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ABSTRACT: A mutually correlated green protocol has been devised that
originates from a sustainable production of β-Ni(OH)2 nanoparticles which is
used for an efficient catalytic synthesis of versatile substituted tetrazoles, under mild
reaction conditions in water via a simple, one-pot, eco-friendly method. The
synthesis is followed by derivatization into a highly fluorescence active compound
9-(4-(5-(quinolin-2-yl)-1H-tetrazol-1-yl)phenyl)-9H-carbazole that can be used at
tracer concentrations (0.1 μM) to detect as well as quantify hydrogen peroxide
down to 2 μM concentration. The nanocatalyst was synthesized by a simple,
proficient, and cost-effective methodology and characterized thoroughly by UV−vis
absorption and Fourier transform infrared spectra, N2 adsorption/desorption, high
resolution transmission electron microscopy, powder X-ray diffraction pattern, field
emission scanning electron microscopy, and thermogravimetric analysis. Broad
substrate scope, easy handling, higher efficiency, low cost, and reusability of the
catalyst are some of the important features of this heterogeneous catalytic system.
The strong analytical performance of the resultant derivative in low-level quantification of potentially hazardous hydrogen
peroxide is the key success of the overall green synthesis procedure reported here.

1. INTRODUCTION
Sustainable synthesis of nitrogen rich heterocycles has
attracted growing interest over a decade. In this regard,
tetrazoles, a group of five-membered ring compounds
containing four nitrogen atoms, have received wide attention
in recent years because of their vast and extraordinary activity
in pharmaceutical and medicinal chemistry1−4 (Scheme 1).
They also have a similar implementation in the field of
industrial chemistry, chemistry of materials (including light
sensitive agents, polymers, energy materials, various explosives,

etc.),5−9 and coordination chemistry.10,11 Furthermore,
tetrazoles have a wide range of agricultural applications,12,13

for instance, they are used to control unwanted herbs and fungi
and help to regulate the plant growth.
Because of these wide range of applications, development of

an efficient synthetic route for tetrazole-based compounds is in
vogue. In this context, numerous synthetic strategies are
reported in the literature. After the pioneering work by
Hantzsch and Vagt,14 a variety of modified procedures were
developed, but majority of them were based on the addition of
azides to the nitrile groups,15−20 while some groups have also
used isocyanide,21 primary alcohols, aldehydes22 and so forth,
in different toxic organic solvent media. All the reactions were
carried out under homogeneous conditions using stoichio-
metric amount of metal catalysts,23,24 Lewis acids25−27 or ionic
liquids.28 Besides, there are a plethora of contributions related
to diverse types of homogeneous catalytic systems reported in
literature.29−33 However, use of expensive ligands and toxic
organic solvents, probability of metal contamination in the
products, application of additives, and finally lack of reusability
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of the catalyst demand serious attentions. An efficient greener
alternative where the catalyst can be reused through an
environment-friendly manner is therefore welcome. Very
recently, some heterogeneous catalytic systems34−38 have also
been developed to overcome these drawbacks. Till now,
heterogeneous transition metal catalyzed synthetic pathways
are one of the most interesting as well as challenging areas. In
this context, nickel as a transition metal catalyst, creates a
promising center of attraction toward the researchers.
Nanoparticles (NPs), having unusually huge surface area and
large number of active sites, can efficiently catalyze several
organic reactions providing the advantages of high atom
economy, mild reaction conditions, simplified isolation of
product, easy recovery, and recyclability of the catalysts.39−41

Considering the ongoing attempts and increasing awareness to
develop simple, environment-friendly, economic, and profit-
able synthetic methods, nickel-based NPs can serve as a
powerful alternative.42,43 Incidentally, several reports are
available in the literature regarding the synthesis of tetrazole
compounds catalyzed by diverse type of nickel-based
NPs.44−48 Moreover, aldoxime derivatives have captured the
attention of synthetic organic chemists during the past few
years49−51 because of their good reactivity and less toxic nature
and the fact that they can be prepared very easily. Very
recently, Patil,52 Babu,53 and Matsugi54 have reported,
respectively, the homogeneous Cu(OAc)2, InCl3, and DPPA
catalyzed synthesis of 5-substituted 1H-tetrazoles from
aldoxime and sodium azide.
On the other hand, the past decade has witnessed a surge in

the sensing application of several materials for ultratrace
sensing of hydrogen peroxide because of multiple reasons.55−58

It is one of the most powerful oxidizing agents and is a
proficient generator of reactive oxygen species.59,60 H2O2 has
immense applications in the industrial and medicinal fields.61,62

Additionally, H2O2 is produced by all living cells upon
reduction of O2 by NADPH oxidase63,64 and by several
other mechanisms also.65−68 Such production is believed to get
enhanced with aging and other ailments.69−71 Moreover, it
may enter the body system with certain beverages like instant
coffee or sanitized water. Sensing of H2O2 in different samples
of environmental, industrial, and biological importance at trace
scale is therefore required together with suitable remediation
methods. An extensive study of H2O2 sensing methods have
been done by several researchers.57,72−76 The most popularly
selected methods involve electrochemical techniques which
entail special laboratory setup and requirements.77,78 Reports
on spectral methods of H2O2 sensing are in severe dearth in
recent days, despite their easy handling and measurement
conditions.79,80

In this context, we hope to introduce here a novel and
efficient synthetic strategy of designing recyclable heteroge-
neous nickel hydroxide NPs to surmount several aforemen-
tioned obstructions in the synthesis of 5-substituted 1H-
tetrazoles starting from aldoximes and sodium azide in water
under mild reaction conditions (Scheme 2). Using our
protocol, we finally end up in designing 9-(4-(5-(quinolin-2-
yl)-1H-tetrazol-1-yl)phenyl)-9H-carbazole (compound 6) as a
spin off. Only 0.1 μM concentration of this compound is
potent enough for spectrofluorimetric sensing of trace
concentrations of H2O2. The overall synthesis methods and
the sensing experiments have been performed in green solvent
media utilizing hassle free techniques and hazard free reagents.
A comparison of the present sensing method as well as the

efficacy of the catalytic activity of the Ni(OH)2 NPs with the
literature is presented in Tables S1 and S2 respectively in the
Supporting Information.

2. RESULTS AND DISCUSSION
2.1. Characterization of the Ni(OH)2 NPs. Nickel

hydroxide NPs were prepared by refluxing nickel acetate and
sodium hydroxide in ethanol in the presence of catalytic
amount of acetic acid for 1.5 h (Scheme 3). The hydroxide NP
formation in this case is assisted by acetic acid, which helps to
generate nanodimensional mesoporous Ni(OH)2 NPs.81,82

The instantaneous hydroxide precipitation due to the addition
of NaOH in the medium is hindered by the presence of acetic
acid; hence, a slow rate of hydroxide formation results in the
generation of multiple nucleation sites with small particles in
the nanostate. A molar ratio of 2.5:1 of alkali to acid in the
medium was found to be most suitable for the generation of
nanodimensional particles in the solution.82 For character-
ization, the as-synthesized NPs were analyzed by powder X-ray
diffraction (PXRD), diffuse reflectance spectroscopy (DRS)-
UV and Fourier transform infrared (FTIR) spectroscopy,
scanning electron microscopy (SEM), transmission electron
microscopy (TEM), N2 adsorption/desorption, and thermog-
ravimetric analysis (TGA).

2.1.1. PXRD and N2 Adsorption/Desorption Isotherm. The
phase composition and form of the newly synthesized nickel
hydroxide were examined by PXRD analysis (Figure 1a). All
the diffraction peaks are in good agreement with the hexagonal
β-Ni(OH)2 with lattice constants a = 3.12 and c = 4.6 Å
(JCPDS no. 14-0117). Figure 1b represents the PXRD pattern
of the reused β-Ni(OH)2 NPs (after fifth cycle). The specific
surface area and porous nature of Ni(OH)2 NPs were
measured from Brunauer−Emmett−Teller (BET) gas-adsorp-
tion measurements. N2 adsorption/desorption isotherm of the
porous nickel hydroxide NPs is shown in Figure 2a, and the
corresponding Barrett−Joyner−Halenda (BJH) pore size
distribution plot is given in Figure 2b. The catalyst shows an
isotherm similar to type IV, characteristic of mesoporous
materials, and the hysteresis loop is of type H1. The BET
specific surface area of the material was found to be 160.5 m2

g−1. The average pore diameter according to the BJH plot
calculated from the N2 desorption isotherm was 3.87 nm,
indicating that the sample has mesoscale pores.

2.1.2. DRS-UV and FTIR Spectral Analysis. Figure 3a shows
absorption spectrum of the β-Ni(OH)2 in the UV and visible
region. β-Ni(OH)2 showed an absorption maximum at 245 nm
which is attributed to band gap absorptions in β-Ni(OH)2.

83

The absorption spectra exhibit three bands at 312, 386 nm,
and a broad band centered at 670 nm for β-Ni(OH)2, which
are governed by the d−d transitions. The FTIR spectra of the
synthesized β-Ni(OH)2 NPs are shown in Figure 3b. The
strong absorption at 521 cm−1 is due to Ni−O−H bending and
Ni−O stretching vibrations. The band at 1632 cm−1 is assigned
to the bending vibration for absorbed water molecule. The

Scheme 2. Synthetic Scheme of 5-Substituted 1H-Tetrazoles
from Aldoxime
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sharp peak at 3645 cm−1 corresponds to the stretching
vibration mode of nonhydrogen-bonded hydroxyl groups. The
broad band centered at 3429 cm−1 can be attributed to the
stretching vibration of water molecules in the nickel hydroxide
material.
2.1.3. Field-Emission SEM (FESEM) and High Resolution

TEM (HRTEM) Analysis. Figure 4 shows the SEM images of
Ni(OH)2 NPs. The images indicate good uniformity of the
Ni(OH)2 material, and these NPs have an uniform average size
below 10 nm. Figure 5a represents the HRTEM images of β-
Ni(OH)2. Here, the NPs are in 5−10 nm range in diameter
(Figure 5b) while the pore diameter is in 3−4 nm range. The
average particle size was estimated from the PSD plot (Figure
5b) and was found to be 7.6 nm. Mesopores are created during
nucleation and agglomeration of the NPs and are generated
out of the interconnected NPs forming interparticle spaces.
TEM image of recycled β-Ni(OH)2 (after third run) is given in
Figure 5c.
2.1.4. Thermogravimetry (TG)−Differential Thermal (DTA)

Analyses. The thermal behavior of β-Ni(OH)2 NPs was
investigated using TG and DT measurement (Figure 6). The
TG curve showed that β-Ni(OH)2 started to decompose
slowly after 100 °C. The major weight loss happened between
220 and 450 °C. The total weight loss was measured to be

32.44% (calculated value 32.51%). The DT curve showed an
endothermic peak with a maximum located at 296 °C,
corresponds to endothermic behavior during the decom-
position of β-Ni(OH)2 to NiO. The thermal decomposition
process can be represented as

Ni(OH) H O endothermic NiO 2H O2 2 2· ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ +

2.2. Synthesis of Tetrazoles from Aldoximes and
Sodium Azide Using Ni(OH)2 NPs. A number of reactions
were performed to optimize the reaction conditions with
variation of diverse factors, viz., amount of catalyst, solvent,
base, and temperature for the representative reaction of
benzaldehyde oxime (1a) and sodium azide. The whole
scenario is presented in Table 1. The reaction cannot be
performed without any catalyst (Table 1, entry 1), which
clearly indicates its synthetic importance. Then, the reaction
was performed with the variation of solvents, bases, and
temperature. The reaction gave poor-to-moderately good
yields in DMF, toluene, p-xylene, and dioxane and in neat
condition (Table 1, entry 2−6). However, among all the
solvents, best yield was obtained from the water medium. It
was also found that K2CO3 produced the best result amongst
Cs2CO3, NaHCO3, Na2CO3, and K3PO4 (Table 1, entry 10−
13). Because the reaction was not proceeding at room
temperature, all the reactions were carried out under refluxing
conditions (Table 1, entry 8−9). Overall, the best yield
resulted with 4.32 mol % of Ni(OH)2 NPs in water after
refluxing at 100 °C for 10 h under air (Table 1, entry 7).
After the attainment of the optimum conditions, we tried to

explore the scope and efficacy of the newly generated catalyst
and methodology to furnish the diversely substituted
tetrazoles. It is found that aromatic aldoximes efficiently
underwent this reaction to produce excellent product yields.
The concise results are clearly represented in Table 2. This
protocol is equally compatible with the substrates having both
electron donating (−Me, −OH, −OMe) as well as electron
withdrawing (−Cl, −Br, and −NO2) groups, giving well-to-

Scheme 3. Schematic Diagram for the Synthesis of Ni(OH)2 NPs

Figure 1. PXRD patterns of (a) fresh β-Ni(OH)2 NPs and (b) reused
β-Ni(OH)2 NPs.

Figure 2. (a) N2 adsorption/desorption isotherm and (b) power spectral density (PSD) curve of β-Ni(OH)2.
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excellent product yields. All the o-, m-, and p-nitro
benzaldehyde oximes underwent this reaction efficiently giving
the corresponding 5-substituted tetrazoles (Table 2, 2c, 2d,
2e) in good-to-excellent yields. Next, chloro- and bromo-
substituted benzaldehyde oxime smoothly reacted with the
azide to furnish the corresponding tetrazoles (Table 2, 2f, 2g,
2h) with very good yields. These observations undoubtedly
signify the sensitivity and compatibility of this protocol. Next,
3,4-dimethoxy benzaldehyde oxime provided 5-(3,4-dimethox-
yphenyl)-1H-tetrazole (Table 2, 2i) in 91% yield. Furthermore,
a variety of hydroxyl-substituted benzaldoximes also went
through these reaction conditions providing the respective
products (Table 2, 2k, 2l, 2m) with very good yields.
Next, the applicability of this technique was extended for the

reaction between heterocyclic aldoximes and azide. Table 3
clearly represented the results. Furan-2-carbaldehyde oxime,
thiophene-2-carbaldehyde oxime, and pyridine-2-carbaldehyde
oxime effortlessly underwent this reaction to produce 3a, 3b,
and 3c with 89, 91, and 93% yields. Likewise, quinoline-2-
carboxaldehyde oxime and indole-3-carbaldehyde oxime gave
the products (Table 3, 3d, 3e) with very good yields.
After achieving the remarkable success in application of our

methodology in case of aromatic as well as heterocyclic

aldoximes, we tried to extend the scope in case of aliphatic
aldoximes also. The results are summarized in Table 4.
Formaldehyde oxime and heptanal oxime efficiently reacted
with sodium azide to give the respective tetrazoles (Table 4,
4a, 4b) with moderate-to-good yields (75 and 72% yields).
(2E)-Cinnamaldehyde oxime underwent this reaction with
complete retention of configuration giving the corresponding
(E)-5-styryl-1H-tetrazole (Table 4, 4c) as a sole product
(selectivity ratio of E/Z is equal to 100:0). Once more, this
observation evidently highlights the specificity of our method-
ology.
The synthetic importance of our current catalytic protocol

was further examined through the synthesis of 9-(4-(5-
(quinolin-2-yl)-1H-tetrazol-1-yl)-phenyl)-9H-carbazole (com-
pound 6). The synthetic pathway is represented in Scheme 4.
Herein, 9-(4-iodophenyl)-9H-carbazole (compound 5) was
prepared from carbazole and 1,4-diiodo benzene with 85%
yield. Thereafter, an efficient C−N cross-coupling reaction
between 2-(1H-tetrazol-5-yl)-quinoline (Table 3, 3d) and
compound 5 produced compound 6 with 89% of yield.

Figure 3. (a) Solid state UV−vis spectra and (b) FTIR spectra of β-Ni(OH)2 NPs.

Figure 4. SEM images of β-Ni(OH)2 NPs.

Figure 5. (a) HRTEM micrograph of fresh β-Ni(OH)2 NPs, (b) particle size distribution of β-Ni(OH)2, and (c) HRTEM micrograph of reused β-
Ni(OH)2 NPs.

Figure 6. TG−DTA of the β-Ni(OH)2.
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The compound 6 was found to have potential spectral
features for sensing applications. The UV−vis absorption
spectrum showed a prominent λmax at a wavelength of 292 nm
with a considerable absorption intensity of a 0.057 μM solution
(solution B) (Figure 7). The same solution upon excitation at
this wavelength shows an emission maximum at λem = 384 nm.
The fluorescence yield (φf) of the compound was calculated
using a standard comparative method and was found to be
0.09% against a standard tryptophan solution.
2.3. Spectral Sensing of Hydrogen Peroxide. The

absorption intensity at the λmax position of 292 nm of the
aforesaid solution of compound 6 (solution B) shows a gradual
increase with increasing concentration of H2O2 solution (2−19

mM) (Figure 7). This UV−vis absorption of the compound at
this wavelength corresponds to n → π* transitions, which
originate from the nonbonded electron pairs of nitrogen to the
antibonding π orbitals of the aromatic moiety. On treatment
with H2O2, some oxidative reactions generate bond cleav-
age,84,85 resulting in higher concentration of nonbonded
electron density, and hence, a gradual increase in the
absorbance value is observed (Figure 7). The fluorescence
emission of solution A (higher concentration of compound 6
was required for emission quenching studies as compared to
UV−vis absorption spectral studies) was measured upon
instantaneous addition of H2O2, which shows a reverse trend

Table 1. Optimization of Reaction Conditionsa

entry Cat. (mol %) solvent base temp (°C) yield (%)b

1 K2CO3 120
2 4.32 DMF K2CO3 120 30
3 4.32 p-xylene K2CO3 120 83
4 4.32 toluene K2CO3 110 56
5 4.32 dioxane K2CO3 105 22
6 4.32 K2CO3 120 52
7 4.32 water K2CO3 100 98
8 4.32 water K2CO3 65 38
9 4.32 water K2CO3 rt
10 4.32 water NaHCO3 100 68
11 4.32 water Cs2CO3 100 32
12 4.32 water K3PO4 100 23
13 4.32 water Na2CO3 100 72
14 8.6 water K2CO3 100 93

a1a (1.0 mmol), NaN3 (1.5 mmol), base (3.0 mmol), solvent (3.0
mL), Ni(OH)2 NPs, 10 h. bYields are obtained by gas
chromatography.

Table 2. Substrate Scope for Aromatic Aldoximesa,b

aAromatic aldoximes (1.0 mmol), NaN3 (1.5 mmol), K2CO3 (3.0
mmol), catalyst (4 mg, 4.32 mol %), water (3.0 mL), 10 h, reflux.
bNMR spectra are given in the Supporting Information (Figures S1−
S12). c12 h was required. d15 h time was required.

Table 3. Substrates for Heteroaromatic Aldoximesa,b

aHeteroaromatic aldoximes (1.0 mmol), NaN3 (1.5 mmol), K2CO3
(3.0 mmol), catalyst (4 mg, 4.32 mol %), water (3.0 mL), 10 h, reflux.
bNMR spectra are given in the Supporting Information (Figures
S13−S16). c12 h was required.

Table 4. Substrate Scope for Aliphatic Aldoximesa,b

aAliphatic aldoximes (1.0 mmol), NaN3 (1.5 mmol), K2CO3 (3.0
mmol), catalyst (4 mg, 4.32 mol %), water (3.0 mL), 18 h, reflux.
bNMR spectra are given in the Supporting Information (Figures
S17−S19). cWater: 1.5 mL.

Scheme 4. Schematic Route of Compound 6
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with increasing H2O2 concentration in the range 2−16 mM.
This is an obvious observation as the π conjugation decreases
due to bond disruptions with increasing oxidation by H2O2
(Figure 8). The resulting Stern−Volmer plot (inset of Figure
8) shows a steady increase in the F0/F value with increasing
H2O2 concentration with a slope of 39 M−1 L (KSV), indicating
steady state interactions of the species with the fluorophore.
The effect is also observed in the fluorescence lifetime of the
compound, which suffers slight decrease (from 3.42 to 2.96 ns)
upon oxidation with H2O2 (Figure 9).
The most interesting part of the emission-based experiments

was observed when a much lower concentration of H2O2 was
used to treat the solution of compound 6 (solution A). Instant
addition of H2O2 solutions at lower concentrations (2.4−14.2
μM) could not create observable changes in the emission
spectrum of solution A. However, a remarkable hike in the
emission intensity of solution A treated with H2O2 of such low
concentration was observed, if the solutions were allowed to
rest for some time in the dark. Figure 10 shows a spectacular
increase in the emission intensity of solution A treated with 4.8
μM H2O2 with increasing time interval. This observation is
particularly important as the lower limit of detection of H2O2
becomes even lower, and enhanced emission intensities are
observed instead of quenching which has much less specificity
for analytes. The reason behind such observations depends on
the fact that H2O2 initiates free radical reactions which involve
many rearrangement steps, thereby reassembling the fragments
of oxidation in a way that creates larger population of

fluorophores and hence enhanced emission intensity with
increasing time.
We have measured the emissions of solution A containing

2.4−14.2 μM H2O2 after keeping the systems in the dark for 3,
24, and 90 h (Figure 11) and plotted their respective F0/F
versus concentrations (inset of Figure 11) to obtain the slopes
which showed an increasing trend in magnitude (−0.021,
−0.022, and −0.037) with time. This reveals that higher
sensitivity of the method is expected with longer duration of
rest. The limit of detection for H2O2 observed here is
compared with some literature reports in Table S1.

Figure 7. UV−vis absorption spectra of compound 6 in the presence
of hydrogen peroxide.

Figure 8. Fluorescence spectra and S−V plot of compound 6 in the presence of H2O2.

Figure 9. Fluorescence decay of compound 6 and H2O2-treated
compound 6 with time.

Figure 10. Fluorescence spectra of compound 6 and H2O2-treated
compound 6 with increasing intervals of time.
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The cyclic voltammogram (Figure 12) clearly indicates the
redox activity of compound 6. It is notable that the reduction
peaks (−1.66 and −1.007 V) appear along with oxidation
peaks (1.468 and 1.664 V), which supports that the compound
is easily oxidizable by hydrogen peroxide with reduction
potential (1.776 V). Therefore, it can also be deduced that
H2O2 undergoes easy reduction to H2O during this redox
process.
The viability of the results is further strengthened by

performing the mass analysis using electrospray ionization
(ESI−MS) technique. Figures S22 and S23 represent the ESI−
MS spectra of the compound 6 and H2O2-treated compound 6,
respectively. The results are summarized in Table 5. The
results clearly indicate that compound 6 undergoes different
types of oxidative bond cleavage upon treatment with

Figure 11. Fluorescence spectra of compound 6 and H2O2-treated compound 6 after 3 h (A), 24 h (B), and 90 h (C). I0/I vs [H2O2] plots are the
given inset.

Figure 12. Cyclic voltammogram of compound 6.
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H2O2.
84,85 The compound 6 (C28H18N6), initially having a

base peak at m/z 439 for the [M + H]+ species undergoes
elimination of N2 (“A” in Figure S22) to generate a peak at m/
z 410. With H2O2-treated compound, the base peak now
comes at m/z 410. The most plausible products of oxidative
bond cleavage result in elimination of mass fragments with m/z
284 (for [C18H12N4]

+•), 242 (for [C18H12N]
+), 154 (for

[C10H6N2]
+•), and 128 (for [C9H6N]

+) from compound 6
which can be clearly observed in the ESI−MS spectrum (in
Figure S23).
After getting excellent results upon application of our newly

synthesized nanocatalyst, a preliminary investigation was
undertaken to realize the mechanism. The conversion of
benzaldoxime to benzonitrile in the absence of sodium azide
was checked in the presence of the nickel hydroxide
nanocatalyst, which did not take place under refluxing
conditions in water. After 24 h, we get back the corresponding
aldoxime without formation of benzonitrile. This observation
clearly indicates that nitrile formation is not necessary in our
methodology. The most probable reaction pathway is
represented in Scheme 5.52−54 Initially, the Ni(OH)2 NPs

bind with the oxygen atom of the aldoxime to activate the C
N bond. Then, azide ion undergoes cycloaddition with the
activated imine bond. The cycloaddition between the CN
bond of aldoxime and azide takes place readily and form an
intermediate. After removing the catalyst followed by acidic
work-up, the desired product 5-substituted-1H-tetrazole was
obtained.
2.4. Recyclability and Reusability of the Ni(OH)2

Nanocatalyst. Recyclability, recommencement, and thermal
strength are the most important traits of a heterogeneous
catalyst. Hence, to estimate the possibility to recover and reuse
the nanocatalyst a model reaction between benzaldoxime and
sodium azide was performed under optimal reaction
conditions. At the end of the reaction, the catalyst was
recovered through centrifugation, followed by washing with

water, ethyl acetate, and finally ethanol. Then, the catalyst was
dried at 80 °C for activation. Figure 13 represents that the

catalyst can be reused successfully for six times without
noticeable loss in the product yields. This fact is established by
PXRD pattern (Figure 1b, after the fifth cycle), HRTEM
(Figure 5c, after the third run) and FTIR (Figure S24, after the
sixth cycle) study of the reused catalyst.
In a wider perspective, our newly generated methodology

will make available a podium for the design of a sustainable and
efficient synthetic route for 5-substituted 1H-tetrazoles. In nut
shell, our catalytic system offers far better results as compared
to other literature reports. This fact is clearly supported by the
comparative study with the literature reports (Table S2,
Supporting Information).

3. CONCLUSIONS
In conclusion, we have developed an efficient green and atom-
economic novel synthetic route for the synthesis of 5-
substituted 1H-tetrazoles starting from various aromatic,
heterocyclic, as well as aliphatic aldoximes under mild reaction
conditions in the presence of highly active and thermally
stable, considerably recyclable Ni(OH)2 NPs in water as a
green solvent. The catalyst showed excellent catalytic activity
because of its nanocrystalline nature, small particle size, large
surface area, and good thermal stability. The synthetic protocol
proffers various advantages, viz. good-to-excellent product
yields, easy separation of catalyst, simple work-up, and eco-
friendly methodology. Besides, using this protocol as one of
the key steps, a fluorescent probe 9-(4-(5-(quinolin-2-yl)-1H-
tetrazol-1-yl)-phenyl)-9H-carbazol was synthesized which is
used at trace concentrations for the “turn on” spectral sensing
of hydrogen peroxide at low concentrations. To the best of our
familiarity, reports regarding the heterogeneous Ni(OH)2 NPs
catalyzed synthesis of 5-substituted 1H-tetrazoles from
aldoximes are in severe dearth.

4. EXPERIMENTAL SECTION
4.1. Materials. Ni(OAc)2·4H2O (Sigma-Aldrich), H2O2

(Merck), and all other chemicals required for this study were
used as received. All solvents were used after distillation and
drying, following the standard procedure.

4.2. Instruments and Apparatus. Hermle microproc-
essor-controlled high-speed table-top centrifuge (model Z 36
K) was used for centrifugation. The FTIR spectra of the
samples were recorded in the range 400−4000 cm−1 on a
PerkinElmer FTIR 783 spectrophotometer after pelletization
using KBr. TEM images were obtained using a JEM 2100
transmission electron microscope. The surface morphology of
the nanocatalyst was analyzed using a scanning electron

Table 5. HRMS Data of Compound 6 and H2O2-Treated
Compound 6

compound probable fragment m/z

compound 6 [C28H19N6]
+ 439 ([M + H]+)

[C28H18N4]+
• 410

H2O2-treated compound 6 [C28H18N4]+
• 410

[C18H12N4]
+• 284

[C18H12N]
+ 242

[C10H6N2]
+• 154

[C9H6N]
+ 128

[C28H18N3]
+ 396

Scheme 5. Possible Reaction Mechanism

Figure 13. Recyclability chart of the β-Ni(OH)2 NPs.
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microscope (Zeiss EVO40, UK) equipped with an energy
dispersive X-ray spectrometry facility. Surface area, pore size
distribution, and mesopore volume were determined by N2
porosimetry using Quantasorb Nova 4000e and 4200e
porosimeters and Quanta chrome Novawin11.0 software
upon sample outgassing in vacuo at 120 °C for 2 h. Specific
surface area was calculated by applying the BET model. Pore
size distributions and mesopore volumes were calculated by
applying the BJH model to the desorption branch of the
isotherm. PXRD patterns were recorded on a Bruker D8
ADVANCE diffractometer fitted with a Lynx Eye high-speed
strip detector and a Cu Kα source (1.54 Å, 8.04 keV). TGA
was done using a Mettler Toledo TGA/DSC1 Star System
under a N2 purge gas (60 cm3 min−1). The fluorescence study
was done using a PerkinElmer LS-55 spectrofluorimeter
equipped with a quartz cell with a 1.0 cm optical path length.
The UV−vis absorption spectral study was performed using an
Agilent 8453 diode array spectrophotometer. HORIBA Jobin
Yvon Fluorocube 01-NL and 291 nm HORIBA nano-LED,
IBH DAS-6 decay analysis software was used for time
correlated single photon counting (TCSPC) lifetime spectros-
copy. A Bioanalytical System EPSILON electrochemical
analyzer was used for the cyclic voltammetric (CV) measure-
ments. The measurements were carried out in the methanol
medium, with a three-electrode assembly consisting of a glassy
carbon disk working electrode, a platinum auxiliary electrode,
and an aqueous Ag/AgCl reference electrode. All the ESI−MS
spectra were recorded in a WATERS Xevo G2-SQTof
instrument. The reactions were performed in a 10 mL
round-bottomed flask fitted with a condenser under air.
Thin-layer chromatography (TLC)-analysis was performed on
TLC silica gel 60 F254. The products were purified using silica-
gel (60−120 mesh) column chromatography. NMR spectra
were recorded on a 400 MHz NMR instrument using CDCl3
and DMSO-D6 as solvents. The

1H chemical shifts are reported
in ppm relative to TMS. Carbon, hydrogen, and nitrogen
contents of all products were examined utilizing a PerkinElmer
2400 Series II CHN analyzer.
4.3. Synthesis of Nickel Hydroxide NPs. To an

ethanolic solution of Ni(OAc)2·4H2O (1.2 mmol, 40 mL),
ethanolic solution of NaOH (2.5 mmol, 20 mL) was added.
Then, after addition of 0.15 mL glacial acetic acid to it, the
resulting mixture was refluxed for 1.5 h. After cooling, the as-
synthesized NPs were separated from the solution through
centrifugation at 6000 rpm for 8 min followed by redispersion
in ethanol till the pH becomes neutral. Finally, the catalyst was
dried in an oven at 60 °C for 3 h. Scheme 3 represents the
schematic diagram for the synthesis of Ni(OH)2 NPs.
4.4. General Procedure for the Synthesis of

Tetrazoles. A mixture of benzaldehyde oxime (1.0 mmol),
NaN3 (1.5 mmol), K2CO3 (3.0 mmol), and Ni(OH)2 NPs (4
mg, 4.32 mol %) in water (3 mL) was refluxed for 10 h under
air. Then, after cooling to room temperature and separation of
the catalyst, the reaction mixture was treated with 5 mL HCl
(4.5 M) followed by extracted with ethyl acetate (3 × 10 mL).
The organic part was washed with brine, dried over Na2SO4
(anhy.), and evaporated to leave the crude product, which was
purified by column chromatography over silica gel with
hexane/ethyl acetate as the eluent to furnish pure 5-phenyl-
1H-tetrazole (2a, yield 98%) as a white solid. 1H NMR (400
MHz, DMSO-D6): δ 8.04−8.03 (m, 2H), 7.45−7.44 (m, 3H).
4.5. Synthesis of 9-(4-Iodophenyl)-9H-carbazole

(Compound 5, Scheme 4). Compound 5 was prepared

following our previously reported methodology.86 A mixture of
carbazole (1 mmol), 1,4-diiodo benzene (1 mmol), NaOH
(1.2 mmol) and biogenic CuO NPs in DMF was heated at 120
°C for 15 h. Then, after cooling, the reaction mixture was taken
in ice cold water and extracted using ethyl acetate (3 × 10
mL). The organic part was separated, collected and washed
with brine, dried over Na2SO4 (anhy.), and evaporated to leave
the crude product that was purified by column chromatog-
raphy to furnish compound 5 (yield 85%) as a white solid. 1H
NMR (400 MHz, CDCl3): δ 8.01 (d, J = 7.2 Hz, 2H), 7.77 (d,
J = 7.2 Hz, 2H), 7.30−7.24 (m, 4H), 7.19−7.15 (m, 4H).

4.6. Synthesis of 9-(4-(5-(Quinolin-2-yl)-1H-tetrazol-
1-yl)phenyl)-9H-carbazole (Compound 6, Scheme 4). A
mixture of 9-(4-iodophenyl)-9H-carbazole (compound 5, 1
mmol), 3d (1 mmol), K2CO3 (2 mmol), N,N′-dimethylethy-
lenediamine (20 mol %), and CuI (10 mol %) in p-xylene was
refluxed for 16 h under air. Then, after cooling to room
temperature, the solvent was removed under reduced pressure
and the reaction mixture was taken for solvent extraction using
water and ethyl acetate (3 × 10 mL). The organic part was
separated, collected and washed with brine, dried over Na2SO4
(anhy.), and evaporated to leave the crude product, which was
purified by column chromatography over silica gel with
hexane/ethylacetate (95:5) as eluent to furnish compound 6
(yield 89%) as a yellowish white solid. 1H NMR (400 MHz,
CDCl3): δ 8.36 (dd, J = 16.8, 8.4 Hz, 2H), 8.16 (d, J = 8.4 Hz,
1H), 8.08 (d, J = 8.0 Hz, 2H), 8.03 (d, J = 8.8 Hz, 2H), 7.87
(d, J = 8.0 Hz, 1H), 7.79−7.75 (m, 1H), 7.61 (t, J = 6.0 Hz,
1H), 7.54 (d, J = 8.8 Hz, 2H), 7.36−7.35 (m, 4H), 7.24−7.20
(m, 2H); 13C NMR (100 MHz, CDCl3): δ 162.4, 149.4, 146.3,
141.0, 138.1, 137.0, 133.6, 130.5, 129.7, 129.5, 128.3, 127.9,
125.9, 123.3, 121.1, 120.3, 119.9, 118.8, 109.7; IR value: 3418,
3351, 2921, 2851, 1735, 1681, 1593, 1516, 1449, 1384, 1225,
1126, 833, 755 cm−1. Anal. Calcd for C28H18N6: C, 76.70; H,
4.14; N, 19.17. Found: C, 76.77; H, 4.01; N, 19.12%.

4.7. General Procedure for the Synthesis of Water-
Soluble Tetrazoles. A mixture of formaldehyde oxime (1.0
mmol), NaN3 (1.5 mmol), K2CO3 (3.0 mmol), and Ni(OH)2
NPs (4 mg, 4.32 mol %) in water (1.5 mL) was refluxed for 18
h. After completion of the reaction (monitored by TLC), the
water phase was acidified to pH < 1 with concentrated HCl.
Then, the solution was extracted with excess ethyl acetate for
five times. Thereafter, the combined organic phase was dried
under reduced pressure, and the solid mass was washed with
the solvent containing ethyl acetate/hexane mixture (10:90)
and then recrystallized from ethyl acetate yielding 1H-tetrazole
as colourless solid.

4.8. Spectral Sensing of Hydrogen Peroxide. Com-
pound 6 shows a characteristic UV vis absorption spectrum
with a prominent λmax at 292 nm. It was dissolved in
spectroscopic grade methanol to obtain a 0.114 μM solution
(A) for fluorescence studies and a 0.057 μM solution (B) for
UV−vis absorption spectral studies. A stock solution of 490
mM H2O2 was prepared for sensing applications. Portions of
this stock solution (0.01 mL) were added to 2 mL of the
solution A for fluorescence spectral studies, and 0.01 mL
portions were added to 2 mL of solution B for UV−vis
absorption spectral studies. Further for increasing the
sensitivity of the fluorescence sensing method, 1000 times
diluted H2O2 solution (490 μM) was added and the emissions
were recorded at increasing intervals of time.

4.9. TCSPC Lifetime Spectroscopy. The fluorescence
lifetime of the above-mentioned solution of compound 6 and
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that of H2O2-treated solution were measured by the TCSPC
method using a nanosecond laser diode (291 nm) as the light
source. An IBH DAS-6 decay analysis software was used for
deconvoluting the fluorescence decay pattern. The mean
fluorescence lifetimes for the decay curves obtained from the
two sets were calculated from the respective decay times. The
following equation was used to calculate the average lifetime
from the relative contribution of the components.

a
a
i i

i i
av

2

τ
τ
τ

=
(1)

where τi represents the decay time of the sample, τav is the
average decay time, and ai indicates the coefficient of the ith
component.
4.10. Cyclic Voltammetry. A 0.114 μM acetonitrile

solution of compound 6 was taken for CV studies against
tetrabutylammonium perchlorate as the supporting electrolyte.
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