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ABSTRACT: Periodic trends in relativistic effects are investigated
from 1H through 103Lr using Dirac−Hartree−Fock and non-
relativistic Hartree−Fock calculations. Except for 46Pd (4d10) (5s0),
all atoms have as outermost shell the ns or n’p spinors/orbitals. We
have compared the relativistic spinor energies with the correspond-
ing nonrelativistic orbital energies. Apart from 24Cr (3d5) (4s1),
41Nb (4d4) (5s1), and 42Mo (4d5) (5s1), the ns+ spinor energies are
lower than the corresponding ns orbital energies for all atoms
having ns spinor (ns+) as the outermost shell, as some preceding
works suggested. This indicates that kinematical effects are larger
than indirect relativistic effects (the shielding effects of the ionic
core plus those due to electron−electron interactions among the
valence electrons). For all atoms having np+ spinors as their
outermost shell, in contrast, the np+ spinor energies are higher than the corresponding np orbital energies as again the preceding
workers suggested. This implies that indirect relativistic effects are greater than kinematical effects. In the neutral light atoms, the
np− spinor energies are close to the np+ spinor energies, but for the neutral heavy atoms, the np− spinor energies are considerably
lower than the np+ spinor energies (similarly, the np− spinors are considerably tighter than the np+ spinors), indicating the
importance of the direct relativistic effects in np−. In the valence nd and nf shells, the spinor energies are always higher than the
corresponding orbital energies, except for 46Pd (4d

10) (5s0). Correspondingly, the nd and nf spinors are more diffuse than the nd
and nf orbitals, except for 46Pd.

1. INTRODUCTION

In this work, periodic trends are investigated in the relativistic
effects occurring in 1H through 103Lr, using Dirac−Hartree−
Fock and nonrelativistic Hartree−Fock calculations. Applica-
tion of the Dirac theory to many-electron atomic systems began
with the work of Swirles,1 who used the Hartree−Fock
formalism in conjunction with the Dirac equation. The
equations of the relativistic self-consistent field have been
discussed using the algebra of tensor operators by Grant.2

Compared to numerical methods, expansion methods are more
effective because of their wide applicability to molecular
electronic structure and solid-state structure. Kim3 set out the
relativistic Hartree−Fock equation using the expansion
method. Desclaux4 calculated numerical Dirac−Fock spinor
energies, total energies, and other properties, such as ⟨r⟩ for
neutral atoms from Z = 1 to 120 (Z: nuclear charge). Many
papers have since been written on relativistic atomic and
molecular theories. Work published up to January 2016 has
been summarized by Pyykkö in the database “RTAM”.5

Many reviews exist of relativistic effects in atomic and
molecular electronic structures. Desclaux4 compared spinor
energies and other properties with nonrelativistic values, but
gave very little discussion. Rose, Grant, and Pyper (RGP)6

discussed the relativistic effects on the 71Lu (4f14) (5d1) (6s2),
79Au (5d10) (6s1), and 81Tl (5d

10) (6s2) (6p1) states, which
involve a single d, s, or p electron. Here, we cite their statement,
“the relativistic orbital is normally more tightly bound than
corresponding one for s and p− electrons, while for p+ electrons
the effect of relativity is normally small. ... For d− and d+
electrons, the relativistic orbital is more loosely bound than the
nonrelativistic orbital”. To give a clear explanation, RGP
introduced the terms “direct and indirect relativistic effects”,
which would be also used in the present article. Pyykkö and
Desclaux7 stressed the importance of relativistic effects in heavy
atoms, especially in giving rise to the color of 79Au, gold yellow.
Pyykkö8,9 also discussed relativistic effects involving s, p, d, and
f electrons and pointed out the importance of these effects in
heavy atoms. Reiher and Hess10 and Ilias, Kellö, and Urban11

summarized the four-component relativistic theory, as well as
approximations, such as the Douglas−Kroll12 transformation.
Finally, Dyall and Faegri (DF)13 summarized relativistic effects
in atoms and closely discussed 71Lu (4f14) (5d1) (6s2), 79Au
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(5d10) (6s1), and 81Tl (5d
10) (6s2) (6p1) states using the results

of RGP, and they further discussed relativistic effects on the 6s
orbital energies.
In the present study, we call the one-electron orbital wave

function a spinor in the relativistic domain and an orbital in the
nonrelativistic domain. We discuss relativistic effects in atoms
from 1H to 103Lr by comparing the spinor energies with the
orbital energies and by comparing the relativistically calculated
radial expectation values (⟨r⟩) with the nonrelativistic values.
All of the neutral atoms have ns or np spinors/orbitals as their
outermost shell except for 46Pd, which has the electronic
configuration (5s0) (4d10). Below, it will be shown that almost
all of the outermost s spinors given by the Dirac−Fock
calculations are contracted compared to those predicted by
nonrelativistic Hartree−Fock calculations and that the spinor
energies are more deeply negative than the corresponding
orbital energies. In atoms in which np is the outermost shell, in
contrast, the outermost np+ spinors are more diffuse than the
corresponding np orbitals, and all have higher spinor energies
than the corresponding orbital energies, as suggested by RGP6

and DF.13 The outermost d± and f± spinors behave in the same
manner as the outermost p+ spinors.
In Section 3.1 the relativistic and nonrelativistic solutions of

the hydrogenic ions are discussed. In this case, the solutions are
exact. Sections 3.2−3.7 are devoted to relativistic effects arising
in the atomic electronic structure of neutral atoms. The spinors
and orbitals involved are all calculated by expansion methods
with Gaussian-type functions (GTFs).

2. METHOD OF CALCULATIONS

To discuss the nonrelativistic total energy (TE) and the orbital
energies, we used the nonrelativistic Hartree−Fock−Roothaan
(HFR) method.14 The relativistic TE and spinor energies are
given by the Dirac−Fock−Roothaan (DFR) method.15 The
Hamiltonian for the relativistic calculation is composed of a
one-electron Dirac term + a nuclear attraction term + an
electron−electron interaction term. This is called the Dirac−
Coulomb Hamiltonian. In HFR and DFR, the spinors and
orbitals are expanded with GTFs. The nonrelativistic
calculations were performed by Koga, Tatewaki, and
Shimazaki,16 and the relativistic calculations by Koga, Tatewaki,
and Matsuoka,17−19 in which the average-of-configuration
(AOC) approximation,4 the uniform nuclear charge distribu-
tion model,4 and strict kinetic balance20,21 were used.

3. RESULTS AND DISCUSSION

3.1. Relativistic Effects in the Hydrogenic Ions. Exact
relativistic solutions for the hydrogen atom were given
analytically by Gordon22 and Darwin23 in 1928. Exact
nonrelativistic solutions for the hydrogenic wave functions are
also known analytically and are summarized by, for example,
Pauling and Wilson.24 The present authors have given tables25

of the angular part of the exact Dirac equation of the
hydrogenic atom and provided three-dimensional (3D) density
plots running from 1s1/2,1/2 (1s+) to

4f7/2,7/2 (4f+).
In Figure 1, we show the relativistic correction as a

proportion of the nonrelativistic value of the total energy
(TE) for hydrogenic ions from 1H to 103Lr

102+; in Figure 2, we
do the same for the expectation value of r (defined below).
Because the hydrogenic ions are composed of a single electron,
these results act as a reference for judging the magnitude of
electron−electron interaction effects in relativistic effects.

= ̈

−

× ̈

o

o

ratio(TE ) (TE(exact Schr dinger)

TE(exact Dirac))
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exact
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If ratio(TEexact) is negative, the TE value given by the exact
solution of the Dirac equation is lower than that given by the
exact solution of the Schrödinger equation. We use henceforth
symbols j and n to denote the electronic total angular
momentum quantum number and the principal quantum
number, respectively.
From Figure 1, we observe that (1) the energies given by the

Dirac equation are lower than the corresponding energies given
by the Schrödinger equation; (2) states with the same values of
j and n from the Dirac equation are degenerate; (3)
ratio(TEexact) decreases monotonically as the nuclear charge
(Z) increases, indicating that relativistic effects increase as Z
increases; and (4) relativistic effects decrease as j increases. In

Figure 1. Ratio(TEexact) (=TE(exact Schrödinger) − TE(exact Dirac)
× 100/TE(exact Schrödinger)) for the s, p, d, and f shells of the
hydrogenic ions.

Figure 2. Ratio(rexact) (=⟨r (exact Dirac)⟩ − ⟨r (exact Schrödinger)⟩ ×
100/⟨r (exact Schrödinger)⟩) for the s, p, d, and f shells of the
hydrogenic ions.
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Figure 2, we see a trend in ratio(rexact) similar to that in
ratio(TEexact). The degeneracy in ratio(TEexact) disappears;
however, in ratio(rexact), the difference in ratio(r) between 2s+
and 2p− is large. We shall see that, in the ionic core of the
neutral atoms, ratio(r) defined by eq 6 for (2s+, 2p−), ..., (5s+,
5p−) behaves like (2s+, 2p−), ..., (5s+, 5p−) in Figure 2.
3.2. Relativistic Effects in 1s and TEs of Neutral

Atoms. We now discuss the values of TE and the 1s spinor/
orbital energies for the neutral atoms obtained using the
expansion methods. In Figure 3, we show the total energy (TE)

ratios and the 1s orbital energy ratios for neutral atoms from 1H
to 103Lr.

= − ×ratio(TE) (TE(HFR) TE(DFR)) 100/TE(HFR)
(3)

ε ε ε ε= − ×ratio( ) ( (HFR) (DFR)) 100/ (HFR) (4)

From Figure 3, we see that the ratios for 1s+ of the neutral
atoms are close to those of hydrogenic ions in Figure 1,
indicating that the behavior of ratio(ε) for 1s+ in the neutral
atoms is similar to that for the hydrogenic ions. No anomalies
in the ratio(ε) for 1s+ are observed. It is safe to say that in the
1s spinor direct relativistic effects (see below) overcome
shielding effects from the outer electrons and the other 1s
electron. The value of ratio(TE) also decreases monotonically
from 1H to 103Lr as does ratio(ε) of 1s+. Finally, we used the
electron configuration (6d1) (7s2) for 103Lr instead of (7p1)
(7s2)26,27 because we used the HFR and DFR results given by
refs 16−19, where (6d1) (7s2) was employed.
3.3. Relativistic Effects in the Outermost s and p

Shells of Neutral Atoms. Except for 46Pd (4d10)(5s0), all
atoms have ns or n’p orbitals/spinors as their outermost shell
so far as the diffuseness is concerned. In this study, we classify
atoms into three categories by the diffuseness of their spinors.
The group 13−18 atoms except for 2He (1s

2) have the electron
configuration (ns2) (npm; m = 1−6), where np+ is the
outermost spinor. The remaining atoms have an ns+ spinor as
their outermost shell except for 46Pd. We may call the group
13−18 atoms p atoms, and the remaining atoms s atoms except
for 46Pd, which we refer to as a d atom. The values of ratio(ε)

given by eq 4 for the outermost ns’s and np’s are plotted in
Figure 4. The 46Pd atom has 4d+ as its outermost shell, and we

mark the ratio(ε) for 46Pd with a closed blue square. The value
of ratio(ε) for the outermost ns is negative for all s atoms
except for 24Cr (3d

5) (4s1), 41Nb (4d4) (5s1), and 42Mo (4d5)
(5s1). Relativistic effects lower the ns spinor energy in
comparison to the corresponding ns orbital energy.
According to RGP6 and DF,13 relativistic effects in the

Dirac−Coulomb Hamiltonian are divided into two parts, direct
relativistic effects and indirect relativistic effects. Direct
relativistic effects arise from the Dirac term plus nuclear
attraction term, which is roughly divided into the spin−orbit
interaction term and the so-called kinematical term.10 The
kinematical term is expressed approximately as the sum of the
mass−velocity term and the Darwin term, and it is due to
electrons moving at high velocity in the vicinity of the nucleus.
For the valence electrons, indirect relativistic effects appear as

differences between relativistic and nonrelativistic electron−
electron interactions among the valence−core and valence−
valence shells. (Likewise, for the core electrons, indirect effects
appear as differences between relativistic and nonrelativistic
electron−electron interactions among the core−core and core−
valence shells.) Indirect relativistic effects can be interpreted
also as differences between relativistic and nonrelativistic
shielding effects due to electron−electron interactions among
the core−valence and valence−valence shell electrons. Kine-
matical effects cause the spinor energy to be lower than the
orbital energy, whereas indirect relativistic effects cause the
spinor energy to be lower or higher than the orbital energy,
depending on the electronic structure. If the shielding effects in
the relativistic calculation are larger than those in the
nonrelativistic one, the indirect relativistic effects make the
spinor energy higher. Conversely, if the shielding effects in the
relativistic calculation are smaller than those in the non-
relativistic calculation, indirect relativistic effects reinforce the
kinematical effects; the spinor energy becomes deeper.
The negative value of ratio(ε) for the s atoms shows that the

effects of the kinematical term surpass the indirect relativistic
effects, even if the indirect relativistic effects are oppositely
oriented. The role of indirect effects in the s atoms will be
discussed below. In the p atoms, ratio(ε) is positive for all of

Figure 3. Ratio(TE) (=(TE(HFR) − TE(DFR)) × 100/TE(HFR))
and ratio(ε) (=(ε(HFR) − ε(DFR) × 100/ε(HFR)) for 1s (from 1H
to 103Lr).

Figure 4. Ratio(ε) (=(ε(HFR) − ε(DFR)) × 100/ε(HFR)) for the
outermost shells (from 1H to 103Lr).
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the outermost np+. This tells us that indirect relativistic effects,
which cause the spinor energy to be shallow, surpass the direct
relativistic effects; the inner closed shells and valence shells
shield the nuclear charge more efficiently when relativity is
taken into account. We also expect that relativistic effects cause
p+ to be more diffuse than the nonrelativistic p. This tendency
illustrated in Figure 5 is seen parallelly in ref 6.

We now discuss relativistic effects in the valence ns shells in
more detail. Relativistic effects are negligibly small for 1H, 2He,
3Li, 4Be, 11Na, 12Mg; then, they increase gradually for the series

19K, 20Ca, the first transition-metal atoms (21Sc−29Cu), 30Zn,

37Rb, 38Sr, the second transition-metal atoms (39Y−47Ag), 48Cd,

55Cs, 56Ba, the lanthanoid atoms (57La−71Lu), the third
transition-metal atoms (72Hf−79Au), 80Hg, 87Fr, 88Ra, and the
actinoid atoms (89Ac−103Lr). We, however, note that between
the alkali-metal atoms and alkaline-earth metal atoms (between
19K and 20Ca, 37Rb and 38Sr, 55Cs and 56Ba, 87Fr and 88Ra),
ratio(ε) is almost constant, indicating that shielding effects
from the inner core of the alkali-metal atoms and alkaline-earth
metal atoms are similar and the shielding effects from another
ns electron are quite small. Because ratio(ε) for 4s+ and 5s+ is
negative (the ns spinor energy is lower than the ns orbital
energy), and decreases as the number of d electrons increases,
we infer that the shielding effects of the relativistic nd shell
decreases faster than those of the nonrelativistic nd shell.
Indirect relativistic effects in the first and second transition-
metal atoms enhance the relativistic effects. In Figure 5, we see
anomalies at 24Cr (3d5) (4s1), 41Nb (4d4) (5s1), and 42Mo
(4d5) (5s1), which are high-spin states in the LS-coupling
scheme. These anomalies are presumably due to the use of
AOC in DFR.
The shielding effects of the relativistic nf shell on the 6s shell

are further decreased compared to the nonrelativistic nf shell.
For these atoms, we observe two dips (see Figure 5). The first
is at 58Ce (4f

1) (5d1) (6s2), and the second at 64Gd (4f7) (5d1)
(6s2). The shielding effect of the 5d spinor/orbital is expected
to be smaller than that of the 4f spinor/orbital. This lowers the
6s spinor/orbital energies of 58Ce and 64Gd compared to the
other atoms, which are not associated with a 5d electron. The
example is an excited state of 64Gd, (4f

8) (6s2). If we write the
spinor/orbital energy of 6s of the 64Gd (4f8) (6s2) excited state

as ε′(DFR)6s and ε′(HFR)6s+, respectively, the value of ratio(ε)
for 6s+ of 64Gd (4f7) (5d1) (6s2) is given by

ε ε δε

ε δε

ε δε

= ′ + ′

− ′ + ′

× ′ + ′
+ +

ratio( ) (( (HFR) )

( (DFR) ))

100/( (HFR) )

6s nonrel,6s

6s rel,6s

6s nonrel,6s (5)

where the two δ terms are due to the change of occupation (4f
→ 5d). These δ terms are negative, as suggested above. For this
ratio to be smaller than (ε′(HFR)6s − ε′(DFR)6s+) × 100/
ε′(HFR)6s, it is necessary that (δε′nonrel,6s − δε′rel,6s+) ≫ 0.
From the spinor/orbital energies of 63Eu (4f7) (6s2) and 65Tb
(4f9) (6s2), we have estimated the spinor/orbital energies and
δ’s for 64Gd (4f8) (6s2) as ε′(DFR)6s+ = −0.183 au and
ε′(HFR)6s = −0.173 au. The spinor/orbital energies (ε’s) of
64Gd (4f7) (5d1) (6s2) are −0.1996 and −0.1833 au,
respectively. We then have δε′rel,6s+ = −0.016 au and δε′nonrel,6s
= −0.011 au. The absolute value of δε′rel,6s+ is 150% times that
of δε′nonrel,6s. Thus, 6s+ is far more stabilized than 6s by the
change of occupation (4f→ 5d). That is the origin of the dip at
64Gd. Actually, eq 5 gives ratio(ε) of −8.9%, whereas
(ε′(HFR)6s − ε′(DFR)6s+) × 100/ε′(HFR)6s gives ratio(ε) of
−5.6%.
For 71Lu, and for the third transition-metal atoms

(72Hf−79Au) and 80Hg, the indirect relativistic effects increase
as suggested by ratio(ε) for 6s+. Ratio(ε) decreases sharply and
has a minimum at 79Au (5d

10) (6s1). RGP6 calculated that ε6s =
−0.221 au and ε6s+ = −0.292 au. Replacing the relativistic core
with nonrelativistic core and by similar replacement, RGP6 gave
an approximate value of the direct relativistic and indirect
relativistic contributions. The given values are −0.072 au for the
direct relativistic contribution and −0.006 au for the indirect
contribution. Following RGP, the direct relativistic contribution
governs the lowering in the spinor energy relative to orbital
energy at 79Au. The sharp decrease in the ε(DFR) given in
Figure 4 is thus mainly brought by the direct effects supported
with indirect relativistic effects. Finally, Dyall and Faegri13

showed the anomalies of 6s+ spinor energies at 74W, 78Pt, and
79Au. These are due to the electron configuration (5dn+1) (6s1).
We have anomalies at 78Pt and 79Au, but not at 74W. In the
present work, 78Pt and 79Au have (5dn+1) (6s1), but 74W does
(5dn; n = 4) (6s2).
We summarize the relativistic corrections for the s atoms as

follows: (1) the kinematical effect10 mainly lowers the
outermost ns+ energies compared to the ns orbital energies
and (2) the smaller shielding effects of the electrons in the d
and f orbitals (part of the indirect relativistic effects10) than
those of electrons in the d and f orbitals further support the
lowering in energy of ns+.
We next discuss about the p atoms. Their electronic

structures are fairly simple. The np electrons always move in
the electric field generated by the closed-shell ion core, which
gives a similar shape for the np+ ratio(ε) regardless of n. The
repulsive potential generated from the closed-shell ion core plus
the two-electron interaction terms among the np electrons in
the DFR is greater than that in the HFR. The indirect
relativistic effects6,10,13 cause the np+ spinor energies to be
shallow, the opposite situation to the ns+ cases discussed above.
Indirect relativistic effects are stronger than the direct
relativistic effects so that the np+ spinor energies are higher
than the orbital energies. The value of ratio(ε) has a peak at
(np3). We believe that this peak is exaggerated as a result of the

Figure 5. Ratio(r) (=(⟨r(DFR)⟩ − ⟨r(HFR)⟩) × 100/⟨r(HFR)⟩) for
the outermost shells (from 1H to 103Lr).
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use of AOC in the DFR calculations. Finally, RGP6 estimated
the magnitude of the direct and indirect relativistic effects for
81Tl 6p− and 6p+. For 6p−, the direct relativistic effect is −0.057
au and the indirect one is 0.028 au. For 6p+, they are −0.014
and 0.028 au, respectively. Totally, the relativistic effects
decrease the 6p− spinor energy and increase the 6p+ spinor
energy. Ratio(ε)’s for 81Tl by the use of their estimated values
are −7 and 17% for the 6p− and 6p+ spinors, respectively,
which are consistent with the present values of −9.5% for 6p−,
which would be shown later, and 8.3%, given in Figure 4, for
6p+.
In Figure 5, the ratio

= ⟨ ⟩ − ⟨ ⟩ × ⟨ ⟩r r r rratio( ) ( (DFR) (HFR) ) 100/ (HFR)
(6)

is shown for the outermost ns+ for the s atoms, and np+ for the
p atoms. The results for ratio(r) are similar to those for ε in
Figure 4, although the absolute values of ratio(r) are smaller
than ratio(ε). The explanation given for Figure 4 holds also for
Figure 5. It is well known that for heavy atoms, such as the
lanthanoid atoms, the size of ⟨r⟩ of 6s contracts as Z increases.
In fact, in both the relativistic and nonrelativistic calculations,
the 6s ⟨r⟩ value decreases as Z increases. As shown in Figure 5,
the lanthanoid contraction (57Ce−70Yb) and the actinoid
contraction (89Ac−102No) are strengthened by relativistic
effects. In 71Lu, the third transition-metal atoms (72Hf−79Au),
and 80Hg, the relativistic effects are fairly large.
Spinor/orbital energies of the outermost shells and inner

shells and the mean distances of r for spinors/orbitals are given
in the Supporting Information.
3.4. Relativistic Effects in the Inner s and p Shells of

Neutral Atoms. In the case of the hydrogenic ions described
in Section 2, the spinors specified by j with the same principal
quantum number n are energetically degenerate, and their
values of ratio(ε) take the same value. As shown in Figure 6,
even for the neutral atoms, these ratios for the (ns+, np−) pair

of j = 0 in the ion cores behave like those of the hydrogenic
ions. In this figure, solid lines show ratio(ε) for ns+ or np+ and
dotted lines show ratio(ε) for np−. We discuss these pairs in
detail.
The value of ratio(ε) for 2p− (black dotted line) is close to

that (upper black solid line) for 2p+ of the neutral atoms from
5B to 8O, but for those from 9F (2s+: −0.22%, 2p−: −0.18%) to
103Lr (2s+: −32.66%, 2p−: −32.31%), its value is close to that
(lower black solid line) of 2s+. Values of ratio(ε) for 2p+ of 9F
and 103Lr are +0.19 and −1.50%, respectively. Values of ratio(ε)
for 2p+ of 9F and 103Lr are far from the corresponding ratio(ε)
for 2p−. Values of ratio(ε) for 2s+, 2p−, and 2p+ of atoms
beyond 8O decrease monotonically as Z increases. The valence
shell electronic structure is not reflected in the value of ratio(ε)
after 9F; the influence of the valence shell structure is observed
in, for instance, the rapid decrease of ratio(ε) for 4s+, 4p−, 5s+,
and 5p− and the local minimum at 79Au. It can be stated with
reasonable confidence that after 11Na, the 2s and 2p spinor/
orbital energies are stable, meaning that they are not influenced
by the electronic structures of the outer shells.
A similar discussion to that given above holds for the 3s−3p

and 4s−4p shells. The value of ratio(ε) for 3p− (purple dotted
line in Figure 6) is near to that of 3p+ (upper purple solid line)
in the case of the neutral atoms from 13Al to 16S, but it is close
to that of 3s+ (lower purple solid line) from 17Cl (3s+: −0.62%,
3p−: −0.56%) to 103Lr (3s+: −32.42%, 3p−: −32.43%). The
values of ratio(ε) for 3p+ of 17Cl and 103Lr are +0.47 and
−3.83%, respectively. Relativistic effects are large for the (3s+,
3p−) pair compared to 3p+, especially for the heavy atoms. The
difference in the outer-shell electronic structure is not reflected
in the values of ratio(ε) for the inner 3s and 3p shells after 17Cl.
Beyond 19K, the spinor/orbital energies appear to be stable,
meaning that they are not influenced by the electronic
structures of the outer shells. The value of ratio(ε) for 4p−
(blue dotted line) is close to that for 4p+ (upper blue solid line)
of the neutral atoms from 31Ga to 34Se, but close to that for 4s+
(lower blue solid line) from 35Br (4s+: −2.84%, 4p−: −2.79%)
to 103Lr (4s+: −34.02%, 4p−: −34.66%). The values of ratio(ε)
for 4p+ of 35Br and 103Lr are +1.72 and −4.21%, respectively.
Kinematical effects are large for the (4s+, 4p−) pair compared to
4p+, especially for the heavy atoms, as also for the (3s+, 3p−)
pair compared to 3p+. The outer-shell electronic structures have
some influence on the (4s+, 4p−) pair as far as roughly 86Rn;
they have scarcely any influence on the (4s+, 4p−) pair beyond
87Fr.
Values of ratio(ε) for 5s+−5p− and 6s+−6p− inner shells are

quite different from the 3s+−3p− and 4s+−4p− inner shells
referred to above. Ratio(ε) for 5s+ (lower green solid) begins at
37Rb and that for 5p− (green dotted) begins at 49In. However,
ratio(ε) for 5p− is different from that for 5p+ (upper green
solid) at 49In (5p−: −1.83%, 5p+: 2.91%). The value of ratio(ε)
for 5p− is the same as for 5s+ at 53I (−6.76%). Beyond 53I,
ratio(ε) is similar for 5s+ and 5p−, but does not decrease
monotonically as Z increases; see the local minimum at 79Au.
The solid red line shows ratio(ε) for 6s+, beginning at 55Cs; the
red dotted line showing 6p− begins at 81Tl. From 55Cs to 80Hg,
the outermost shell is 6s+. As shown in Figures 4 and 6, the
value of ratio(ε) for the 6s shell changes dramatically as Z
decreases. Ratio(ε) for 6p− begins at 81Tl and takes a very
different value from that for 6p+ (6p−: −9.49%, 6p+: 8.26%);
the 6p− spinor energy is considerably lower than the 6p orbital
energy, and the 6p+ spinor energy is considerably higher than

Figure 6. Ratio(ε) (=(ε(HFR) − ε(DFR)) × 100/ε(HFR)) for the
valence and inner s and p shells. (1) Black solid lines denote 2p+ and
2s+, and the black dotted line denotes 2p−. (2) Purple solid lines
denote 3p+ and 3s+, and the purple dotted line denotes 3p−. (3) Blue
solid lines denote 4p+ and 4s+, and the blue dotted line denotes 4p−.
(4) Green solid lines denote 5p+ and 5s+, and the green dotted line
denotes 5p−. (5) Red solid lines denote 6p+ and 6s+, and the red
dotted line denotes 6p−.
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the 6p orbital energy; ε(6p−) = −0.2105 au, ε(6p) = −0.1923
au, and ε(6p+) = −0.1764 au at 81Tl. The values of ratio(ε) for
6s+ and 6p− of 85At are comparable (6s+: −22.52%, 6p−:
−23.67%), but are different at 86Rn (6s+: −22.54%, 6p−:
−26.09%). For 6p+ of 85At, ratio(ε) is +9.88%. After 87Fr, for
which ratio(ε) is 6s+: −19.82% and 6p−: −20.82%, values for
6s+ and 6p− behave similarly. Although beyond 87Fr 6s+, 6p−
and 6p+ are inner shells, the values of ratio(ε) for these shells
vary considerably. Kinematical effects and indirect relativistic
effects are both important for 6s+ and 6p−. For 6p+, on the
other hand, the indirect relativistic effects are important.
Figure 7 shows ratio(r) for the inner ns and np spinors

together with the valence spinors. The results for 2s+, ..., 5p− of

the heavy atoms run parallel to ratio(r) in Figure 2; this
indicates the importance of the kinematical effects for these
spinors.
3.5. Relativistic Effects in the Outermost d Shells of

the Neutral Atoms. We now discuss relativistic effects in the
outermost d shell. The 3d shell is a valence shell, together with
4s from 21Sc to 30Zn. Figure 8 shows ratio(ε) for the d and f
shells. We observe that 3d+ and 3d− are more unstable than 3d
from 21Sc to 30Zn. Ratio(ε) for 3d+ takes a maximum value of
+15.7% at 24Cr (3d5) (4s1), although this may be an
overestimate because of the AOC used in the relativistic
calculations; the 3d+ spinor energy and the 3d orbital energy of
24Cr are −0.3148 and −0.3734 au, respectively. Because
ratio(ε) begins at 2.5% of 21Sc and ends at 3.6% of 30Zn, we
are in no doubt that the indirect relativistic effects cause the 3d
spinor energies to be more unstable than the corresponding
orbital energies. Figure 9 shows ratio(r) for the d and f shells.
The Z-dependence of ratio(r) is similar to that of ratio(ε) for
the atoms 21Sc−30Zn. The relativistic calculation gives larger ⟨r⟩
values for 3d than the nonrelativistic. This is consistent with the
fact that ε is shallower for the former than for the latter.
The second transition-metal atoms run from 39Y to 47Ag. All

4d+ and 4d− have positive ratio(ε) except for 4d− of 46Pd, for

which the electronic configuration is (4d10) (5s0). Ratio(ε) for
4d+ has a maximum value of +17.9% at 42Mo (4d5) (5s1); again,
this value may be an overestimate because of the AOC used in
the relativistic calculations; the 4d+ spinor and 4d orbital
energies of 42Mo are −0.2937 and −0.3577 au, respectively.
Because high-spin and low-spin states are included in AOC, the
resulting TE is higher than the lowest state with the proper
symmetry. Again, we are in no doubt that indirect relativistic
effects help to make the 4d spinors to be more unstable than
those of the corresponding 4d orbitals. The Z-dependence of
ratio(r) in Figure 9 runs parallel to that of ratio(ε) in Figure 8
for the atoms 39Y−48Cd. For the d atom (46Pd), ratio(ε) is
positive for the outermost 4d+ but negative for the outermost
4d−.
In 71Lu, in the third transition-metal atoms (72Hf−79Au) and

in 80Hg, the 5d+ and 5d− all have positive ratio(ε)’s; these ratios
are twice as large as the corresponding ratios in the first and
second transition-metal atoms. This implies larger indirect
relativistic effects in 71Lu and the third transition-metal atoms
(72Hf−79Au) and 80Hg. For 5d+, ratio(ε) reaches a maximum
value of +28.9% at 75Re (5d

5) (6s2). The 5d+ spinor energy and
the 5d orbital energy of 75Re are −0.3655 and −0.5141 au,

Figure 7. Ratio(r) (=(⟨r(DFR)⟩ − ⟨r(HFR)⟩) × 100/⟨r(HFR)⟩) for
the valence and inner s and p shells. (1) Black solid lines denote 2p+
and 2s+, and the black dotted line denotes 2p−. (2) Purple solid lines
denote 3p+ and 3s+, and a purple dotted line denotes 3p−. (3) Blue
solid lines denote 4p+ and 4s+, and a blue dotted line denotes 4p−. (4)
Green solid lines denote 5p+ and 5s+, and a green dotted line denotes
5p−. (5) Red solid lines denote 6p+ and 6s+, and a red dotted line
denotes 6p−.

Figure 8. Ratio(ε) (=(ε(HFR) − ε(DFR)) × 100/ε(HFR)) for all d
and f shells.

Figure 9. Ratio(r) (=(⟨r(DFR)⟩ − ⟨r(HFR)⟩) × 100/⟨r(HFR)⟩) for
all d and f shells.
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respectively. The difference between ratio(ε)’s for 5d+ and 5d−
is the largest among nd+ and nd− (n = 3, 4, and 5), suggesting
that the effect of the spin−orbit interaction is greatest for atoms
having 5d shells. As we say above, the indirect relativistic effects
cause the 5d spinors to be more unstable than the
corresponding 5d orbitals. RGP6 gave approximate values for
the indirect and direct relativistic effects in 71Lu (5d

1) (6s2); for
5d−, the indirect and direct relativistic effects are 0.069 and
−0.025 au, respectively, whereas for 5d+, the corresponding
values are 0.067 and −0.010 au. Using these values given by
RGP, we obtained ratio(ε)’s of 18 and 23% for 5d− and 5d+,
which are consistent with the present values of 22 and 24% for
5d− and 5d+, respectively, shown in Figure 8.
Ratio(ε) has minima at 78Pt and 79Au. The electronic

configuration of 79Au is (5d10) (6s1), and the 5d+ spinor and
the 5d orbital energies are, respectively, −0.4281 and −0.5207
au. The large instability in 5d and the strong stability exhibited
by 6s (6s+ ε: −0.2912 au; 6s ε: −0.2206 au) of 79Au due to
relativistic effects are responsible for the gold yellow color, as
discussed by Pyykkö and Desclaux.6

3.6. Relativistic Effects in the Outermost f Shells of
Neutral Atoms. Consider now the lanthanoid atoms from
57La to 70Yb, excluding 71Lu. The electronic configuration of

57La is (4f
0) (5d1) (6s2) and that of 58Ce is (4f1) (5d1) (6s2).

The others have configurations (4fn; n = 3−14) (5d0) (6s2),
except for 64Gd (4f7) (5d1) (6s2). The relativistic 4f shells
without a 5d electron are more destabilized than shells with a
5d electron. For 4f+, ratio(ε) takes a maximum value of +41.3%
at 59Pr (4f3) (5d0) (6s2). The 4f+ spinor energy and the 4f
orbital energy of 59Pr are −0.3224 and −0.5491 au, respectively.
For 4f±, ratio(ε) has a local minimum at 64Gd (4f

7) (5d1) (6s2).
Because 5d in the relativistic and nonrelativistic wave functions
is more diffuse than 4f’s, the shielding effects are smaller for 4f’s
in 64Gd (4f7) (5d1) (6s2) than in 64Gd (4f8) (6s2).
Consequently, the effective nuclear charge for 4f’s in 64Gd
(4f7) (5d1) (6s2) is larger than in 64Gd (4f8) (6s2). In the
relativistic and nonrelativistic calculations, therefore, states with
5d have deeper 4f spinor/orbital energies than states without
5d. We write the 4f spinor and orbital energies of 64Gd (4f8)
(6s2) as ε′(DFR)4f and ε′(HFR)4f and write the corresponding
energy lowering in the 4f’s in 64Gd (4f7) (5d1) (6s2) as δε′rel,4f±
and δε′nonrel,4f. The value of ratio(ε) for 4f+ of (4f7) (5d1) (6s2)
may be expressed as

ε ε δε

ε δε

ε δε

= ′ + ′

− ′ + ′

× ′ + ′
+ +

ratio( ) (( (HFR) )

( (DFR) ))

100/( (HFR) )

4f nonrel,4f

4f rel,4f

4f nonrel,4f (7)

The 10% drop in ratio(ε) at 64Gd can be explained by assuming
that δε′nonrel,4f is near to δε′rel,4f+ and that the magnitude of
δε′nonrel,4f is not less than about 30% of ε′(HFR)4f. From the
spinor/orbital energies of 63Eu (4f7) (6s2) and 65Tb (4f

9) (6s2),
we have estimated the spinor/orbital energies and values of δ
for 64Gd (4f8) (6s2); in particular, ε′(DFR)4f+ = −0.437 au and
ε′(HFR)4f = −0.703 au. The values of ε for 4f+ and 4f of 64Gd
(4f7) (5d1) (6s2) are −0.7106 and −1.0433 au, respectively. We
then find that δε′rel,4f+ = −0.274 au and δε′nonrel,4f = −0.340 au.
The two δ’s in the numerator largely cancel each other, and the
absolute value of the denominator is 50% greater than the value
without δε′nonrel,4f. From these values, we find that ratio(ε) =
31.8%, which is much lower than the value of 37.8% for (4f8)
(6s2). The large orbital energy lowering in the 4f orbital of 64Gd

(4f7) (5d1) (6s2) compared to that of (4f8) (6s2) might be
responsible for the local minimum ratio(ε) of 64Gd. In the
lanthanoid and actinoid atoms, the 4f and 5f spinors are
significantly destabilized by the indirect relativistic effects.
Figure 9 shows that the shape of ratio(r) plotted versus Z is

similar to that for ratio(ε). The value of ratio(r) for 4f is
considerably lower compared to the ratio(ε) in Figure 8. Let us
consider why ratio(r) for 4f is low, taking 64Gd as an example.
The 4f electron cloud is in the narrow space sandwiched
between the (4s, 4p, 4d) shell and the (5s, 5p) shell, whereas
the 5d electron cloud is in the extensive space between the (5s,
5p) shell and the 6s shell. Because of this narrow space, the
difference (⟨r(DFR)⟩ − ⟨r(HFR)⟩) = 0.8389 − 0.7890 au =
0.0499 au for the 4f+ shell is 5 times smaller than that for
(⟨r(DFR)⟩ − ⟨r(HFR)⟩) = 2.7330 −2.4600 au = 0.2730 au for
5d+ shell. Consequently, ratio(r)’s for 4f+ and 5d+ are 6.32 and
11.10%, respectively, as shown in Figure 9. The restriction on
the space causes the differences (⟨r(DFR)⟩ − ⟨r(HFR)⟩) in 4f±
to be smaller than for 5d±.
Let us discuss the actinoid atoms from 89Ac to 103Lr. The 5f

and 6d shells are both occupied in the ground-state
configurations of the following six atoms: 91Pa (5f2) (6d1)
(7s2), 92U (5f3) (6d1) (7s2), 93Np (5f4) (6d1) (7s2), 96Cm (5f7)
(6d1) (7s2), 97Bk (5f

8) (6d1) (7s2), and 103Lr (5f
14) (6d1) (7s2).

Ratio(ε) has local minima at 93Np and 97Bk, as shown in Figure
8. These local minima would be explicable in the same manner
as that for 64Gd (4f7) (5d1) (6s2). The values of ε for 5f−, 5f+,
and 5f of 97Bk, for instance, are −0.5795, −0.5214, and −0.9884
au, respectively. Figure 9 shows that the shape of ratio(r) for 5f
versus Z resembles the shape of ratio(ε) for the relativistic 5f.
However, ratio(r) for 5f examined in relation to that for 6d is
unusually low compared to ratio(ε) for 5f examined in relation
to that for 6d. The 5f electron cloud is located in the narrow
space sandwiched between the (5s, 5p, 5d) shell and the (6s,
6p) shell, whereas the 6d electron cloud is in the extensive
space between the (6s, 6p) shell and the 7s shell. This
restriction in volume causes the variation of ⟨r(DFR)⟩ −
⟨r(HFR)⟩ of 5f± to be smaller than that of 6d±. Accordingly,
the ratio(r) for 5f± is smaller than that for 6d±.

3.7. Relativistic Effects in the Inner d and f Shells of
Neutral Atoms. The 3d, 4d, and 5d shells begin to form an
ion core at 31Ga, 49In, and 81Tl, respectively, and the 4f shell, at
71Lu. For 31Ga−58Ce 3d−, 49In−60Nd 4d−, and 81Tl−94Pu 5d−,
the value of ratio(ε) is positive, indicating that the 3d, 4d, and
5d spinors are less stable than the corresponding nonrelativistic
orbitals; indirect relativistic effects strongly influence the
characteristics of the spinor energies. Although ratio(ε) for
4f± is positive after 71Lu, it decreases sharply. This suggests that
the importance of the direct relativistic effects increases.
For 59Pr−103Lr 3d−, 61Pm−103Lr 4d−, and 95Am−103Lr 5d−,

the value of ratio(ε) is negative and kinematical effects are
important, as in the hydrogenic ions. Values of ratio(ε) for 3p+,
3d−, and 3d+ at 59Pr are, respectively, −0.69, −0.08, and 2.05%.
Ratio(ε) for 3d− is closer to ratio(ε) for 3p+ than ratio(ε) for
3d+. The values of ratio(ε) for these spinors change slowly as Z
increases (see Figures 6 and 8). At 103Lr, the values for 3p+,
3d−, and 3d+ are, respectively, −3.83, −3.07, and 2.92%. We
can say that beyond 59Pr, 3p+ and 3d− tend to pair. The values
of ratio(ε) for 4p+, 4d−, and 4d+ at 61Pm are −1.03, −0.10, and
3.09%, respectively. Beyond 61Pm, shells having the same value
of j tend to pair. Values of ratio(ε) for 5p+, 5d−, and 5d+ at
95Am are, respectively, −2.44, −0.37, and 7.57%. Beyond 95Am,
shells having the same value of j tend to pair.
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The plot in Figure 9 has a similar shape to that in Figure 8,
but differences emerge upon closer examination. Figure 9
reveals that ratio(r) for 3d− becomes negative (−0.01%) at
33As, suggesting that kinematical effects surpass the indirect
effects for 33As. Figure 8 indicates that the kinematical effects
surpass the indirect relativistic effects for 59Pr, however. We
believe that ratio(ε) reflects the characteristics of the atomic
shell structure more realistically than ratio(r) because ratio(ε)
is derived directly from comparison of the eigenvalues of the
DFR and HFR equations.

4. CONCLUSIONS

We have discussed relativistic effects in atoms from 1H to 103Lr.
Except for 46Pd (4d10) (5s0), all atoms have, as their outermost
shall, their ns or n’p spinors/orbitals. It is the case that for all of
the atoms having the ns spinor (ns+) as their outermost shell,
the ns+ spinor energies are lower than the corresponding ns
orbital energies. This result indicates that kinematical effects are
more important than indirect relativistic effects for the ns shell.
In contrast, in all atoms having np+ spinors as the outermost
shell, the np+ spinor energies are higher than the corresponding
np orbital energies (similarly, the np+ spinors are more diffuse
than the np orbitals). This indicates that the indirect relativistic
effects are stronger than the kinematical effects. Specifically, in
the valence p+ spinors, the shielding effects provided by the
ionic core and the valence electrons surpass the kinematical
effects. The same is true for p− of light atoms, but for heavy
atoms, the importance of the kinematical effects increases. The
p− spinors take considerably lower spinor energies than the
corresponding p orbitals. This is especially remarkable for the
5th group 13−18 atoms. In the nd and nf shells, the indirect
relativistic effects are strengthened, and the instability of the
spinor energies compared to the corresponding orbital energies
increases further. The enhancement of contractions of the
outermost s orbitals by the relativistic effects in the lanthanoid
atoms, the third transition-metal atoms, and the actinoid atoms
have also been discussed. Diffuseness of the nd and nf spinors
compared to the corresponding nonrelativistic orbitals was also
investigated.
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