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ABSTRACT: Our work reports the hydrothermal synthesis
of a bimetallic composite CoMoS, followed by the addition of
cellulose fibers and its subsequent carbonization under Ar
atmosphere (CoMoS@C). For comparison, CoMoS was heat-
treated under the same conditions and referred as bare-
CoMoS. X-ray diffraction analysis indicates that CoMoS@C
composite matches with the CoMoS4 phase with additional
peaks corresponding to MoO3 and CoMoO4 phases, which
probably arise from air exposure during the carbonization
process. Scanning electron microscopy images of CoMoS@C
exhibit how the CoMoS material is anchored to the surface of
carbonized cellulose fibers. As anode material, CoMoS@C
shows a superior performance than bare-CoMoS. The
CoMoS@C composite presents an initial high discharge
capacity of ∼1164 mA h/g and retains a high specific discharge capacity of ∼715 mA h/g after 200 cycles at a current density of
500 mA/g compared to that of bare-CoMoS of 102 mA h/g. The high specific capacity and good cycling stability could be
attributed to the synergistic effects of CoMoS and carbonized cellulose fibers. The use of biomass in the anode material
represents a very easy and cost-effective way to improve the electrochemical Li-ion battery performance.

1. INTRODUCTION

To date, Li-ion batteries (LIBs) have been widely utilized for
portable electronic devices because of their promising
properties, including high energy density, long cycle lifetime,
and low self-discharge.1 However, to meet nowadays the
energy demands for high-power applications, as in the case of
electric vehicles and smart grid systems, it is essential to find
new anode materials with higher rate capacity, longer cycling
lifetime, and higher capacity to that of graphite (372 mA g−1),2

the anode material currently used for commercially available
LIBs.
Recently, transition metal sulfides have reached great

attention as anode materials for LIBs because of their high
theoretical capacity.3−5 For example, molybdenum sulfide
(MoS2) has a theoretical capacity value of 670 mA h/g6,7

(almost twice that of graphite). Additionally, MoS2 holds a
layer structure that enables easy intercalation of Li ions within
the (002) planes, hence proving a fast diffusion of ions during
electrochemical processes.8,9 However, this material suffers
from low electric conductivity as well as poor cycling stability
because of its inherent high volume change during the
charging/discharging steps.8 On the other hand, cobalt sulfides
with different compositions (CoS2, CoS, and Co9S8) have
shown encouraging results as anode materials for LIBs.10−14

Moreover, cobalt sulfides possess higher electrical conductivity

compared to other metal sulfides15,16 but also suffers from
rapid capacity decay.17

Composites of MoS2 and cobalt sulfides, as well as CoMoS
phases, have been investigated for other applications,
including, catalysis in hydrodeoxygenation,18,19 hydrodesulfu-
rization,18,20 and hydrogen evolution reaction,21−24 among
others. However, only a few reports of the combination of
molybdenum and cobalt sulfides for its application in LIBs
have been reported.9,25 The combination of these two metal
(Mo and Co) sulfides can offer synergistic advantages over
single systems as it has been reported for other bimetallic
sulfides for sodium-ion battery applications.26,27 Additionally,
to improve the electrochemical performance of LIBs, transition
metal compounds have been combined with carbon-based
materials such as reduced graphene28,29 and carbon nano-
tubes,30,31 both of which are expensive materials and require
elaborate methods for fabrication. On the other hand,
promising results for LIB applications have been achieved
from the combination of transition metal compounds and
biomass-derived carbon.32−34 The use of biomass represents an
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easy and low-cost alternative to enhance the electrochemical
performance of LIBs.
Here, we present the synthesis of a bimetallic CoMoS

composite by the hydrothermal method and the addition of
cellulose fibers as a carbon source, followed by carbonization
under argon atmosphere (CoMoS@C). The CoMoS@C
composite was characterized by X-ray diffraction (XRD),
scanning electron microscopy (SEM), energy-dispersive spec-
troscopy (EDS), thermogravimetric analysis (TGA), and
transmission electron microscopy (TEM). To investigate its
electrochemical properties as anode material for LIBs,
galvanostatic, cyclic voltammetry (CV), and electrochemical
impedance spectroscopy measurements (EIS) were performed.
The addition of carbon significantly enhanced the cycling
stability and retained a high specific capacity of ∼715 mA h/g
after 200 cycles at a rate of 500 mA h/g compared to bare-
CoMoS which retained ∼102 mA h/g after 100 cycles.

2. RESULTS AND DISCUSSION
The crystal structures of CoMoS (before heat treatment), bare-
CoMoS, and CoMoS@C were characterized by XRD (Figure
1b−d). It can be seen that most of the peaks from the three

samples match with the CoMoS4 phase registered in the COD
(Crystallographic Open Database)36 no. 2106690 (Figure 1a).
However, bare-CoMoS and CoMoS@C X-ray spectrums
(Figure 1c,d) show additional peaks corresponding to MoO3

and CoMoO4 phases with COD numbers 1011043 and
7205001, respectively. We can see that most of the peaks
corresponding to the oxide phases appeared after the
compounds were subjected to heat treatment at 400 °C
(comparison of Figure 1b,c,d). Therefore, these peaks were
most likely formed by the accidental air exposure while the
carbonization process was carried out. Additionally, bare-
CoMoS and CoMoS@C present very similar XRD patterns.
Nevertheless, it can be observed that bare-CoMoS displays
sharper peaks than those found in CoMoS@C, which shows
broader peaks possibly because of the poorly crystalline nature
of the carbonized cellulose fibers (Figure S1).
The SEM micrographs of three samples are presented in

Figure 2a,b,d,e. From Figure 2a, we can observe micron-sized
particle clusters for the bare-CoMoS sample. An elongated
ribbonlike morphology can be observed for cellulose fibers
carbonized at 400 °C for 1 h with diameter sizes ranging from
5 to 22 μm and an average size of ∼10 μm (Figure 2b). For
sample CoMoS@C (Figure 2d), it is observed that some
carbonized cellulose fibers (with less than 10 μm in diameter
size) are decorated with CoMoS particle clusters with less than
one micron in size. Larger CoMoS particle clusters standing
apart from the fibers can also be seen. The SEM image (Figure
2e) of an individual microfiber at larger magnification shows
that the particle clusters anchored to its surface have diameter
sizes ranging from 0.3 to 2 μm with a seemingly uniform
particle distribution along the fiber. A more detailed
perspective of the morphology can be appreciated in the
TEM images of bare-CoMoS and CoMoS@C (Figure 2c,f,
respectively). Aggregates of nanosheets can be observed for
both materials with no significant differences between the two
samples.
To obtain information about the chemical composition of

the samples, EDS analysis was performed. Figure 3a shows the
SEM selected area of CoMoS@C for EDS analysis. As can be
seen, the selected area is composed of both CoMoS particles
and carbon fibers. The EDS spectrum of CoMoS@C (Figure
3f) confirms that this sample is composed of Mo, S, Co, and C
elements, as well as some amount of oxygen coming from the
carbonized cellulose fibers (Figure S2. From the elemental
mapping images (Figure 3b−e), we can observe a homoge-
neous distribution for all of the elements.
To quantify the carbon amount in CoMoS@C, TGA was

performed from room temperature to 1000 °C under air
atmosphere. The TGA curves of carbon fibers (Figure S3)

Figure 1. XRD diffractograms of (a) standard spectrum for CoMoS4,
(b) CoMoS (before heat treatment), (c) bare-CoMoS (after heat
treatment at 400 °C for 1 h under Ar), and (d) CoMoS@C.

Figure 2. SEM of (a) bare-CoMoS, (b) cellulose fibers carbonized at 400 °C for 1 h, (d) CoMoS@C, and (e) CoMoS@C at higher magnification.
TEM of (c) bare-CoMoS and (f) CoMoS@C.
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showed a large reduction of weight from 100 to 8% starting
from ∼350 °C up until 550 °C. Afterward, the sample weight
kept nearly constant up until 1000 °C. The TGA results from
CoMoS@C shows a weight reduction starting at ∼350 °C, this
closely matches the weight loss of the carbon fibers. The
CoMoS@C sample plateau at 550 °C with 72% leftover weight
was caused by the conversion of carbon to CO2. At
temperatures greater than 550 °C, the oxidation of organic
materials, Mo and Co, took place. Additionally, we can see that
the weight drop from ∼400 to 500 °C is absent for bare-
CoMoS. Therefore, the carbon content in sample CoMoS@C
is estimated to be ∼28%.
The electrochemical performance of CoMoS@C was first

evaluated by testing the charge/discharge galvanostatic
measurements. Figure 4a displays the 1st, 2nd, 3rd, and 25th
cycles at a current density of 100 mA/g between 0.01 and 3 V
versus Li+/Li for CoMoS@C sample. For comparison, we also
present the charge/discharge results for bare-CoMoS under

the same electrochemical conditions (Figure 4a). The
discharge capacities for bare-CoMoS were 1043, 575, 519,
and 396 mA h/g, respectively. By contrast, CoMoS@C (Figure
4b) showed significantly higher specific capacities of 1461, 925,
839, and 756 mA h/g, respectively. We also investigated the
cycling performance of CoMoS@C for 200 cycles at a current
rate of 500 mA/g (Figure 4d). CoMoS@C showed an initial
high specific capacity of 1165 mA h/g and retained a high
specific capacity value of ∼715 mA h/g and a CE above 97%
after 200 cycles. In contrast, bare-CoMoS maintained a low
specific capacity of ∼102 mA h/g after 100 cycles. The
CoMoS@C composite kept a discharge capacity of ∼425 mA
h/g (Figure 4c) when discharged at different rates (100, 200,
500, and 1000 mA/g) after 40 cycles.
To study the influence of the carbonized fibers in the cycling

performance of CoMoS@C, an electrode of carbonized fibers
was subjected to charge and discharge measurements for
several cycles at a rate of 100 mA/g (Figure S4a,c). The carbon

Figure 3. (a) SEM image of the selected area for sample CoMoS@C, (b−e) elemental mapping images of C, S, Co, and Mo. (f) EDS spectrum of
CoMoS@C.

Figure 4. Charge/discharge voltage profiles at a current rate of 100 mA g−1 for (a) bare-CoMoS and (b) CoMoS@C. (c) Rate capability of
CoMoS@C from 0.1 to 1 Ag−1. (d) Cycling performance of CoMoS and CoMoS@C at a current rate of 500 mA/g and Coulombic efficiency (CE)
for CoMoS@C.
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fiber material showed only one discharge and does not have
the ability of recharging, probably due to the low carbonization
temperature. Therefore, the superior electrochemical perform-
ance of the CoMoS@C electrode is due to the synergistic
effect of CoMoS and the carbonized fibers. CoMoS contributes
to the high specific capacity value, and the carbon fibers
stabilize the cycling performance of the electrode. Carbon
fibers improved the electrical conductivity (as is shown latter in
the Nyquist plots, Figure 5b) as well as buffering the electrode
volume changes and preventing the electrode material from
pulverization, as reported previously in other publications.37,38

To further explore the electrochemical reactions of
CoMoS@C and bare-CoMoS electrodes, CV measurements
were performed for the first three cycles, and the results are
shown in Figures 5a and S5b, respectively. The first cathodic
scan for sample CoMoS@C presents three peaks at 1.61, 0.86
V, and another that ranges from ∼0.43 to ∼0.06 V. For the first
anodic scan, only one big peak at ∼2.45 V is shown. In the
following cycles, the cathodic peak in the range of ∼0.43 to
0.06 V disappears, the peak at 0.86 V stays at the same voltage
position but the current decreased considerably, and the other
peak becomes wider and slightly shifts from 1.61 to 1.69 V.
Similarly, the peak at 2.45 V in the subsequent cycles for
anodic scans stays in that potential and a new one appears at
1.7 V.
The peak at 0.86 V for the first cathodic scan can be

attributed to the intercalation of Li ions into the lattice of
CoMoS4 (LixCoMoS4), whereas the peak in the range of 0.43−
0.06 V can be ascribed to the further reduction of LixCoMoS4
into metallic Mo and Co embedded into a LiS2 matrix and also
to the formation of a gel-like polymer, resulting from the
irreversible electrolyte degradation [also called the solid
electrolyte interface (SEI)] in the first discharge, as is reported
by a similar study25 and other publications related to the
intercalation of Li ions (lithiation) into molybdenum and
cobalt sulfides.6,12,39−43 In the second and third cathodic scans,
the peak at 1.69 V can be assigned to the intercalation of Li
ions into cobalt and molybdenum sulfides.44,45 In addition, the
peak in the range of 0.43−0.06 V disappears. This fact coupled
with the big reduction in capacity from the first to the second
discharge (charge/discharge curves, Figure 5b) confirms the
irreversibility of the SEI formation. In contrast, the peaks at 1.7
and 2.45 V in the first anodic scan, as suggested by some
studies, correspond to the conversion reaction of Mo and Co
as well as LiS2 to form molybdenum sulfide and cobalt
sulfides,25,45 whereas other studies allude that this latter peak
(2.45 V) corresponds to the formation of LiS2 to S8

−2.46

In the subsequent cycles (CoMoS@C), the CV curves
almost overlap each other, indicating good reversibility of the

electrode. On the other hand, for sample bare-CoMoS (Figure
S5b), the redox peak intensity significantly decreases over
cycling, indicating poor cycling performance. This result
implies that the carbon matrix stabilizes the cycling perform-
ance for CoMoS@C electrode as is demonstrated by other
studies which used cobalt sulfide and molybdenum sulfide with
and without carbon addition.12,41,42,47,48

To have a better understanding of the resistive behavior,
electrochemical impedance spectroscopy (EIS) was conducted
for bare-CoMoS, CoMoS@C (Figure 5b), and carbonized
fibers (Figure S5a). Figure 5b shows the raw experimental and
fitted Nyquist plots for CoMoS@C and CoMoS (inset of
Figure 5b) as well as the equivalent circuit used for fitting the
plots. The EIS curves for the three electrode materials are
composed of a depressed semicircle in the high−medium
frequency region and a straight line in the low-frequency
region. The high−medium frequency semicircle is composed
of Rs (Ohm resistance of the battery) and Rct (charge-transfer
resistance). The inclined line represents the Warburg
impedance (W) caused by the Li ions diffusion. According
to the equivalent circuit, the values for CoMoS and CoMoS@
C are 72 and 40 Ω, respectively, and 65 Ω for carbonized
fibers. The charge-transfer resistance (Rct) for CoMoS@C is
327 Ω, 827 Ω for CoMoS, and 596 Ω for carbonized fibers.
Therefore, the CoMoS@C electrode possesses the lowest
charge-transfer resistance.

3. CONCLUSIONS
In summary, CoMoS@C composite was fabricated by the
combination of CoMoS synthesized by hydrothermal method
and cellulose fibers carbonized at 400 °C for 1 h. This
composite shows significantly improved electrochemical
performance when compared to bare-CoMoS. The carbonized
bimetallic composite, CoMoS@C, retained a high specific
discharge capacity of 715 mA h/g with a CE greater than 97%
after 200 cycles at a current rate of 500 mA/g. The high
specific discharge capacity and superior cycling stability can be
accredited to the synergistic effect between the CoMoS and
carbonized cellulose fibers. The use of biomass-derived carbon
may offer an easy and cost-effective strategy to improve the
electrochemical performance of metal and bimetallic sulfides
and other metallic compounds.

4. EXPERIMENTAL SECTION
4.1. Synthesis of CoMoS. The synthesis of CoMoS

(cobalt−molybdenum sulfide) was carried out by hydro-
thermal method in a high-pressure reactor (Par model 4540).
The first step consisted the synthesis of ammonium
thiomolybdate (ATM) that was synthesized following the

Figure 5. (a) CV and (b) Nyquist plots for CoMoS@C (inset: bare-CoMoS).
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improved method by Alonso et al.35 Next, ATM (19.2 mmol)
was dispersed in a minimum amount of deionized water under
constant stirring, followed by the addition of an equivalent
molar amount (19.2 mmol) of NTA (nitriloacetic acid, Sigma-
Aldrich) to this dispersion under stirring. Separately, 13.5
mmol of CoNO3·6H2O (Sigma-Aldrich) was dissolved in a
minimum amount of deionized water and added to the ATM/
NTA mixture. The reaction mixture was transferred to the
reactor vessel and heated to 300 °C for 2 h. It is important to
mention that the pressure inside the reactor increased to 1200
PSI when the reaction reached 300 °C.
4.2. Synthesis of CoMoS@C. First, 100 mg of CoMoS and

57 mg of medium-size cellulose fibers (cotton linters from
Sigma-Aldrich) were placed in a vial and agitated for 5 min at
3000 rpm in a vortex machine. This mixture was placed in a
ceramic boat, introduced into a tubular furnace (MTI
Corporation, GSL-1100X-LD), and heated at 400 °C for 1 h
at a heating rate of 5 °C/min under argon atmosphere. This
sample was referred as CoMoS@C. For comparison purposes,
CoMoS by itself was thermally treated under the same
conditions and labeled as bare-CoMoS.
4.3. Characterization. XRD measurements were per-

formed on a D8 diffractometer from Bruker Instruments (Cu
Kα radiation, λ = 0.154 nm) with a scan rate of two degree/
min. SEM and EDS images were obtained by using a Hitachi S-
4800 machine. TEM images were acquired by a Hitachi H-
7650 equipment. Image J software was used to measure the
sizes of the particles and carbonized cellulose fibers from SEM
images. TGA was conducted to quantify the carbon amount for
CoMoS@C.
4.4. Electrochemical Measurements. The working

electrodes were prepared by mixing the active material
(CoMoS@C), acetylene black, and a binder composed of
sodium carboxymethyl cellulose dissolved in deionized water
(3 wt %) in a weight ratio percentage of 70:15:15, respectively.
The obtained slurry was then coated onto a copper foil and
dried overnight under vacuum at 100 °C. The electrodes were
cut with a diameter of 1.3 cm using a precision disc cutter from
MTI Corporation. The coin cells (CR 2032) were assembled
inside of an Ar-filled glovebox with oxygen levels maintained
below 0.1 ppm. Li foil was used as the counter/reference
electrode, a ceramic-coated membrane (16 μm thick) from
MTI Corporation was utilized as the separator (EQ-bsf-0016-
500A), and the electrolyte employed was 1.0 M LiPF6 in
ethylene carbonate/dimethyl carbonate (1:1 in volume) from
Sigma-Aldrich. The specific capacity was calculated based on
the active material weight. The galvanostatic charge/discharge
measurements were performed in an eight-channel battery
analyzer (MTI Corporation) with a voltage window of 0.01−3
V. The EIS and CV studies were conducted in a CHI760D
electrochemical workstation. EIS was measured in coin cells in
a frequency range of 0.01−100 000 Hz at an ac amplitude of
0.05 V. The CV was evaluated in a three-electrode setup using
an electrochemical cell (990-00343) from Gamry Instruments
within the range of 3.0−0.01 V at a scan rate of 0.01 V.
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