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ABSTRACT: The preferred conformations of a dodecapep-
tide composed of L-valine (L-Val) and α-aminoisobutyric acid
(Aib) residues, Boc-(L-Val-L-Val-Aib)4-OMe (3), were ana-
lyzed in solution and in the crystalline state. Peptide 3
predominantly folded into a mixture of α- and 310-(P) helical
structures in solution and a (P) α helix in the crystalline state.

1. INTRODUCTION

In proteins, helices are abundant and important secondary
structures, which recognize macromolecules, such as other
proteins and DNA. Helical peptides that mimic proteins are
capable of inhibiting protein−protein interactions, and a variety
of helix-stabilizing methods have been developed to aid the
production of such peptides. As representative techniques, the
introduction of α,α-disubstituted α-amino acids (dAA)1 or
cyclic β-amino acids2 into short oligopeptides and side-chain
stapling3 can all help to stabilize helical structures. In particular,
α-aminoisobutyric acid (Aib) is the simplest dAA, and it is
commonly used as a helical promoter.4 We have previously
reported that the introduction of Aib residues into natural
amino acid sequences stabilized helical structures. For example,
the oligopeptides Boc-(L-Leu-L-Leu-Aib)n-OMe (n = 3 or 4)
preferentially form stable right-handed (P) helical structures.5,6

These peptides are able to act as organocatalysts for asymmetric
reaction, such as enantioselective epoxidation catalysts of α,β-
unsaturated ketones6 and Michael addition of a malonate.7

Furthermore, the amphipathic peptides R-(L-Xaa-L-Xaa-Aib)3-
NH2 (R = FAM-β-Ala and Xaa = Arg or R = H and Xaa = Lys)
were also folded into stable helical structures and were used as
antimicrobial peptides8 and cell-penetrating peptides,9 respec-
tively. In addition, we have recently reported that the
azidolysine (Azl)-based peptide Boc-(L-Azl-L-Azl-Aib)3-OMe
formed a stable helical structure, and the azide groups could be
replaced with several functional groups via click reactions
without influencing the peptide’s helical structure.10 Thus, the
insertion of Aib residues into α-amino acid-based oligopeptides
is useful for stabilizing helical structures and providing a variety
of functions. However, there have not been any reports about
the secondary structural changes that occur when Aib residues
are introduced into oligopeptides that form extended β-sheet
structures. In general, oligopeptides composed of β-branched
amino acids, such as valine (Val) and isoleucine (Ile), form β-
sheet structures with extended conformations. In particular,
oligovalines have a strong tendency to form β-sheet
conformations.11 In this study, we designed a dodecapeptide

composed of L-Val and Aib residues, Boc-(L-Val-L-Val-Aib)4-
OMe (3), and analyzed its preferred conformations in solution
and in the crystalline state.

2. RESULTS AND DISCUSSION
The dodecapeptide Boc-(L-Val-L-Val-Aib)4-OMe (3) was
synthesized using conventional solution-phase methods accord-
ing to a fragment condensation strategy, in which 1-(3-
dimethylaminopropyl)-3-ethylcarbodiimide (EDC) hydrochlor-
ide and 1-hydroxybenzotriazole (HOBt) hydrate were used as
coupling reagents. Briefly, alkaline hydrolysis of the tripeptide
Boc-L-Val-L-Val-Aib-OMe (1) afforded the acid 1-COOH,
whereas Boc deprotection by trifluoroacetic acid furnished the
amine 1-NH2. The amine 1-NH2 was coupled with 1-COOH
to give the hexapeptide Boc-(L-Val-L-Val-Aib)2-OMe (2). The
dodecapeptide 3 was prepared in a manner similar to that used
to prepare the hexapeptide (Scheme 1).
The dominant conformations of the synthesized peptides 1−

3 in solution were analyzed based on their Fourier transform
infrared (FT-IR), 1H nuclear magnetic resonance (NMR), and
circular dichroism (CD) spectra. Figure 1 shows the IR spectra
of the tri- (1), hexa- (2), and dodecapeptide (3) in the 3200−
3500 cm−1 region (the amide A NH-stretching region) at a
peptide concentration of 5.0 mM in CDCl3 solution. In the
spectra, the weak bands in the 3425−3438 cm−1 region were
assigned to free (solvated) peptide NH groups, and the strong
bands in the 3325−3340 cm−1 region were assigned to peptide
NH groups with N−H···OC intramolecular hydrogen bonds.
These IR spectra are similar to those of helical peptides
containing Aib residues.12

In the 1H NMR spectra of the dodecapeptide 3, the N-
terminal urethane-type N(1)H proton signal was unambigu-
ously determined by the high-field position but the remaining
eleven peptide NH protons could not be assigned. Figure 2
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shows a solvent perturbation experiment involving the addition
of the strong H-bond acceptor solvent dimethyl sulfoxide
(DMSO-d6) [0−10% (v/v)]. Two NH chemical shifts in the

high-field positions were sensitive to the addition of DMSO-d6.
These results are indicative of a 310- or α-helical structure in
solution.13

The CD spectra of the dodecapeptide 3 in 2,2,2-
trifluoroethanol (TFE) showed negative maxima at 207 and
222 nm indicating that 3 formed a right-handed (P) helical
structure. Judging from the R([θ]222/[θ]208) value,14 the
secondary structure of 3 (R = 0.64) was a mixture of α- and
310-helical structures (Figure 3). This spectrum is similar to that
of Boc-(L-Leu-L-Leu-Aib)4-OMe (R = 0.51).15

Peptide 3 formed good crystals for X-ray crystallographic
analysis after the slow evaporation of methanol/water at room
temperature. Its crystal and diffraction parameters, selected
backbone and side-chain torsion angles, and intra- and
intermolecular hydrogen-bond parameters are listed in the
Supporting Information.16−19 The asymmetric unit in 3
contained two (P) α-helical structures with a flipped C-
terminal Aib(12) residue (Figure 4a). The conformations of

Scheme 1. Synthesis of Peptides 1−3

Figure 1. IR spectra of peptides 1 (green), 2 (blue), and 3 (red) in
CDCl3 solution (peptide concentration: 5.0 mM).

Figure 2. Plots of chemical shift values of the NH protons of peptide 3
as a function of the concentration of DMSO-d6 (v/v) in CDCl3
solution (peptide concentration: 5.0 mM).

Figure 3. CD spectra of the dodecapeptide 3 (red) and Boc-(L-Leu-L-
Leu-Aib)4-OMe (black) in TFE solution (peptide concentration: 0.1
mM).
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molecules A and B were well-matched, except for small
differences in their side-chain conformations (Figure 4b). The
mean ϕ and ψ torsion angles of the residues (2−11) were
−63.1° and −39.9° for A and −62.6° and −40.7° for B, which
are close to those of an ideal (P) α-helix (−60° and −45°,
respectively). Regarding the intramolecular hydrogen bonds in
molecules A and B, eight i ← i + 4 type hydrogen bonds were
observed, respectively. In packing mode, molecules A and B
were connected by intermolecular hydrogen bonds via
methanol molecules, forming chains with head-to-tail align-
ments (···A···A···A··· and ···B···B···B···).

3. CONCLUSIONS
We designed and synthesized a dodecapeptide-containing L-Val
and Aib residues, Boc-(L-Val-L-Val-Aib)4-OMe (3), to inves-
tigate the influence of the helical promoter Aib on β-sheet
structures. The conformation of 3 was analyzed based on its
FT-IR, 1H NMR, and CD spectra in solution and X-ray
diffraction analysis in the crystalline state. Peptide 3
predominantly folded into a mixture of α- and 310-(P) helical
structures in solution and a (P) α helix in the crystalline state.
Although oligopeptides composed of β-branched amino acids
form β-sheet structures with extended conformations, the
insertion of Aib residues into β-sheet-forming peptide
sequences could change the conformations of helical structures.
Thus, we revealed that the insertion of Aib residues into
oligopeptides not only stabilized their helical structures but also
markedly altered their secondary structures (from βsheets to
helical structures). Not only helical but also unique secondary
structures will be created by the combination of natural L- and/
or D-amino acids and Aib residues,20 and these findings will be
invaluable for the de novo design of peptide-based organic and
bioorganic molecules.

4. EXPERIMENTAL SECTION
4.1. General. 1H and 13C NMR spectra were recorded at

400 and 100 MHz in CDCl3 (tetramethylsilane as an internal
standard). FT-IR spectra were recorded at 1 cm−1 resolution,
with an average of 256 scans used for the CDCl3 solution
method (0.1 mm path length for NaCl cell). High-resolution
mass spectra were recorded with LCMS-IT-TOF spectrometer.
CD spectra were recorded using a 1.0 mm path length cell in
TFE.
4.2. Synthesis of Tripeptide 1. The tripeptide 1 was

prepared by conventional solution-phase peptide synthesis
strategy. Colorless crystals; mp 177−179 °C; [α]D

24 = −95.7 (c
0.25, CHCl3); IR (CDCl3, cm

−1): 3437, 2969, 2934, 2875,
1738, 1705, 1671; 1H NMR (400 MHz, CDCl3): δ 6.66 (s,
1H), 6.43 (d, J = 8.0 Hz, 1H), 4.99 (d, J = 7.2 Hz, 1H), 4.21−
4.18 (m, 1H), 3.91 (dd, J = 6.8 Hz, 1H), 3.70 (s, 3H), 2.23−
2.17 (m, 2H), 1.53 (s, 3H), 1.51 (s, 3H), 1.45 (s, 9H), 0.97 (d,

J = 6.8 Hz, 3H), 0.94 (d, J = 6.8 Hz, 3H), 0.92 (d, J = 6.8 Hz,
3H), 0.91 (d, J = 6.8 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ
174.6, 171.6, 167.0, 156.1, 80.4, 60.5, 58.3, 56.4, 52.5, 50.2,
30.3, 30.2, 28.3, 24.8, 24.7, 19.3, 19.2, 17.7, 17.5; [HR-ESI(+)-
TOF] m/z: calcd for C20H37N3O6Na [M + Na]+, 438.2575;
found, 438.2591.

4.3. Synthesis of Hexapeptide 2. A solution of the
tripeptide Boc-L-Val-L-Val-Aib-OMe (1) (415 mg, 1.0 mmol)
and 1 M aqueous NaOH (2.0 mL, 2.0 mmol) in MeOH (10
mL) was stirred at room temperature for 24 h. The solution
was neutralized with 1 M aqueous HCl and was extracted with
AcOEt. Being dried over Na2SO4 and removing the solvent
afforded the tripeptide-carboxylic acid 1-COOH, which was
used for the next reaction without further purification.
Trifluoroacetic acid (1 mL) was added to a solution of 1
(415 mg, 1.0 mmol) in CH2Cl2 (5 mL), and then the mixture
was stirred at room temperature for 5 h. Removing the solvent
afforded the crude N-terminal free tripeptide 1-NH2, which was
used without further purification. A mixture of EDC (230 mg,
1.2 mmol), HOBt (162 mg, 1.2 mmol), N,N-diisopropylethyl-
amine (418 μL, 2.4 mmol), the above 1-COOH (1.0 mmol),
and the above 1-NH2 (1.0 mmol) in CH2Cl2 (10 mL) was
stirred at room temperature for 3 days. The solution was
washed with 3% aqueous HCl, saturated aqueous NaHCO3,
and brine, before being dried over Na2SO4. After removing the
solvent, the residue was purified by column chromatography on
silica gel (n-hexane/AcOEt = 1:5) to give the hexapeptide 2 in
46% yield. Colorless crystals; mp 200−203 °C; [α]D

24 = −27.4
(c 0.5, CHCl3); IR (CDCl3, cm

−1): 3437, 3340, 2968, 2935,
2875, 1736, 1703, 1665; 1H NMR (400 MHz, CDCl3): δ 7.64
(s, 1H), 7.30 (d, J = 9.2 Hz, 1H), 7.17 (s, 1H), 6.93 (d, J = 6.8
Hz, 1H), 6.44 (d, J = 5.2 Hz, 1H), 5.01 (d, J = 2.6 Hz, 1H),
4.42 (dd, J = 8.8, 5.2 Hz, 1H), 4.18 (dd, J = 6.4, 4.4 Hz, 1H),
3.95 (dd, J = 4.4 Hz, 1H), 3.82 (dd, J = 4.4, 2.6 Hz, 1H), 3.68
(3H, s), 2.50−2.44 (m, 2H), 2.30−2.20 (m, 2H), 1.53 (3H, s),
1.52 (3H, s), 1.50 (9H, s), 1.50 (3H, s), 1.48 (3H, s), 1.06 (d, J
= 6.8 Hz, 6H), 1.05−1.04 (m, 3H), 1.01 (d, J = 6.8 Hz, 3H),
1.00 (d, J = 6.8 Hz, 3H), 0.98 (d, J = 6.8 Hz, 3H), 0.95 (d, J =
6.8 Hz, 3H), 0.94 (d, J = 6.8 Hz, 3H); 13C NMR (100 MHz,
CDCl3): δ 175.6, 175.2, 172.1, 171.9, 170.9, 170.5, 157.0, 81.8,
62.1, 60.8, 60.0, 58.6, 57.1, 55.8, 52.0, 29.4, 29.2, 28.9, 28.2,
27.5, 25.2, 24.7, 23.7, 19.6, 19.3, 19.2, 18.0, 17.5, 17.4, 17.2;
[HR-ESI(+)-TOF] m/z: calcd for C34H62N6O9Na [M + Na]+,
721.4470; found, 721.4502.

4.4. Synthesis of Dodecapeptide 3. The dodecapeptide
3 was prepared using a method similar to that described for the
preparation of 2. Yield 35%; colorless crystals; mp 302−304
°C; [α]D

24 = −16.9 (c 0.5, CHCl3); IR (CDCl3, cm
−1): 3425,

3325, 2967, 2936, 2876, 1734, 1703, 1656; 1H NMR (400
MHz, CDCl3): δ 7.80 (d, J = 4.8 Hz, 1H), 7.77 (s, 1H), 7.73 (s,
1H), 7.67 (d, J = 4.8 Hz, 1H), 7.53−7.51 (m, 3H), 7.21 (d, J =
5.6 Hz, 1H), 7.10 (d, J = 6.0 Hz, 1H), 7.03 (d, J = 7.6 Hz, 1H),
6.72 (br s, 1H), 5.39 (br s, 1H), 4.41 (dd, J = 9.0, 5.8 Hz, 1H),
4.25 (dd, J = 7.2, 5.6 Hz, 1H), 3.89−3.84 (m, 3H), 3.82−3.79
(m, 1H), 3.71−3.62 (m, 2H), 3.67 (s, 3H), 2.47−2.36 (m, 2H),
2.29−2.15 (m, 6H), 1.52−1.48 (m, 33H), 1.12−0.97 (m, 48H);
13C NMR (100 MHz, CDCl3): δ 175.9, 175.9, 175.5, 173.8,
173.8, 173.0, 172.7, 172.6, 172.3, 171.5, 171.0, 157.2, 81.7, 62.9,
62.7, 62.5, 62.3, 60.9, 60.7, 59.2, 57.0, 56.8, 56.6, 55.8, 51.9,
29.8, 29.6, 29.5, 29.2, 29.2, 28.9, 28.3, 27.5, 27.4, 25.2, 24.6,
23.4, 23.3, 23.0, 19.9, 19.7, 19.5, 19.4, 19.4, 19.3, 19.2, 19.1,
19.1, 19.0, 18.9, 18.5, 18.0, 18.0, 17.8; [HR-ESI(+)-TOF] m/z:

Figure 4. (a) X-ray diffraction structure of 3. The methanol molecules
have been omitted. (b) Superimposed structures of molecules A
(green) and B (blue).
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calcd for C62H112N12O15Na [M + Na]+, 1287.8262; found,
1287.8333.
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