimensionality, and hydrogen
bond propensities of the ligands of the similar binding site pairs (active
pairs). The standard deviation (±) for all descriptors is also given. A color
gradient ranging from green to yellow to red was applied. Green is used
for the highest values in the case of TPSA, three-dimensionality, and hy-
drogen bond propensity. For the S logP descriptors, the lowest values are
colored green
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Fludrocortisone, which is known in complex with a mutant
human androgen receptor (PDB-ID 1gs4), shows high shape
and physicochemical similarities to dexamethasone-21-
phosphate bound to the Pin1 substrate binding domain
(PDB-ID 3tc5). Nevertheless, the Kd of 4.4 mM illustrates the
low affinity of the ligand toward Pin1 which mainly interacts
via its phosphate moiety with the enzyme. Another similarity
was found between sulfathiazole in sepiapterin reductase
(PDB-ID 4j7u) and a weak thumb pocket 2-binding inhibitor
of the HCV NS5B polymerase (PDB-ID 4iz0). This compound
(2,4,5-trichloro-N-(5-methyl-1,2-oxazol-3-yl)benzenesulfonamide,
IC50 = 100 μM) resulted from a fragment-based screening ap-
proach. The binding mode of chlorzoxazone bound to nitric ox-
ide synthase (PDB-ID 1m8d) shares high shape and physico-
chemical similarities with 3-methyl-3,4-dihydroquinazolin-
2Ĳ1H)-one in complex with the N-terminal bromodomain of
BRD2 (PDB-ID 4a9e). Moreover, a similarity between a peptide-
mimetic ligand bound to Escherichia coli peptide deformylase
(PDB-ID 3k6l) and marimastat bound to ADAMTS-1 (PDB-ID
2jih) was identified.

We also find known similarities, as for example the bind-
ing of flavone-derived compounds to enzymes of the flavo-
noid metabolism and protein kinases: QUE in the dihydro-
flavonol 4-reductase structures with the PDB-IDs 2nnl and
3bxx, respectively, shows similarities to ERD in the Ser/Thr-
protein kinase 17B structure (PDB-ID 3lm5), ERD in the
structure with the PDB-ID 2nnl, and AGI in a casein kinase II
subunit alpha structure (PDB-ID 4dgm). Ligand-based simi-
larities can also be found for flavoenzymes and tankyrase 2
(ERD in the structure with the PDB-ID 2nnl and LU2 in the
tankyrase structure with the PDB-ID 4hkn, see also Fig. S5,
ESI†). Correspondingly, similarities between compounds
binding to tankyrase and kinases were found (F94 in the
tankyrase structure with the PDB-ID 4hmh and AGI in the ca-
sein kinase II structure with the PDB-ID 4dgm, and 15W in
the tankyrase structure with the PDB-ID 4hl5 and FSE in the
CDK6 structure with the PDB-ID 1xo2). The question arises of
whether these small molecule similarities can be accounted
for by binding site similarities.

The comparison of sites binding to similar ligands

We compared the active and decoy site pars of the ROCS
dataset with different methods to identify potential relation-
ships between the binding sites of unrelated proteins in com-
plex with similar ligands. As it was shown before,7,8,63 ligands
with a high 2D similarity might bind in highly different con-
formations to their target proteins. This can be partially at-
tributed to a high degree of flexibility of the ligand of inter-
est. The application of an initial ROCS 3D similarity analysis
circumvents this problem.

Interaction-based binding site comparison tools were
shown to be in general less robust with respect to the bound
ligand and the flexibility of the binding site.16 However, this
dataset might disclose the benefits of these comparison
tools. This is exemplified by the complex structures in Fig. 3.

Both proteins bind the same ligand S-adenosyl-L-
homocysteine (SAH) in a highly similar conformation and
both ligands share a common interaction pattern. Nonethe-
less, the cavity environment is different and residue- and
surface-based comparison methods will probably not assign
high similarity scores for this binding site pair, although it
represents an interesting match.

This basic assumption cannot be completely verified by
the outcome of the benchmark analysis presented in Fig. 4
(see Table S3, ESI† for the AUC differences and their signifi-
cance). Although IsoMIF,48 KRIPO,49 and Grim47 show a high
early enrichment, TIFP47 only follows this trend if the Ham-
ming distance is used as the distance measure. The early en-
richment of IsoMIF and KRIPO is comparable. Both methods
are appropriate to correctly identify close relationships be-
tween the binding sites of similar ligands. Despite these
promising findings, the overall performance in terms of the
AUC of all tools except for IsoMIF is worse than that of
SiteHopper.46

Intriguingly, different scoring measures lead to highly dif-
ferent performance for some tools of this analysis. TIFP per-
forms best if the Hamming distance is used to differentiate
between similar and dissimilar sites. This metric mainly dis-
tinguishes based on size and complexity.66 While the decoy
site pairs of the dataset are in complex with differently sized
ligands, the size and complexity of the ligands of the active
site pairs are comparable. Therefore, the Hamming distance
allows a good differentiation between the active and decoy
site pairs. The performance of SiteAlign41 notably improves if
the d1 distance is applied. The underlying scoring scheme
uses a distance measure that detects global binding site simi-
larities. In contrast, the distance measure d3, which was the
most suitable one for the datasets in our previous analysis,16

allows for the identification of local binding site similarities.

Fig. 3 Non-obvious binding site similarities. On the left, the binding
site alignment of the human enzyme arginine N-methyltransferase 6
(PDB-ID 4hc4 chain A, green) and N-4 cytosine-specific methyl-
transferase from Proteus vulgaris (PDB-ID 1boo chain A, orange) is
presented with SAH in ball-and-stick representation. The correspond-
ing binding site residues are colored according to the structure. The
figure was generated with UCSF Chimera.64 The interaction patterns of
SAH in the binding sites of the complexes with the PDB-IDs 4hc4 and
1boo are shown on the right (the schemes were generated with
LigandScout 4.065).
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Additionally, it uses the distance between the centroid and
the center of the side chain (Ccentroid) as opposed to the dis-
tance of the centroid and to the residue's Cβ atom which is
used for the calculation of d3. In the case of SiteEngine,44,45

the use of the DistanceScore instead of the CurvatureScore
seems to be most appropriate to reveal similarities between
pockets of unrelated proteins.

These findings underline a peculiarity of this dataset. In
comparison to most datasets used for binding site compari-
son evaluation, the ligands of the active site pairs overlap
with respect to shape and physicochemical properties. There-
fore, the binding site definition allows for comparably sized
binding site sections whose global similarity will be high.
The applicability of TIFP, SiteAlign, and SiteEngine for the
detection of non-obvious similarities for proteins that bind
similar ligands is restricted to these scoring schemes and
similarly excised binding sites.

The poor performance of FuzCav38 can be explained when
having a look at Fig. 3. The side chains of the hydrophobic
residues Met166 and Phe273 are located in a similar manner
with respect to the ligand. Nevertheless, their backbone
atoms are part of different backbone structures in opposite
locations of the binding site. In contrast to the previously in-
vestigated datasets for the benchmarking of site comparison
methods,16 this is a unique feature of this set of active site

pairs and hampers the success of residue-based methods that
make use of Cα atom positions for the assignment of binding
site features. One exception to this rule is PocketMatch39

which showed a mediocre performance when compared to
the other residue-based methods in our previous studies.

An even more striking observation for this dataset is the
high early enrichment for TM-align25 which also uses Cα
atom coordinates to superimpose structures. This is
discussed in more detail in Text S1, ESI.† However, most
residue-based methods did not correctly differentiate be-
tween similar and dissimilar site pairs. The same holds true
for the surface-based methods with the exception of
SiteHopper which clearly outperforms all residue- and
surface-based methods.

Overall, IsoMIF and SiteHopper lead to AUC values of
nearly 1, which suggests that the binding of similar ligands
to the sites of unrelated proteins can be explained based on
the underlying site similarities. However, there might be
other explanations for this superior performance which will
be further discussed below.

Similar ligands–similar binding sites?

The outcome of the analysis was unanticipated as nearly all
analyzed tools performed satisfactorily on different datasets

Fig. 4 Evaluation of different binding site comparison tools with respect to the dataset of ROCS structures. Top: ROC curves for different binding
site comparison methods for the initial purely ligand-based dataset. Bottom: ROC curves for the methods when only matches with a high
SiteHopper PatchScore are taken into account as active site pairs. The name of the tool is colored according to its corresponding ROC curve. The
binding site comparison tools are sorted in descending order with respect to their overall AUC. The scoring measures that yielded the highest AUC
for both datasets were distance score d1, the similarity score TC, the SVA, and the DistanceScore for SiteAlign (thin red line), SMAP (thin blue line),
ProBiS (thin purple line), and SiteEngine (thin orange line), respectively. TIFP AUC values significantly improved when using the hamming distance
as the scoring measure in both datasets. Top: ShaperĲPDB), VolSite/Shaper, and VolSite/ShaperĲPDB) showed the highest AUC values when using
the Tanimoto (fit) as the similarity score. Bottom: The SiteHopper AUC value improved slightly upon using the ColorTanimoto.
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of interesting binding site similarities.16 The clear superiority
of IsoMIF and SiteHopper was not observed before. However,
both tools reliably scored similarities and dissimilarities of
binding sites. To shed light on the question of whether the
ligand-based similarities indeed correspond to similar bind-
ing sites, we analyzed the similarity scores for the binding
site pairs obtained with SiteHopper. This method reports a
measure for both, the shape and the physicochemical simi-
larity. For most site pairs, the shape similarity was much
higher than the Tanimoto for common physicochemical
properties. This is in accordance with our analyses of the
ligand-based similarities. In general, only one third of the
binding site similarities show a ColorTanimoto above 0.15.
Binding sites of similar ligands that share mainly common
shape properties are characterized by a high fpocket hydro-
phobicity and low fpocket polarity score when compared to
those that bind to similar ligands and show high physico-
chemical similarity (see Fig. S6, ESI†). This suggests that the
overall superiority of IsoMIF and SiteHopper results from
scores derived from a high shape, but not physicochemical
similarity. However, this observation does not controvert
their general ability to detect physicochemical similarities
and score them appropriately.16 For IsoMIF, it was shown
that the number of hydrophobic and aromatic probes is con-
siderably higher in promiscuous sites leading to a smaller
number of interactions that enable a clear differentiation.67

This partially explains the superiority of the method for this
dataset. Predominantly hydrophobic and aromatic interac-
tions fields enable a purely shape-based matching which will
nonetheless lead to a high similarity score (see also Table 2).

We exemplified the impact of pocket hydrophobicity using
the pairs of interesting similarities between enzymes based
on the ligand similarities of therapeutically interesting tar-
gets discussed in the first section (Table 2). Most of them
show a comparatively low binding site similarity. Their
SiteHopper scores result from a very high shape, but compa-
rably low physicochemical similarity.

For binding sites complexed with flavone-scaffolds, the
overall similarity between the binding sites is low and most
similarities fall below the threshold for significant binding
site similarities. For binding sites of related flavone-scaffolds,
distinct interaction patterns can be found that convey selec-

tivity. This is shown in Fig. 5 for the similarity between
tankyrase 2 (PDB-ID 4hkn) and dihydroflavonol-4-reductase
(PDB-ID 2nnl). Although, the ROC curve for SiteHopper
given in Fig. 4 suggests that binding site similarity can re-
veal reasons for promiscuous binding, the analysis of the
similarity scores is inevitable for further investigations.16 A
visualization of the binding site alignment, together with
the corresponding ligand-based alignment, underlines the
differences in the interactions of both molecules with their
respective target sites. In contrast, the similarity between
Escherichia coli peptide deformylase and ADAMTS-1 (both
metalloproteases) is higher.

A closer examination of all similarities to ADAMTS-1 (PDB-ID
2jih) in complex with marimastat shows pronounced similari-
ties to peptide deformylase enzymes of different pathogenic
organisms (e.g., Pseudomonas aeruginosa, PDB-ID 1ix1, Fig. 5)
and the human enzyme. This example highlights the poten-
tial of binding site comparison to elucidate similarities be-
tween functionally related enzymes which show no obvious
protein structure similarities.

Taking these examples into account, we can derive two im-
portant issues, which have to be considered when comparing
binding sites. First, the researcher has to be aware of the
score distributions. For tools which do not provide measures
to highlight the significance of found matches, defined score
ranges that correspond to similar binding sites have to be
considered. These findings are in agreement with our previ-
ous analyses.15 Secondly, care has to be taken if an indicated
binding site similarity is solely based on shape similarity.
Both common physicochemical and shape features are neces-
sary to identify meaningful similarities.

Next, we excluded binding site pairs with overall low simi-
larities in a biased manner as described in the following.
Given the scores obtained with SiteHopper for highly similar
binding sites, we applied a threshold to exclude binding sites
with a low overall binding site similarity as defined by the
PatchScore. This led to a decrease from 15 339 to only 4487
similar binding site pairs. We re-evaluated the performance
of all methods on this reduced dataset (Fig. 4, see Table S3
in the ESI† for the AUC differences and their significance).
Intriguingly, the performance of some tools that were previ-
ously characterized by a poor retrieval of active site pairs

Table 2 SiteHopper similarity scores and the percentages of matched hydrophobic and aromatic interaction field grid points by IsoMIF for selected ac-
tive site pairs

Site 1
(PDB-ID, ligand-ID)

Site 2
(PDB-ID, ligand-ID)

SiteHopper scores IsoMIF

PatchScore Shape-Tanimoto Color-Tanimoto Matched % hyd, % aro

1gs4, ZK5 3tc5, 3T5 0.56 0.24 0.10 62.5, 18.8
4j7u, YTZ 4iz0, 2BI 0.69 0.35 0.11 45.2, 35.5
1m8d, H4B 4a9e, 3PF 0.69 0.36 0.11 65.0, 10.0
3k6l, 2BB 2jih, 097 0.93 0.32 0.20 50.0, 0.0
4hkn, LU2 2nnl, ERD 0.87 0.33 0.10 56.8, 29.5
3lm5, QUE 2nnl, ERD 0.68 0.36 0.10 64.3, 0.0
4dgm, AGI 2nnl, ERD 0.75 0.33 0.14 73.0, 10.8
4dgm, AGI 4hmh, F94 0.75 0.38 0.12 63.6, 21.2
4hl5, 15W 1xo2, FSE 0.74 0.36 0.13 53.3, 16.7
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improved with respect to the AUC. Obviously, a predominant
shape similarity leads to a low score with these tools.

Overcoming this thin line between sufficiently high shape
similarity, but also significant physicochemical similarity is a
crucial step when applying binding site comparison tools for
drug repositioning or polypharmacology purposes. While the
overall similarity has to be high enough to allow for
repurposing, the binding site properties should be character-
ized by minor dissimilarities as a promising starting point to
establish selectivity. Nonetheless, high shape similarity and a
low number of hydrogen bond donor and acceptor features
of the binding site might hint at a higher number of poten-
tial off-targets of the binding ligands. We investigated the
meaning of the similarity scores for the binding sites of typi-
cal off-targets in the similar cavity pairs of the ROCS dataset.
We searched the ChEMBL for common inhibitors for binding
site matches between the antitargets and unrelated proteins.
For 63 out of all 209 ligand-based binding site similarity
pairs, we found at least one common inhibitor in the
ChEMBL database (see Table S2, ESI†). However, more than
50% of those cavity pairs showed SiteHopper PatchScores be-
low 0.82. The mean ShapeTanimoto for all pairs with com-
mon inhibitors in the ChEMBL database was 0.39 and the
mean ColorTanimoto was 0.14. This finding indicates that
even a high ShapeTanimoto-based similarity might hint at
potential off-target effects and should not be neglected.

However, with respect to the establishment of poly-
pharmacology or drug repurposing studies, we hypothesize that
the meaning of binding site similarities with respect to shape
is of minor interest as compared to physicochemical similari-
ties, which can be readily identified most of the tools used

within this study.16 In line with recent studies,67 the number of
potential interaction hot spots in very hydrophobic pockets is
small, rendering a differentiation between such sites a chal-
lenging issue.

The description of binding sites and druggability assessment

As the ROCS dataset was restricted to druggable binding sites
which are often characterized by a high hydrophobicity,68 we
investigated the properties of the sites in complex with simi-
lar ligands in the view of a druggability assessment. Different
methods exist to predict druggable pockets.20 The underlying
approaches for binding site definition and different assump-
tions concerning druggability restrict the applicability do-
mains of these methods. To re-evaluate the druggability in
our ROCS dataset, the binding sites were processed with
DoGSite54 (see Fig. S7, ESI†). Although the binding sites of
the ligands of the ten clusters (Fig. 2) show mean
druggability scores above 0.5 (which corresponds to the mini-
mum threshold that was recommended to identify druggable
sites with DoGSite), the druggability scores for the structures
range between 0 and 1.

This is in line with an earlier finding with respect to
druggability assessment. Sets of identical binding sites that
were derived from NMR ensembles were not consistently pre-
dicted as being druggable.16 This can be partially attributed to
differences in the applied training sets (applicability domain)
and discrepancies in the pocket definition. A closer analysis of
three publicly available prediction tools (DoGSite, fpocket,55

VolSite22) hints at the overwhelming importance of compre-
hensive structural knowledge to reliably predict binding site
druggability and is outlined in the following paragraphs.

A description of the binding site properties and a subse-
quent training based on known druggable and non-druggable
sites is usually performed to establish predictive druggability
models. As previously shown, the binding site definition has a
considerable impact on the reliability of druggability predic-
tions. Therefore, we investigated the robustness of not only
the druggability scores but also the binding site properties
with respect to binding site flexibility. To this end, we used
two datasets from our ProSPECCTs dataset collection. The
first dataset is derived from the sequence-culled subset of the
sc-PDB. We searched for structures with 100% atom-based se-
quence identity in the PDB and built a dataset of 12 groups of
structural ensembles of proteins (X-ray dataset). The second
dataset was generated based on ligand-bound NMR ensemble
structures from the sc-PDB (15 structural ensembles, NMR
dataset). In comparison to the first dataset, this set is charac-
terized by higher root-mean-square deviation (RMSD) values
and a lower quality of the underlying structures.

Fig. 6 illustrates the assessment of the binding site proper-
ties for all structures of the X-ray dataset with the corre-
sponding protein UniProt accession code and protein name.
Some general trends are predicted consistently, e.g., the high
hydrophobicity and low polarity of the bromodomain-
containing enzyme 4 (BRD4) and the androgen receptor (AR)

Fig. 5 Examples of dissimilar and similar binding sites bound to ligands
showing a high similarity in terms of the SiteHopper-derived PatchScore.
Left panel: SiteHopper- (top) and ligand-based (bottom) alignment of
the binding sites of tankyrase 2 (PDB-ID 4hkn, ligand-ID LU2) and
dihydroflavonol-4-reductase (PDB-ID 2nnl, ligand-ID ERD). Despite their
common shape and physicochemical properties, both ligands interact in
a unique way with their respective targets. Right panel: Alignment of the
metalloproteases E. coli peptide deformylase (PDB-ID 3k6l, ligand-ID
2BB) and human ADAMTS-1 (PDB-ID 2jih, ligand-ID 097) together with
bound peptidomimetic compounds (top). The crucial common interac-
tions are depicted separately with the corresponding ligand 2D repre-
sentations. Blue and red arrows indicate hydrogen bond donor and ac-
ceptor functionalities of the protein residues.
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binding site or the low hydrophobicity of the site in the Dro-
sophila homolog of the mammalian angiotensin-converting
enzyme (AnCE). However, striking differences in the pocket
descriptors hydrophobicity and polarity for the models within
the structural ensembles can be observed. This trend very
likely manifests itself in the derived druggability scores. For
fpocket, the ligand-based binding site definition and
druggability prediction were not possible. Therefore, we used
the druggability scores of the automatically detected pockets
with the highest overlap with the reference ligand. This
might contribute to the high fluctuations of the pocket de-
scriptors for some binding sites. Despite the generally high
fluctuations of the two analyzed binding site descriptors, it
can be observed that very hydrophobic binding sites with low

polarity are also characterized by high druggability scores.
Results based on an experimental assessment of druggability
are in line with this trend.69,70

The major drawback of the X-ray dataset is the differing
nature of the ligands. To evaluate whether the discussed
trend can also be found for structural ensembles of proteins
binding to identical ligands, the dataset of NMR structures
was used. Fig. S8 in the ESI† gives the binding site descrip-
tors, together with the druggability assessment, and shows
that binding site definition, as well as flexibility, hamper a
unique prediction of druggability.

Finally, we compared the robustness of two druggability
scoring models implemented in DoGSite. The SimpleScore is
the more robust scoring scheme with respect to sensitivity to

Fig. 6 Box plots of the scaled hydrophobicity (top) and polarity (center) descriptors derived from the analyses with fpocket45 (dark green boxes),
VolSite21 (light green boxes), and DoGSite44 (yellow boxes) together with the obtained druggability scores (bottom) for the X-ray dataset. The cut-
offs to distinguish between druggable and non-druggable sites are given as gray lines. The dashed line represents a stricter threshold for
druggability predictions with fpocket.
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binding site flexibility (Fig. S9, ESI†). In contrast to the
Support Vector Machine-based DrugScore, it is derived from
a simple regression model that takes only three site descriptors
into account: volume, the relative number of solvent-exposed
hull grid points, and the relative number of lipophilic site inter-
action points. If little structural knowledge of the protein of
interest exists, this score might be the more appropriate way to
assess the druggability of the site of interest.

Overall, the high fluctuations of the druggability scores
and physicochemical site descriptors for similar ligand bind-
ing sites highlight the necessity of structural ensembles (e.g.,
multiple crystal structures with sites in complex with differ-
ent ligands, molecular dynamics simulation data, NMR en-
sembles) for a rigorous and reliable calculation of binding
site descriptors and finally a robust assessment of
druggability and binding site properties. A prediction for
novel binding sites with only one structural representative
might be misleading. Nonetheless, distinct trends can be vi-
sualized with the help of binding site descriptors, such as the
extraordinarily high hydrophobicity of BRD4 binding sites,
the low one of AnCE, and a high polarity of the thrombin
binding sites. Consequently, we used different descriptors to
analyze the binding sites of the ROCS dataset in more detail.

The use of binding site descriptors to identify promiscuous
binding sites

We tried to tackle the question of promiscuous binding
within our sc-PDB-derived dataset. Recent studies of ligand
promiscuity highlighted some crucial small molecule descrip-
tors which might reveal promiscuous binders, e.g., hydropho-
bicity, the number of aromatic rings etc.60 As a matter of fact,
we should find complementary properties within the binding
sites of proteins in complex with promiscuous ligands. As a
basis for our analysis, the “super-promiscuous” ligands de-
scribed by Sturm et al. were considered. The binding sites of
ASD, STR, QUE, DES, and CHD (RTL, RBF, and AE2 were not
found in the final dataset) are characterized by a low physico-
chemical and overall similarity. They belong to the group of
ligands binding to dissimilar enzymes with distant cavities.
Therefore, we strived to elucidate why those ligands bind to
different sites of structurally dissimilar proteins. For ASD, we
also find binding sites that show a PatchScore above the pre-
viously defined threshold. Nonetheless, the corresponding
alignment shows that both sites are dissimilar with respect
to the bound ligands.

Analyzing the pocket properties hydrophobicity and polar-
ity as reported by DoGSite, we can derive a distinct trend for
the corresponding binding sites (Fig. 7, highlighted). Most of
them are characterized by a high hydrophobicity and a low
polarity. An extension of this analysis to the ligands that were
characterized by similar shape and physicochemical proper-
ties, but bind to dissimilar sites, led to the trend that was as
also observed for the “super-promiscuous” ligands (Fig. 7).
Similar outcomes could be observed when using fpocket and
VolSite (Fig. S10, ESI†). Therefore, the question arises of

whether we can define typical “side-effect” targets6 based on
easily accessible binding site descriptors. Going a step back-
ward and looking for targets in the sc-PDB that bind to these
molecules further underlines the results. Among them are
human serum albumin,71 PETN reductase,72 and the mineral-
ocorticoid receptor,73 besides GPCRs, ion channels, and
transporters.

Besides those compound types, cofactor-related com-
pounds (e.g., 5GP, AMP, APC, APR, CDP, DG3, DTP, IBM,
IMP, RBF, and XMP) and flavone-like molecules (AGI and
MYC) were identified to bind to dissimilar binding sites. In
contrast, their corresponding binding site properties followed
an opposite trend, i.e., the binding sites are characterized by
a high polarity (see Fig. S11, ESI†). Accordingly, these mole-
cules are characterized by a high number of hydrogen bond
donors and acceptors, negatively charged atoms, and aro-
matic rings. These characteristics enable a multitude of
unique selective interactions with multiple targets. However,
the ratio of hydrophobicity to polarity for the pockets of the
flavone-like compounds AGI and MYC tends to that of the
promiscuous binders. The same holds true for the site of the
compound with the PDB-based ligand-ID DXC.

Conclusion

Several conclusions can be drawn from the presented analy-
ses, especially with respect to binding site similarity and
property analyses in chemical biology and medicinal chemis-
try. The results presented herein provide some useful hints at
potential pitfalls and chances of binding site analysis and
comparison.

In view of the different potential applications of binding
site comparison, we can assign tools that are of special inter-
est. A small group of approaches has major difficulties to
identify similarities between binding sites of distant proteins
(FuzCav, RAPMAD, VolSite/Shaper, TIFP) and should be pre-
dominantly used for the comparison of binding site of re-
lated proteins, e.g., for the analysis of evolutionary relation-
ships or the elucidation of minor dissimilarities that might
assist in the process of drug development. Other comparison
algorithms are especially successful in the identification of
physicochemical similarities with a focus on similar interac-
tion patterns (PocketMatch, SMAP, Cavbase, SiteAlign,
SiteEngine, ProBiS, KRIPO, Grim) and seem to be best suited
for applications such as drug repurposing or poly-
pharmacology analyses. For our ROCS-based dataset of simi-
lar binding sites, they showed a high early enrichment of
similar sites. In contrast, the tools SiteHopper and IsoMIF
not only allow for the identification of similar binding sites
with respect to the chemical functionalities, but also focus
on the shape similarities between the sites. Although they
might be misleading for searching for similarities which can
be exploited for ligand discovery, they are highly useful for
off-target prediction. For drug repurposing, both approaches
can bridge the gap between similar sites and sufficiently dis-
similar sites to ensure the safety of repositioning strategies.
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The ROCS dataset which was used for our analyses will bemade
available as part of the ProSPECCTs dataset collection for the
evaluation of further binding site comparison methods (down-
load site: http://dx.doi.org/10.17877/DE290M-2).

Intriguingly, we can identify binding site pairs with pro-
nounced shape similarities, but a small number of common
physicochemical properties. This purely geometry-based simi-
larity is reflected by similarly shaped ligands that bind to
these sites without necessarily exhibiting similar interaction
patterns. Especially some of the previously described “super-
promiscuous” ligands7 fall into this category. The overall out-
come shows that we have to adjust our view on promiscuity.
Descriptors of ligands that were previously characterized as
promiscuous binders include hydrophobicity, a high aro-
matic ring count, or positive ionization.10 Correspondingly,
we can find binding site descriptors that highlight protein
pockets which are able to accommodate a varying number of
different, probably unselectively binding ligands due to their
high hydrophobicity. Therefore, the analysis of promiscuity
should not only take the ligand-based analysis into account,
but should also utilize the structural knowledge of protein
cavities, comparison tools, and the available pocket descrip-
tors to prevent the targeting of binding sites with properties
that hint at an increased promiscuity.10

The second focus of this article was the assessment of bind-
ing site druggability. Although the number of tested tools is
low when compared to the number of the available ones, we
want to underline the necessity of an appropriate application
of binding site description as well as druggability prediction
methods. Given the complexity and flexibility of binding sites,
the question arises of whether we will ever be able to assess ro-
bust binding site properties with respect to one target binding
site. Nonetheless, the overall results show a general consensus
in druggability assessment. The prediction of druggable and
non-druggable binding sites should never be overrated if only a
small number of structures is available. With increasing struc-
tural knowledge, an overall assessment becomes more mean-
ingful by taking multiple structures into account. The same
holds true for the underlying site descriptors. Additionally, we

show that we should focus our attention not only on promiscu-
ous binders, but also binding sites with respect to their proper-
ties. Besides other factors that explain promiscuous binding,9

we find that binding site hydrophobicity is one of the major de-
terminants of missing selectivity from a binding site-based
point of view. This is in line with a recent study based onmolec-
ular interaction fields.67

Overall, we can declare that binding site comparison in
combination with binding site characterization is a potential
key to the phenomenon of promiscuous binding. Special care
has to be taken with respect to druggability. While a high hy-
drophobicity is a commonly accepted indicator of
druggability, a predominance of hydrophobic properties
might also indicate a promiscuous binding site that accom-
modates varying ligand types in an unselective manner. How-
ever, further in-depth analyses of a larger set of tools and
comprehensive benchmark analyses of methods for the char-
acterization of binding sites are a major prerequisite to sub-
stantiate these general conclusions. Altogether, we should
avoid over-optimism with respect to results of tools for bind-
ing site comparison and druggability assessment. Nonethe-
less, knowing their pitfalls, we can establish suitable proto-
cols to cope with minor drawbacks and apply these tools in
medicinal chemistry projects.
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