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ABSTRACT: Recent years have witnessed an explosion in
the application of microfluidic techniques to a wide variety of
problems in the chemical and biological sciences. Despite the
many considerable advantages that microfluidic systems bring
to experimental science, microfluidic platforms often exhibit
inconsistent system performance when operated over
extended timescales. Such variations in performance are
because of a multiplicity of factors, including microchannel
fouling, substrate deformation, temperature and pressure
fluctuations, and inherent manufacturing irregularities. The
introduction and integration of advanced control algorithms
in microfluidic platforms can help mitigate such incon-
sistencies, paving the way for robust and repeatable long-term experiments. Herein, two state-of-the-art reinforcement learning
algorithms, based on Deep Q-Networks and model-free episodic controllers, are applied to two experimental “challenges,”
involving both continuous-flow and segmented-flow microfluidic systems. The algorithms are able to attain superhuman
performance in controlling and processing each experiment, highlighting the utility of novel control algorithms for automated
high-throughput microfluidic experimentation.

1. INTRODUCTION
Microfluidics has emerged as a formidable tool in high-
throughput and high-content experimentation, because the
miniaturization of functional operations and analytical
processes almost always yields advantages when compared to
the corresponding macroscale process.1,2 Such benefits are
many, and include the ability to process ultra-small sample
volumes, enhanced analytical performance, reduced instru-
mental footprints, ultra-high analytical throughput, and the
facile integration of functional components within monolithic
substrates.3 At a fundamental level, the high surface area-to-
volume ratios typical of microfluidic environments guarantee
that both heat and mass transfer rates are enhanced, providing
for unrivalled control over the chemical or biological
environment. That said, at a more pragmatic level, microfluidic
experiments performed over extended timescales almost always
require extensive manual intervention to maintain operational
stability.4 Accordingly, there is a significant and currently
untapped opportunity for purpose-built algorithms that enable
real-time control over microfluidic environments. Recent
advances in machine learning, specifically in artificial neural
networks (ANNs)5 and reinforcement learning (RL) algo-
rithms,6 provide an exciting opportunity in this regard, with the
control of high-throughput experiments being realized through
efficient manipulation of the microfluidic environment, based
on real-time observations.
The implementation of advanced control algorithms can

help mitigate some key drawbacks of traditional microfluidic

experiments.4 For example, inherent variations in both
conventional and soft lithographic fabrication methods
introduce discrepancies and variations between microfluidic
device sets.7,8 The use of machine learning can help achieve
consistent operation between different devices, reducing
manual intervention and ensuring consistency in information
quality. More importantly, by their very nature microfluidic
systems have characteristics that vary with time. For instance,
in continuous-flow microfluidic systems, surface fouling and
substrate swelling are recognized problems that almost always
degrade long-term performance if left unchecked.8,9 This is
particularly problematic when using polydimethylsiloxane
(PDMS) chips because of the adsorption of hydrophobic
molecules from biological samples,10−12 or when performing
small-molecule/nanomaterial synthesis in continuous-flow
formats.13 In such situations, machine learning can help
maintain stable flow conditions over extended time periods, by
automatically adjusting flow conditions using control infra-
structure. Finally, over the past decade, microfluidic platforms
with integrated real-time detection systems and control
algorithms have also been used to extract vital information
from a range of chemical and biological environments. Of
particular note has been the use of such systems to control the
size, shape, and chemical composition of nanomaterials. The
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combination of microfluidic reactors, prompt assessment of
product characteristics, and algorithms able to effectively map
the experimental parameter space of a reaction system has
allowed the rapid reaction optimization and synthesis of a
diversity of high-quality nanomaterials possessing bespoke
physiochemical characteristics.14−18

ANN algorithms are inspired by biological neural networks
and are well-suited to a range of machine learning
applications.5,19 ANNs have been used for diverse data
transformation tasks, including image pattern recognition,20

speech synthesis,21 and machine translation.22 ANNs are a key
tool in RL,23 where supervised machine learning algorithms
inspired by behavioral psychology can be developed. Here, the
control algorithm (or agent) repeatedly interacts with an
environment and iteratively maximizes a reward signal
obtained from the environment.6 The agent observes the
environment and performs an action based on the observation.
The environment is updated based on the action, and a scalar
reward signal (“score”), representing the quality of the action,
is returned. The general formulation of the problem allows
application to a variety of environments, including robot
control,24 visual navigation,25 network routing,26 and playing
computer games.27

Deep Q-Networks (DQNs) combine ANNs and RL to
interpret high-dimensionality data and deduce optimal actions
to be performed in the observed environment.27,28 Signifi-
cantly, it has recently been shown that DQNs can surpass
human performance when applied to a variety of computer and
board games, including Atari video games29 and Go.30

However, to date there have been few, if any, applications of
RL in non-simulated environments, primarily due to difficulties
in obtaining input data and exerting tight control over the
environment. Examples of RL in non-simulated environments
include the control of robotic arms31 as well as the control of
building air conditioning systems.32

Recently, a more data-efficient RL algorithm called the
model-free episodic controller (MFEC) has been proposed.33

Analogous to hippocampal learning,34 the algorithm stores a
table of observations and associated reward values. The
optimal action for a novel observation is then deduced by
estimating a reward from previous but closely related
observations. MFEC can thus repeat high-reward sequences
of actions, even if a sequence has been visited only once. In
general, training times for the MFEC are reduced compared to
those for DQN, but at the cost of peak performance.
Herein, we present the application of RL algorithms to the

control of real-world experiments performed within micro-
fluidic environments. Specifically, we use RL to navigate two
microfluidic control problems, namely, the efficient positioning
of an interface between two miscible flows within a
microchannel under laminar flow conditions and the dynamic
control of the size of water-in-oil droplets within a segmented
flow. To achieve this, two RL algorithms, based on DQNs and
MFEC, are used. In practical terms, the algorithms are tasked
with controlling the volumetric flow rates of precision pumps
that deliver fluids into microfluidic devices. Significantly, all
decisions are based solely on visual observations using a
standard optical microscope, with the control algorithms
maximizing a scalar reward that is calculated independently for
each frame via classical image processing. To the best of our
knowledge, this study is the first example of reinforcement in a
microfluidic environment. Moreover, we believe that such

intelligent control in microfluidic devices will enable improved
reproducibility in microfluidic experimentation.

2. RESULTS AND DISCUSSION
A generalized setup of the microfluidic system is illustrated in
Figure 1. Here, an agent interacts with an environment and
continuously improves its “performance.” An observation of
the environment is made (using a camera connected to a
microscope), and a reward is calculated using classical image
processing. A higher reward tells the agent that the previous
action was a “good choice,” which it then uses to influence its
next action. The agent improves performance by choosing
better actions for a certain observation, which results in an
overall higher reward signal.

2.1. Laminar Flow Control. Low Reynolds numbers (Re)
are typical for fluids flowing through microfluidic channels,
with viscous forces dominating over inertial (or turbulent)
forces.3 This almost always yields a laminar flow, with no
disruption between fluid layers. The ability to control and align
the interface between two co-flowing streams within a
microfluidic channel is critical in many applications (Figure
2A), for example, the controlled synthesis of vesicles35 or
droplet trapping and transport systems.36 In the current
experiments, a simple converging flow environment was used
to investigate automatic control over the laminar flow interface
position (see Figure S1A for device architecture). This
involved the confluence of two aqueous streams under low
Re, where the fluid interface was made visible by adding ink to
one of the input solutions (Figure 2B). The controller
repeatedly altered the flow rates of the two fluid phases,
resulting in various laminar flow interface positions. After a
fixed number of interactions (set at 250, corresponding to one
episode), the environment was reset to random flow rates, and
the controller restarted its task. The volumetric flow rates of
each flow stream were limited to values between 0.5 and 10
μL/min (resulting in total flow rates between 1 and 20 μL/
min), representing typical flow rates used in microfluidic
experiments over extended time periods. As previously stated,
volumetric flow rates were set to random values within this
acceptable range at the start of every episode. The challenge

Figure 1. A generalized illustration of the RL-enabled microfluidic
experimental setup.
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then involved adjusting the flow rates such that the fluid
interface moved to an (arbitrary) optimal position (defined as
30% of the channel width) within one episode. The scalar
reward for the previous action was defined as the proximity of
the laminar flow interface to the optimal position, which was
extracted from the captured frame via classical image-
processing methods. The control algorithm adjusted the
volumetric flow rates by performing one of five discrete
actions: increasing or decreasing the flow rate of the
continuous phase, increasing or decreasing the flow rate of
the dispersed phase, or maintaining the flow rates unchanged.
An optimal fixed step size of 0.5 μL/min was determined
empirically to limit any strain on the pumps and ensure that an
optimum was found within one episode. Additionally, control
algorithms were limited in interaction frequency (1.5 Hz for
the DQN and 2.5 Hz for the MFEC) to prevent equipment
damage and enhance coupling between the performance of an
action and the observation of the resulting conditions within
the microfluidic system. Inspection of Figure 2B highlights a
small number of trapped air bubbles along the lower channel
wall. These bubbles occur because of fluidic defects (aspiration
of air in the piston-based pumps) and posed an additional
challenge to the control algorithm by increasing the amount of
noise in both the reward calculation and the observed frame.
2.1.1. Environment Characterization. Figure 2C shows a

complete characterization of a reward surface for the laminar
flow challenge. Intuitively, it was expected that the position of
the laminar flow interface should correlate with the ratio
between the flow rates of the two fluid phases. Indeed, the
reward surface presented clearly identified an optimal region,
where the flow rates produced the desired interface position,
and thus achieved high rewards. However, as previously noted,
the data graphically shown in Figure 2C are valid only for a
specific microfluidic device, with replicate devices (having the
same putative dimensions) exhibiting significantly different
behavior because of small variations intrinsic to the fabrication
process.
2.1.2. Laminar Flow Control Using DQN. Figure 3 reports

algorithmic performance in the laminar flow environment (see
Figure S2 for raw data plots). DQN performance during the
first 5500 frames (ca. 1 h) was comparable to the random
agent. This was because of the initial exploration phase of the
DQN, where the share of predicted actions was slowly
increased from 100% random actions to 95% controller-based
actions (see Figure 3A, where the exploration phase ends after
27 h). Over the course of the next 36 h of training (which
equates to ca. 195 000 image frames) the algorithm managed
to perform at a level comparable to a human tester, and at
times surpassing it (e.g., between 27 and 37 h during the blue
line experiment in Figure 3A). It was observed that, although

separate experiments indicated the same general trends in
performance, short-term performance variations differed
markedly between experiments. It is hypothesized that
performance would be improved further by employing longer
training phases, noting that typical benchmarks for Atari
environments involve training for up to 200 million frames.37

This was impractical in the current study, as 200 million frames
corresponds to over 4 years of training time at the investigated
frame rates. During the initial exploration phase, as the share of
random actions was slowly reduced and DQN improved its
accuracy, a gradual increase in performance was expected. Even
though such a trend was apparent, some experimental runs
required longer than the initial exploration phase to realize
peak performance. It is hypothesized that the control algorithm
gets captured within the vicinity of local minima during poorer
performance runs. We suggest that such effects could be
mitigated by using multiple asynchronous experimental setups,
such as A3C,38 allowing the controller to interact with multiple

Figure 2. Laminar flow control. (A) Schematic of a standard laminar flow environment established within a simple microfluidic device. The dashed
black box indicates the experimental observation window. (B) Example image frames captured during the training phase (scale bar 150 μm). (C)
Results of a complete environmental characterization of a single microfluidic device. Rewards are shown for various flow rates between 0.5 and 10
μL/min.

Figure 3. Variation of the reward as a function of time for (A) DQN
and (B) MFEC controllers within the laminar flow environment (N =
3). Inset widths are 150 μm. Benchmark performance ranges are
displayed with dotted horizontal lines using mean performance and
95% confidence intervals. Human performance level is indicated with
a human figure, and random performance level is indicated with a die.
Data plotted with a 35 point moving average for clarity.
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but similar environments at the same time, thus greatly
reducing the chances of being captured in such a local
minimum. However, although using multiple environments is
trivial in simulated environments, it is often impractical in real-
world scenarios. It is also noted that all experiment repeats
eventually surpassed the performance of human testers.
Performance generally fluctuated around human level after
48 h (ca. 260 000 frames) of training, with longer run times
not significantly improving performance. In the current study,
DQN was retrained from scratch for each new experiment. In
future experiments, algorithm training from pooled exper-
imental data (collected using multiple devices over multiple
experiments) could improve the stability of the control
algorithm across a wider variety of situations.
On a practical level, the deposition of debris within

microfluidic channels often leads to blockage, with gas bubble
accumulation leading to flow instability. It is therefore notable
that the presented control algorithm could successfully
maintain performance and adjust to changing conditions over
extended periods of time. Indeed, the presence of a gas bubble
has only a short-term effect (see inset highlighting the
performance dip shown in Figure 3A), with the algorithm
recovering quickly after bubble dissipation. It should be noted
that there was no evidence of the algorithm learning to get rid
of the bubbles actively within the observed time frame, but
such a feat would not be trivial even for a human operator.
Consequently, we conclude that the DQN was able to achieve
human-level performance for the laminar flow challenge, albeit
requiring considerable training time to achieve peak perform-
ance.
Overall, it was found that the DQN was well suited to the

automated handling of the real-world complications arising
because of the extended experimental time frames, which
should enable automation of a variety of long-term experi-
ments. Our results highlight, for the first time, the capabilities
of DQN for maintaining complex control situations in
microfluidic devices based on visual inputs over extended
time periods.
2.1.3. Laminar Flow Control Using MFEC. The MFEC

exhibited a rapid learning capability and showed peak
performance within the first 11 000 frames, ca. 2 h, of training.
This compares favorably to the 130 000 frames (or 24 h)
needed by DQN (Figure 3B). Such a situation is to be
expected, as every rewarding situation can be exploited by the
algorithm. However, the maximum performance achieved by
the model-free controller did not consistently reach human-
level performance (unlike DQN), albeit showing only a
marginal reduction in performance (typically 90% of human-
level performance in terms of achieved scores). In a typical
experiment, this might pose an acceptable trade-off, given the

significant reductions in initial training time. Similar to the
disturbances observed during DQN experiments, sharp
performance drops were detected when a bubble entered the
microfluidic channel (see inset highlighting the performance
dip shown in Figure 3B). However, the model-free controller
exhibited a substantially faster recovery, once the bubble was
dislodged and the environment reverted to the default state,
when compared to the DQN controller. It is hypothesized that
such behavior was because of the model-free nature of the
MFEC algorithm, which does not update an internal model
when encountering flawed observations caused by short-term
fluctuations. Therefore, the MFEC could quickly recover
performance as soon as the bubble was dislodged, and normal
observations were resumed. Furthermore, the model-free
controller empirically showed less performance fluctuations
than the DQN, especially over long time frames. Indeed,
because of its consistent performance, the MFEC is well suited
to the control of relatively simple experimental environments,
where slight reductions in peak performance are acceptable. In
practical terms, the short training time requirements heavily
favor MFEC over DQN, because training a controller in a few
minutes is simply not feasible using DQN.

2.2. Droplet Size Control. Under certain circumstances,
co-flowing two immiscible fluids through a narrow orifice (a
flow-focusing geometry) within a microfluidic channel results
in the formation of monodisperse droplets of one of the fluids
within the other.3 Importantly, these droplets represent
separate reaction containers and can be produced at rates
exceeding 10 000 Hz. Such segmented-flow formats have
attracted enormous attention from the biological research
community and are now an essential part of high-throughput
experimental platforms for single-cell genomic sequencing,39

early-stage kinetic studies,40 or high-throughput screening.41

The goal of the droplet size challenge was to adjust the flow
rates of the two droplet-forming phases to produce droplets of
a predetermined size (Figure 4A, and see Figure S1B for device
architecture). As in the laminar flow challenge, volumetric flow
rates were limited to values between 0.5 and 10 μL/min, with
the step size being fixed to 0.5 μL/min, and the interaction
frequency to 1.5 Hz for the DQN and 2.5 Hz for the MFEC.
Furthermore, the control algorithms interacted with the
environment using the same set of actions used in the laminar
flow challenge, that is, increasing or decreasing the flow rates of
the two droplet-forming phases, as well keeping the flow rates
constant. Example droplets are shown in Figure 4B.

2.2.1. Environment Characterization. Figure 4C shows an
example reward surface for the droplet size challenge. Similar
to the laminar flow reward surface (Figure 2C), results
indicated optimal flow rate ratios, which frequently produced
droplets of the correct size (e.g., continuous phase flow rate

Figure 4. Droplet size control. (A) Schematic illustration of the droplet size challenge, with droplets being formed at a flow-focusing geometry. The
dashed black box indicates the experimental observation window. (B) Example frames captured during an experimental run (scale bar 150 μm).
(C) An example reward surface for a complete scan of the environment for various flow rates of the dispersed phase (fr1) and the continuous phase
(fr2) both within a range of 0.5−10 μL/min.
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(fr1) = 5 μL/min and dispersed phase flow rate (fr2) = 3.2
μL/min, resulting in a diameter of 54 μm). However, the
boundaries of this optimal region were much less defined than
those observed in the laminar flow challenge. Furthermore,
larger variations were found between reward surfaces
originating from separate microfluidic devices. It is believed
that this increased uncertainty stems from the sensitivity of the
droplet formation process to surface-wetting effects,42 as well
as the circle Hough transform used in the reward calculation,
which in turn results in a noisier reward signal. On the basis of
the direct comparison between reward surfaces, it is expected
that the droplet size environment requires a more sophisticated
control solution, providing additional challenges for the
applied control algorithms.
2.2.2. Droplet Size Control Using DQN. Figure 5 reports

algorithmic performance in the droplet environment (see
Figure S3 for raw data plots). Starting from random
performance, the DQN controller typically managed to surpass
human-level performance prior to the end of the exploration
phase (Figure 5A), and superhuman-level performance was
achieved in all experiments. Again, short-term and absolute
performance variations were seen between experiments, largely
because of the separate experiments being performed with
different microfluidic devices, with different reagent solutions,
and at different times. Given that similar differences in maximal
performance were observed with the MFEC, it is likely that
such differences originated partially from differences in the
fabrication and surface treatment. Further, inconsistencies can
arise while setting up the microfluidic platform, for example
when connecting the tubing and aligning the optics. However,
because RL in non-simulated environments constitutes a
stochastic process, performance variations stemming from the
algorithm (because of capture in local optima) are also
expected, especially given the limited training times involved.
In a similar manner to the laminar flow challenge, large-scale

performance fluctuations over extended time periods were
observed. This could be explained by the increased sensitivity
of droplet formation to surface-wetting effects, when compared
to the single-phase system of the laminar flow challenge. For
example, Xu et al. have shown that altering wetting properties
by changing the surfactant concentration results in different co-
flow regimes, varying between laminar flow and droplet flow
because of surface aging effects in PDMS microfluidic
devices.42 Therefore, reaction conditions in the flow-focusing
geometry are expected to vary greatly, as surface conditions
change over long timescales. Further, long-term drift can also
be caused by small-scale fluid leakage, as fluidic connectors can
loosen over time. However, despite these phenomena, DQN
performance was observed to remain close to or exceed
human-level performance. Such results clearly indicate that
DQN is a viable option for maintenance of reaction conditions
during long-term microfluidic experiments, even in complex
environments.
2.2.3. Droplet Size Control Using MFEC. The performance

of the MFEC in the current task was outstanding and on par
with the DQN performance (Figure 5B). Typically, the model-
free controller achieved human-level performance very soon
after the start of the experiment and surpassed it for most of
the time. Interestingly, after quickly surpassing human-level
performance, one experiment (green line in Figure 5B) showed
a slow but steady decline toward human-level performance
over the final 10 h. A similar decline was not observed in any
experimental repeats; therefore, this decline was believed to be

device specific and related to variable factors between devices
(e.g., sub-optimal channel surface treatment43).
In general, the MFEC was well suited to the droplet size

challenge. The absolute performance of the MFEC was
comparable to the DQN and almost always superior to
human-level performance. Even though significant attention
was focused on ensuring a level playing field for the human
testers (see Experimental Methods: Benchmarking Learning
Performance), it is believed that the superhuman performance
observed in this task was largely because of the rapid decision-
making of the algorithm. Droplet formation occurred at ca.
1000 Hz, and the interaction frequency of the algorithm was
set at 2.5 Hz. The interaction frequency of the human testers
was variable and difficult to quantify, but was certainly less than
2.5 Hz.

3. CONCLUSIONS
Numerous microfluidic tasks can be performed in a previously
unachievable manner using machine learning methods. This is
especially true for operations that are currently performed
using fixed or manually tuned parameters. Herein, we have
demonstrated for the first time that state-of-the-art machine
learning algorithms can surpass human-level performance in
microfluidic experiments, solely based on visual observations.
Moreover, we have confirmed this through the use of two
different RL algorithms, based on neural networks (DQN) and
episodic memory (MFEC).
In our experiments, algorithms surpassed human-level

performance over variable timescales. For example, the DQN
in the laminar flow challenge took ca. 27 h, whereas the MFEC
in the droplet challenge rapidly (within minutes) achieved

Figure 5. Variation of the reward as a function of time for (A) DQN
(N = 2) and (B) MFEC controllers (N = 3) in the droplet
environment. Benchmark performances are displayed using mean
performance and 95% confidence intervals. Human performance level
is indicated with a human figure, and random performance level is
indicated with a die. Data plotted with a 35-point moving average for
clarity.
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sustained superhuman performance. It will be important in
future applications to minimize this time, and we anticipate
that further development of RL algorithms will make this
possible in a wide variety of scenarios. Further, we hypothesize
that a combination of algorithms could provide a solution that
leverages the advantages of each method. For example, MFEC
could provide initial guesses, via rapid policy improvement,
that could then be used to improve DQN training. This would
almost certainly decrease the overall time required for DQN to
reach peak performance (which as shown herein is superhu-
man in all studied environments).
Bright-field microscopy is one of the most commonly used

experimental techniques in chemical and biological analysis
because of its simplicity and high information content. Since
visual observations are exclusively used in the current study,
the proposed control algorithms could be easily integrated into
existing experimental setups. Moreover, we found that the
computational requirements for learning were much lower
than anticipated, presumably because the rate-limiting step was
typically the interaction with the physical environment and not
controller evaluation. This further highlights the applicability
of RL to various microfluidic environments.
It is important to note that this study purposely used proof-

of-concept-level challenges, which simpler control algorithms
(e.g., PID controllers) could also perform. However, it is
anticipated that the ultimate capability of such algorithms is
much higher and applicable to a large variety of visual tasks.
Indeed, a novel environment is simply established by defining a
reward function and then re-training the same algorithm.
Accordingly, further research will extend the presented findings
by investigating more complex environments using the same
algorithms. Finally, it is believed that this study highlights the
benefits of combining experimental platforms with “smart”
decision-making algorithms. To date, there have been few
applications of RL in non-simulated environments. Never-
theless, it is expected that a large variety of microfluidic-based
experiments could be used to generate state-of-the-art results
through the use of advanced interpretation or control
algorithms. Examples of such experiments include the
manipulation of organisms on chip, cell sorting, and reaction
monitoring.
To conclude, and based on the results presented herein, it is

believed that RL and machine learning in general have the
potential to disrupt and innovate not only microfluidic
research, but many related experimental challenges in the
biological and life sciences.

4. MATERIALS AND METHODS
4.1. Microfluidic Device Fabrication. Microfluidic

devices were fabricated using conventional soft lithographic
methods in PDMS.10 Microfluidic geometries were designed
using AutoCAD 2014 (Autodesk GmbH, Munich, Germany)
and printed on high-resolution film masks (Micro Lithography
Services Ltd, Chelmsford, UK). In a class 100 cleanroom, a
silicon wafer (Si-Mat, Kaufering, Germany) was spin-coated
with a layer of SU-8 2050 photoresist (MicroChem, West-
borough, USA) and exposed to a collimated UV source. After
application of SU-8 developer (MicroChem, Westborough,
USA), the fabricated master mold was characterized using a
laser scanning microscope (VK-X, Keyence, Neu-Isenburg,
Germany). Sylgard 184 PDMS base and curing agent (Dow
Corning, Midland, USA) were mixed in a ratio of 10:1 wt/wt,
degassed, and decanted onto the master. The entire structure

was oven-cured (70 °C for at least 8 h), then separated by
peeling. Inlet and outlet ports were punched through the
structured PDMS layer; then it was bonded to a flat PDMS
substrate using an oxygen plasma and incubated on a hot plate
at 95 °C for at least 2 h. Finally, a hydrophobic surface
treatment, 5 v/v % 1H-1H-2H-2H-perfluorooctyltrichlorosi-
lane (PFOS; abcr GmbH, Karlsruhe, Germany) in isopropyl
alcohol (Sigma-Aldrich, Buchs, Switzerland), was applied for 1
min to ensure hydrophobicity of the channel surface. Channel
depths of 50 μm were used in all experiments. Device
architectures are shown in Figure S1.

4.2. Experimental Setup. Deionized water and deionized
water containing 1 v/v % ink were used as the two phases for
the laminar flow experiments. For droplet-based experiments,
the same ink solution was used as the dispersed phase, and
HFE7500 (3M, Rüschlikon, Switzerland) containing 0.1 wt/wt
% EA-surfactant (Pico-Surf 1; Sphere Fluidics, Cambridge,
UK) was used as the continuous phase. Two piston-based
pumps (milliGAT; Global FIA, Fox Island, USA) were used to
deliver fluids and control volumetric flow rates. A high-speed
fluorescence camera (pco.edge 5.5; PCO AG, Kelheim,
Germany) was used to observe fluids through an inverted
microscope (Ti-E; Nikon GmbH, Egg, Switzerland), with a 4×
objective (Nikon GmbH, Egg, Switzerland). In both environ-
ments (laminar flow and droplet generation), attainable flow
rates were limited to between 0.5 and 10 μL/min, in 0.5 μL/
min steps. The interaction frequency was limited (1.5 Hz for
the DQN and 2.5 Hz for the MFEC), and the environments
were reset to random flow rates after a set number of
interactions (250 for the DQN, 150 for the MFEC), thereby
splitting the challenge into separate episodes. Because of
extensive training times, separate experiments were terminated
after a performance plateau was reached, which occurred at
different times in different experiments. Experimental repeats
(N) were conducted at separate times using different devices.

4.3. Data Pre-Processing. Observations from the high-
speed camera were minimally pre-processed before being fed
as an input into the controller. The raw camera frame was
converted to a floating-point representation (black pixel value
0.0, white pixel value 1.0), then resized to 84 × 84 pixels,
following a published protocol.27

4.4. Reward Calculation. The reward estimator for the
laminar flow environment evaluated the position of the laminar
flow interface across the microfluidic channel by performing a
thresholding operation on the raw frame. The dye solution
yielded black pixels, whereas the clear solution produced white
pixels. The interface position was then estimated using the
average intensity of pixels across the complete image. Finally,
the reward was calculated as an error between the current
position and the desired position. The desired position was
chosen to be one-third of the channel width to prevent the
“simple solution” of using the maximum flow rate on both
pumps. The reward in the droplet-based experiments was
calculated by detecting the radii of droplets in the observed
frame. Initially, both Gaussian blur (5 × 5 kernel) and Otsu
thresholding44 operations were applied to achieve proper
separation of the black (dye) droplets from the background. A
dilation operation (with a 3 × 3 kernel) was used to
additionally discriminate the droplets from the channel walls.
Subsequently, circles were detected in each processed frame
using a Hough circle transform45 and the radii of all detected
droplets extracted. The final reward was calculated from the
mean error between the droplet radii and a desired radius of 27
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pixels (corresponding to 54 μm). All reward calculations were
performed using classical image processing employing the
OpenCV Python module.46

4.5. Environment Characterization. Because of the
limited complexity of the model environments, a complete
characterization of the reward space was performed. Using an
automated scheme, observations for every possible flow rate
combination were made and post-processed offline, using the
respective reward estimators. The obtained reward surface was
specific to a single microfluidic device, because variations in
the manufacturing and treatment process of identical devices
result in altered reward surfaces.
4.6. DQN Algorithm. Our DQN architecture is similar to

the dueling network architecture reported by Wang and co-
workers.29 Raw camera frames were used as inputs to the
neural network−based Q-function. An initial random phase of
10 000 frames and an annealing phase of 135 000 frames
(number of frames to change from 100% random actions to
0.05% random actions) were used. Furthermore, the target
network parameters were updated every 5000 frames, storing
and learning from only the most recent 50 000 frames. A
custom DQN version was used, implemented in Python 2.7
using Keras47 and the Theano48 backend running on Windows
7 (Microsoft Corporation, Redmond, USA). For training and
inference of the ANN, a GPU (Quadro K2000; Nvidia, Santa
Clara, USA) was used. Finally, custom Python scripts were
used to post-process and visualize results.
4.7. MFEC Algorithm. A custom version of MFEC was

used, implemented using Python 2.7 according to the
published architecture outline.33 An approximate nearest
neighbor search was used to determine related observations
with 10 estimators (LSHForest,49 implemented by the sklearn
Python module50). This method was chosen as it allowed for a
partial fit (addition) of new data, without needing to
recalculate the entire tree for each new observation. Such a
complete re-balancing of the tree is performed only in 10%
(randomly sampled) of data additions. Observations were pre-
processed using the same pre-processing pipeline as DQN.
Subsequently, input frames were encoded using a random
projection into a vector with 64 components.
Random encoding was used as it showed similar perform-

ance compared to a more complex encoding scheme using a
variational auto-encoder.33 The MFEC algorithm required the
environment interaction to be split up into episodes (regular
intervals at which the complete environment was reset, and
performance evaluated).
4.8. Benchmarking Learning Performance. Controller

performance in the fluidic environments was benchmarked
using scores obtained by both a human tester and a random
agent. Random performance benchmarks were obtained by
choosing a random action from the available action set every
frame and recording the obtained rewards. The random agent
represented a lower boundary on performance and served to
check initial DQN performance, as it was expected to be
random. Human-level performance results were obtained by
having two separate trained human agents solve an identical
task (observation at the identical position, with identical
resolution and an identical action set) for ca. 20 min while
recording rewards. Prior to benchmarking, each human tester
was given an explanation of the underlying physics and allowed
to practice the task for at least 10 min. All benchmarks shown
represent the mean reward obtained as well as a 95%
confidence interval.
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