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ABSTRACT: 1,2,4-Trisubstituted-(1H)-imidazoles have
been synthesized by the Cu(OTf)2- and I2-catalyzed unusual
C−C bond cleavage of chalcones and benzylamines. After the
α,β-unsaturated C−C bond cleavage, the β-portion is
eliminated from the reaction. Various aryl- and heteroaryl-
substituted chalcones and benzylamines were well tolerated in
this unusual transformation to yield the trisubstituted-(1H)-imidazoles.

■ INTRODUCTION

Chalcone, a naturally available α,β-unsaturated ketone,1 is well-
known for its broad spectrum of medicinal values.1−7 The
researchers are always curious in the structural modification
and utilization of chalcones in the discovery of new active
pharmaceutical ingredients.8 It may be attributed to their
abundance in the natural resources and the ease at which these
molecules can be synthesized.1 In many instances, quantitative
structure−activity relationship studies revealed that the
modified chalcones have led to the improved activity as well
as the exhibition of an entirely new biological property.9

Besides, the presence of enone functionality always makes it a
better precursor for an array of chemical reactions1,10 The 1,4-
Michael addition of chalcones with a variety of nucleophiles is
very well reported.11 Cycloaddition such as 4 + 2,12 3 + 2,13

and 4 + 1 annulations14 has been reported with the enone
system in the divergent synthesis of heterocycles and highly
substituted arenes.15 Alongside, the CH activation reaction16

and numerous Lewis acid catalyzed transformations have also
been reported.17 In 2015, Zhu et al. demonstrated a facile
FeCl3−I2-catalyzed coupling of amidines with chalcone in the
successful preparation of tetrasubstituted imidazoles (Scheme
1).18

In addition, the biological19,20 and material and poly-
meric21−24 significances of imidazole are also well studied.
Because of the significant applications, several classical
methods for the synthesis of imidazole are available.25 A series
of metal-catalyzed26 and nonmetal-catalyzed27 multicompo-
nent reactions have also been reported in the recent years.
Accordingly, we envisaged that the development of a new and
simple strategy using readily available chalcones and benzyl-
amines, which use inexpensive catalysts for the construction of
1,2,4-trisubstituted-(1H)-imidazoles, would be a valuable

contribution to a limited number of existing approaches
(Scheme 1).
The perspective of the protocol lies in its practical utilization

of medicinal chemistry approaches, viz., scaffold hopping,
molecular hybridization,28 and so forth. Hit selection and lead
generation are crucial to the success of lead optimization phase
in drug discovery. Chalcones are considered to be one of the
prioritized hits for lead generation in many therapeutic
applications. Hence, the present protocol is an ideal one for
the synthesis of 1,2,4-trisubstituted-(1H)-imidazole-appended
hybrids from biologically relevant chalcones (Scheme 2). For
instance, isobavachalcone,29 xanthohumol,30 phlorizin,31 mac-
dentichalcone,32 cochinchinenin,33 and so forth are complex
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Scheme 1. Chalcone-Based Imidazole Synthesis
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natural product chalcones, which display a broad spectrum of
medicinal properties that can be adopted for this methodology
to synthesize a diverse array of imidazole hybrids.

■ RESULTS AND DISCUSSION
A few reports on the reactivity of copper catalyst and
iodine26a,27a,34 for the synthesis of imidazoles have prompted
us to examine this catalytic system. Our initial experiment was
conducted between chalcone (1a, 0.24 mmol) and benzyl-
amine (2a, 1.2 mmol) in the presence of 20 mol % of both
copper acetate and iodine in dichloroethane (DCE) at 50 °C.
As expected, a new product is formed and isolated after 24 h of
reaction in 42% yield. Interestingly, the mass spectrometric
analysis showed the high-resolution mass spectrometry
(HRMS) peak at lower mass than the expected. Further
structure elucidation of NMR spectra revealed the product as
1-benzyl-2,4-diphenyl-1H-imidazole (Scheme 3). From the
NMR and mass spectroscopic analysis, and the products
formed from various substituted chalcones, it has been
confirmed that the β-portion of the α,β-unsaturated ketone

coming from aldehyde has been eliminated from the reaction,
which reveals that the reaction may be going through the
unusual C−C bond cleavage of chalcones. Further, the
structure of the product is unambiguously confirmed from
single-crystal X-ray analysis of the molecule 3a (Scheme 3, 3a).
Inspired by this Cu(OAc)2- and I2-catalyzed unusual C−C
bond cleavage, we started our investigation in order to
optimize the process (Table 1). In the solvent optimization of
polar and nonpolar solvents, dimethyl sulfoxide (DMSO) and
EtOH yielded the product in trace quantity, whereas
tetrahydrofuran (THF) and dimethylformamide (DMF)
could not furnish the desired outcome. The reaction in
acetonitrile afforded a comparatively less yield (36%). Toluene
produced an improved yield of 48% in comparison with other
solvents. Further, we tested the reaction using different
copper(II) catalysts. Among those, CuCl2 and Cu(BF4)2 did
not show any promising improvement. CuI or CuBr also failed
to show the significant result. A comparatively higher yield of
52% is afforded with Cu(OTf)2 than with Cu(OAc)2. Because
copper triflate is a Lewis acid, we explored the catalytic
reactivity of Sc(OTf)3, Zn(OTf)3, La(OTf)3, and so forth.
However, the reaction did not afford the expected product.
Different oxidants, viz., TBHP, I2, PhIOAc2, H2O2, and O2,

were also added as an additive to improve the yields further.
Except for I2, none of the other additives produced the desired
product. Hence, Cu(OTf)2 and I2 together have been used as
the catalyst for the reaction. A decrease in the loading of
Cu(OTf)2 to 10 mol % at 50 °C increased the yield to 60%.
Hence, 10 mol % Cu(OTf)2 and 20 mol % I2 are together
considered as the catalytic system for the reaction. When 50
and 100 mol % of iodine are used, the yield has been
suppressed to 38 and 31%, respectively. When the temperature
of the reaction increased to 70 °C from 50 °C, the reaction
proceeded comparatively clean without much change in the
yield. Hence, 70 °C has been considered as the optimized
temperature for the reaction. When we carried out the reaction
in the presence of argon atmosphere, the reaction did not
produce the expected product in the desired yield. The other
parameters considered for the optimization are tabulated in
Table 1.
The generality of the reaction is investigated by the reaction

of various substituted chalcones with substituted benzylamines
under the optimized condition (Scheme 3). The reaction
proceeds smoothly for all the electron-donating and electron-
withdrawing substitutions on chalcone. The reaction is also
generalized for 2-thiophene, 3-thiophene chalcones, and
phenanthrene chalcones, which gave satisfactory yields.
Therefore, for all the various substituents of chalcones with
benzylamine, good-to-moderate yields have been obtained
without the significant impact of the substitution (Scheme 3).
However, comparatively higher yields have been received for
the benzylamines with electron-donating groups than that with
electron-withdrawing groups. The results are summarized in
Scheme 4.
Because 2 mol of benzylamine is taking part in the reaction,

we emphasized the idea of utilizing the two differently
substituted benzylamines in a one-pot reaction. To our delight,
the one-pot reaction through the monitored sequential
addition of chalcone, (4-methoxyphenyl) methenamine, and
p-tolylmethanamine gave four various substituted products as
shown in Scheme 5. Hence, the protocol provides an
opportunity to synthesize the library of highly substituted
imidazoles in a controlled one-pot manner. Toward the

Scheme 2. Perspective of the Protocol in the Scaffold
Hopping/Molecular Hybridization of Biologically Relevant
Complex Natural Product-Based Chalcones to Imidazole
Hybrids

Scheme 3. Scope of the Reaction for Various Substituted
Chalcones
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demonstration of scale-up synthesis of imidazoles from
chalcones and benzylamines under the optimized reaction
condition was performed with 1 g of chalcone and 2.39 g of
benzylamine. We have successfully obtained the corresponding
imidazole in 54% yield (754 mg) (Scheme 6). This shows that
the protocol is well optimized even for carrying out the gram-
scale synthesis of imidazole derivatives for various applications.
To gain some insights into this unusual C−C bond cleavage

of chalcones leading to the imidazole formation, we have
carried out some controlled experiments. The yield did not
decrease when a radical scavenger (2,2,6,6-tetramethylpiper-
idin-1-yl)oxidanyl (TEMPO) was added to the reaction; thus,
a radical process is probably unlikely to be involved (Scheme 7,
exp 1). Anticipating a cleavage of chalcone, subsequent
transformation to phenylglyoxal, and its involvement in the
product formation, we conducted an experiment with phenyl-
glyoxal and 4-methoxy-benzylamine under the optimized
reaction condition. However, the reaction afforded the desired
product in very less amount even after 24 h, which indicates
that the reaction is not going through phenylglyoxal (Scheme
7, exp 2) as the intermediate. Further, we have conducted
three experiments with 1 equiv, 2 equiv, and 4 equiv of

benzylamines, respectively. The HRMS of each reaction was
analyzed at different time intervals to identify the intermediates
formed. According to the controlled experiments and the
HRMS analysis of a reaction mixture with 1 equiv of
benzylamine (after 1 h) (Figures 1, S1, and S4, Supporting
Information), we have proposed a plausible mechanism
(Scheme 8).
In the presence of copper triflate, benzylamine reacts with

chalcone to form the corresponding imine [(M + H)+ =
312.1704], followed by the reaction of iodine to the
corresponding imine to form an iodonium ion intermediate
B. Addition of amine to imine, followed by rearrangement,
leads to the intermediate C, which on air oxidation gives D
[(M + H)+ = 415.2115]. Further, iodonium ion formation and
intramolecular cyclization of E provide the intermediate F.
Nucleophilic substitution on F from benzylamine gives the
intermediate G. Finally, imine formation and subsequent C−C
bond cleavage of G lead to an aromatized product of 1,2,4-
trisubstituted-(1H)-imidazoles.

Table 1. Optimization of the Reactiona

solvent catalyst oxidant additive temp (°C) yield (%)

DCE Cu(OAc)2 (20 mol %) I2 (20 mol %) rt trace
DCE Cu(OAc)2 I2 50 42
THF Cu(OAc)2 I2 50 N.R
DMSO Cu(OAc)2 I2 50 trace
DMF Cu(OAc)2 I2 50 N.R
CH3CN Cu(OAc)2 I2 50 36
DCE Cu(OAc)2 50 N.R
DCE I2 50 N.R
DCE I2 H2O2 50 N.R
toluene Cu(OAc)2 I2 50 48
toluene Cu(OTf)2 I2 50 52
toluene In(OTf)2 I2 50 trace
toluene Sc(OTf)2 I2 50 N.R
toluene CuCl2 I2 50 trace
toluene Cu(BF4)2 I2 50 9
toluene Cu(OTf)2 I2 BF3·OEt2 (1 equiv) 50 38
toluene Cu(OTf)2 I2 BF3·OEt2 (20 mol %) 50 trace
toluene Cu(OTf)2 I2 PTSA (20 mol %) 50 20
toluene Cu(OTf)2 I2 HCl (20 mol %) 50 50
toluene Cu(OTf)2 I2 50 48
toluene Cu(OTf)2 PhI(OAc)2 50 N.R
toluene Cu(OTf)2 NaI 50 trace
toluene Cu(OTf)2 KIO3 50 N.R
toluene Cu(OTf)2 CuI 50 9
toluene CuI I2 50 21
toluene CuBr I2 50 26
toluene Cu(OTf)2 (1 equiv) I2 50 trace
toluene Cu(OTf)2 (20 mol %) I2 (1 equiv) 50 31
toluene Cu(OTf)2 (10 mol %) I2 (20 mol %) 50 60
toluene Cu(OTf)2 (5 mol %) I2 (5 mol %) 50 trace
toluene Cu(OTf)2 (10 mol %) I2 (20 mol %) 60−70 59
toluene Cu(OTf)2 (10 mol %) I2 (20 mol %) 80 41
tolueneb Cu(OTf)2 (10 mol %) I2 (20 mol %) 60−70 54
toluenec Cu(OTf)2 (10 mol %) I2 (20 mol %) 60−70 24
toluened Cu(OTf)2 (10 mol %) I2 (20 mol %) 60−70 25

aReaction conditions: 1a (0.24 mmol), 2a (1.2 mmol), in 2 mL of solvent without inert atmosphere, for 24 h. bReaction time: 14 h. cIn the
presence of argon atmosphere. d1a (0.24 mmol), 2a (0.72 mmol).

ACS Omega Article

DOI: 10.1021/acsomega.8b01017
ACS Omega 2018, 3, 8074−8082

8076

http://pubs.acs.org/doi/suppl/10.1021/acsomega.8b01017/suppl_file/ao8b01017_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.8b01017/suppl_file/ao8b01017_si_001.pdf
http://dx.doi.org/10.1021/acsomega.8b01017


■ CONCLUSIONS
In summary, a new and simple route for the synthesis of 1,2,4-
trisubstituted-(1H)-imidazoles via Cu(OTf)2-/I2-catalyzed un-
usual C−C bond cleavage of chalcones and benzylamines is
developed. The reaction tolerates a wide range of functional
groups to produce the products in good-to-moderate yields.
The plausible mechanism of this unusual C−C bond cleavage
and imidazole formation was hypothesized through controlled
experiments and HRMS analysis. Hence, the methodology can
be utilized in medicinal chemistry approaches, such as scaffold
hopping, molecular hybridization, and so forth for the selective

synthesis of imidazole-appended hybrids from bioactive
chalcones.

■ EXPERIMENTAL SECTION
General Methods. All the reactions were performed with

commercially available best grade chemicals without further
purification. All the solvents used were of reagent grade,
column chromatography was performed using 100−200 mesh
silica gel, and mixtures of hexane−ethyl acetate were used for
elution of the products. Melting points were determined on a
Büchi melting point apparatus and are uncorrected. The
proton nuclear magnetic resonance (1H NMR) spectra were
recorded on a Bruker AMX 500 spectrophotometer (CDCl3 as
the solvent). The chemical shifts for 1H NMR spectra are
reported as δ in units of parts per million (ppm) downfield
from SiMe4 (δ 0.0) and relative to the signal of chloroform-d
(δ 7.25, singlet). Multiplicities were given as s (singlet), d
(doublet), t (triplet), q (quartet), dd (double doublet), and m
(multiplet). The coupling constants are reported as J value in
hertz. The carbon NMR (13C NMR) spectra are reported as δ
in units of ppm downfield from SiMe4 (δ 0.0) and relative to
the signal of chloroform-d (δ 77.03, triplet). The mass spectra
were recorded under EI/HRMS at 60,000 resolution using a
Thermo Scientific Exactive mass spectrometer. The IR spectra
were recorded on a Bruker FT-IR spectrometer. All the
substituted chalcones were synthesized using literature reports.

General Procedure for the Synthesis of (E)-Chal-
cone.35 One equivalent of arylaldehyde or heteroarylaldehyde
was added to the solution of 1 equiv of acetophenone in
ethanol. The 10% aqueous solution of NaOH was added
dropwise to the mixture at 0 °C, which resulted in
precipitation. The mixture was then stirred for 30 min, filtered,
washed with cold methanol, and dried to yield 60−90% solid
compound. The product was confirmed from 1H NMR.

General Procedure for the Synthesis of Imidazole.
Copper triflate (10 mol %) and 20 mol % of iodine were added
to the mixture of 1 equiv of chalcone (0.24 mmol, 50 mg) and
5 equiv of benzylamine (1.2 mmol, 128.58 mg), respectively, in
a Schlenk tube fitted with a rubber septum. Toluene (2 mL)
was added to it and stirred at 70 °C for 24 h in the presence of
air. The reaction mixture was cooled and extracted with
EtOAc−water mixture, by addition of sodium thiosulfate. The
organic layer was separated and evaporated in vacuo. The
product was separated with a silica gel (100−200 mesh)
column chromatography using the mixture of 10−18% EtOAc
in hexane.

General Procedure for the Controlled Experiments.
Reaction with TEMPO-Free Radical. Copper triflate (10 mol

Scheme 4. Scope of the Reaction for Substituted
Benzylamines

Scheme 5. Imidazole Synthesis with Two Different
Substituted Benzylamines

Scheme 6. Gram-Scale Synthesis of Imidazole from (E)-
Chalcone and Benzylamine

Scheme 7. Controlled Experiments
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%), 20 mol % of iodine, and one equivalent of TEMPO-free
radical were added to the mixture of 1 equiv of chalcone (0.24
mmol, 50 mg) and 5 equiv of benzylamine (1.2 mmol, 128.58
mg) in a Schlenk tube fitted with a rubber septum. Toluene (2
mL) was added to it and stirred at 70 °C for 24 h in the
presence of air. The reaction mixture was cooled and extracted
with EtOAc−water mixture, by addition of sodium thiosulfate.
The organic layer was separated and evaporated in vacuo. The
product was separated with a silica gel (100−200 mesh)
column chromatography using the mixture of 10−18% EtOAc
in hexane.
Reaction of Phenylglyoxal with 4-Methoxy Benzylamine.

Copper triflate (10 mol %) and 20 mol % of iodine were added
to the mixture of 1 equiv of phenylglyoxal (0.34 mmol, 50 mg)
and 3 equiv of 4-methoxybenzylamine (1.2 mmol, 123.67 mg)
in a Schlenk tube fitted with a rubber septum. Toluene (2 mL)
was added to it and stirred at 70 °C for 24 h in the presence of
air. The reaction mixture was cooled and extracted with
EtOAc−water mixture, by addition of sodium thiosulfate. The

organic layer was separated and evaporated in vacuo. The
product was separated with a silica gel (100−200 mesh)
column chromatography using the mixture of 10−18% EtOAc
in hexane.

Characterization of the Products. 1-Benzyl-2,4-diphen-
yl-1H-imidazole (3a). Yield: 45 mg, 60% yield, as a light
orange solid; Rf = 0.36 (hexane/ethyl acetate = 80/20); mp
110−112 °C; IR (neat, cm−1): 3062, 2929, 1955, 1888, 1673,
1452, 1357, 1276, 1082, 1027; 1H NMR (500 MHz, CDCl3):
δ 5.21 (s, 2H), 7.13 (d, J = 7.5 Hz, 2H), 7.22−7.25 (m, 2H),
7.31−7.38 (m, 5H), 7.41−7.43 (m, 3H), 7.59−7.62 (m, 2H),
7.83 (d, J = 7.5 Hz, 2H); 13C NMR (125 MHz, CDCl3): δ
50.5, 116.9, 124.9, 126.7, 126.9, 128.0, 128.3, 128.6, 128.7,
129.1, 129.1, 130.5, 136.7, 141.6, 148.7; HRMS: calcd for
C22H19N2 ([M + H]+), 311.1548; found, 311.1555.

1-Benzyl-2-phenyl-4-(p-tolyl)-1H-imidazole (3b). Yield: 41
mg, 53% yield as a light yellow solid; Rf = 0.34 (hexane/ethyl
acetate = 80/20); mp 132−134 °C; IR (neat, cm−1): 3030,
2921, 2885, 1662, 1608, 1532, 1459, 1371, 1269, 1113, 1037,
821; 1H NMR (500 MHz, CDCl3): δ 2.34 (s, 3H), 5.19 (s,
2H), 7.12 (d, J = 3.0 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 7.19
(s, 1H), 7.28−7.35 (m, 3H), 7.38−7.42 (m, 3H), 7.58−7.61
(m, 2H), 7.72 (d, J = 8.0 Hz, 2H); 13C NMR (125 MHz,
CDCl3): δ 21.3, 50.5, 116.4, 124.9, 126.7, 127.9, 128.7, 128.9,
129.0, 129.1, 129.3, 130.5, 131.3, 136.5, 136.9, 141.7, 148.5;
HRMS: calcd for C23H21N2 ([M + H]+), 325.1705; found,
325.1707.

1-Benzyl-4-(4-chlorophenyl)-2-phenyl-1H-imidazole (3c).
Yield: 46 mg, 55% yield as an amorphous solid; Rf = 0.32
(hexane/ethyl acetate = 80/20); IR (neat, cm−1): 3030, 2859,
1957, 1809, 1666, 1577, 1452, 1274, 1082, 1027; 1H NMR
(500 MHz, CDCl3): δ 5.19 (s, 2H), 7.12 (d, J = 7.0 Hz, 2H),
7.21 (s, 1H), 7.31−7.37 (m, 5H), 7.41−7.42 (m, 3H), 7.58−
7.60 (m, 2H), 7.75 (d, J = 8.5 Hz, 2H); 13C NMR (125 MHz,
CDCl3): δ 50.6, 116.9, 126.2, 126.7, 128.1, 128.7, 128.7, 129.0,
129.1, 129.2, 130.3, 132.3, 132.6, 136.7, 140.5, 148.8; HRMS:
C22H18ClN2 ([M + H]+), 345.1159; found, 345.1148.

1-Benzyl-4-(4-methoxyphenyl)-2-phenyl-1H-imidazole
(3d). Yield: 29 mg, 36% yield as a light yellow solid; Rf = 0.24
(hexane/ethyl acetate = 80/20); mp 86−88 °C; IR (neat,
cm−1): 3063, 3002, 2047, 1891, 1659, 1564, 1451, 1247, 1175;
1H NMR (500 MHz, CDCl3): δ 3.83 (s, 3H), 5.22 (s, 2H),

Figure 1. HRMS for the reaction mixture of 1 equiv of benzylamine and chalcone after 1 h of the reaction time.

Scheme 8. Plausible Mechanism of the Reaction
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6.91 (d, J = 9.0 Hz, 2H), 7.14 (d, J = 7.5 Hz, 2H), 7.16 (s,
1H), 7.31−737 (m, 3H), 7.41−7.42 (m, 3H), 7.59−7.62 (m,
2H), 7.76 (d, J = 9.0 Hz, 2H); 13C NMR (125 MHz, CDCl3):
δ 50.5, 55.3, 113.9, 115.8, 126.2, 126.7, 126.9, 127.9, 128.7,
128.9, 129.0, 129.0, 130.5, 136.9, 141.4, 148.4, 158.7; HRMS:
calcd for C23H21N2O ([M + H]+), 341.1654; found, 341.1637.
1-Benzyl-4-(4-bromophenyl)-2-phenyl-1H-imidazole (3e).

Yield: 52 mg, 56% yield as an amorphous solid; Rf = 0.36
(hexane/ethyl acetate = 80/20); mp 142−144 °C; IR (neat,
cm−1): 3062, 2924, 1955, 1900, 1662, 1476, 1359, 1267, 1072,
833; 1H NMR (500 MHz, CDCl3): δ 5.22 (s, 2H), 7.14 (d, J =
7.0 Hz, 2H), 7.24 (s, 1H), 7.32−7.38 (m, 3H), 7.41−7.44 (m,
3H), 7.48 (d, J = 9.0 Hz, 2H), 7.59−7.61 (m, 2H), 7.69 (d, J =
8.5 Hz, 2H); 13C NMR (125 MHz, CDCl3): δ 50.6, 117.0,
120.5, 126.5, 126.8, 128.1, 128.7, 129.0, 129.1, 129.2, 130.3,
131.6, 133.1, 136.7, 140.5, 148.9; HRMS: calcd for
C22H18BrN2 ([M + H]+), 389.0653; found, 389.0635.
4-(1-Benzyl-2-phenyl-1H-imidazole-4-yl)phenol (3f).

Yield: 24 mg, 30% yield as an amorphous solid; Rf = 0.11
(hexane/ethyl acetate = 80/20); IR (neat, cm−1): 3292, 3032,
2804, 1955, 1806, 1604, 1451, 1359, 1270, 1168; 1H NMR
(500 MHz, CDCl3): δ 5.17 (s, 2H), 6.71 (d, J = 9.0 Hz, 2H),
7.08 (s, 1H), 7.12 (d, J = 7.0 Hz, 2H), 7.30−7.38 (m, 7H),
7.54−7.55 (m, 4H); 13C NMR (125 MHz, CDCl3): δ 50.5,
115.7, 115.8, 125.2, 126.5, 126.7, 128.1, 128.7, 129.1, 129.2,
129.7, 136.7, 141.6, 148.4, 156.1; HRMS: calcd C22H19N2O
([M + H]+), 327.1497; found, 327.1488.
1-Benzyl-4-(4-fluorophenyl)-2-phenyl-1H-imidazole (3g).

Yield: 31 mg, 39% yield as an amorphous solid; Rf = 0.29
(hexane/ethyl acetate = 80/20); IR (neat, cm−1): 3065, 2930,
1667, 1599, 1497, 1332, 1222, 1155, 841, 732; 1H NMR (500
MHz, CDCl3): δ 5.22 (s, 2H), 7.05 (t, J = 9.0 Hz, 2H), 7.14
(d, J = 7.0 Hz, 2H), 7.19 (s, 1H), 7.30−7.37 (m, 3H), 7.42−
7.44 (m, 3H), 7.59−7.61 (m, 2H), 7.78−7.80 (m, 2H); 13C
NMR (125 MHz, CDCl3): δ 50.5, 115.3, 115.5, 116.4, 126.5,
126.6, 126.7, 128.1, 128.7, 129.0, 129.1, 130.3, 130.3, 136.8,
140.7, 148.7, 162.0 (d, J = 243.75 Hz); HRMS: calcd for
C22H18FN2 ([M + H]+), 329.1454; found, 329.1441.
1-Benzyl-2-phenyl-4-(thiophen-3-yl)-1H-imidazole (3h).

Yield: 31 mg, 41% yield as an amorphous solid; Rf = 0.29
(hexane/ethyl acetate = 80/20); IR (neat, cm−1): 3106, 2928,
1662, 1604, 1498, 1351, 1250, 1169, 1024, 884; 1H NMR (500
MHz, CDCl3): δ 5.19 (s, 2H), 7.11−7.13 (m, 3H), 7.29−7.35
(m, 4H), 7.38 (dd, J = 5.0 Hz, 1.5 Hz, 1H), 7.39−7.42 (m,
3H), 7.58−7.59 (m, 2H), 7.64 (dd, J = 3.0 Hz, 1.5 Hz, 1H);
13C NMR (125 MHz, CDCl3): δ 50.4, 116.7, 119.2, 125.6,
125.8, 126.7, 128.0, 129.0, 129.1, 130.3, 135.8, 136.9, 138.1,
148.5; HRMS: calcd for C20H17N2S ([M + H]+), 317.1112;
found, 317.1113.
1-Benzyl-2-phenyl-4-(thiophen-2-yl)-1H-imidazole (3i).

Yield: 27 mg, 35% yield as an amorphous solid; Rf = 0.29
(hexane/ethyl acetate = 80/20); IR (neat, cm−1): 3064, 2929,
1652, 1618, 1498, 1359, 1181, 1027, 846, 768; 1H NMR (500
MHz, CDCl3): δ 5.19 (s, 2H), 7.02 (dd, J = 5.0 Hz, 3.5 Hz,
1H), 7.12−7.15 (m, 3H), 7.18 (dd, J = 5.0 Hz, 1.5 Hz, 1H),
7.31−7.37 (m, 4H), 7.40−7.42 (m, 3H), 7.58−7.59 (m, 2H);
13C NMR (125 MHz, CDCl3): δ 50.5, 116.3, 122.1, 123.3,
126.7, 127.5, 128.1, 128.4, 128.7, 129.0, 129.1, 129.1, 129.2,
130.1, 136.7, 136.8, 137.8, 143.4, 148.5; HRMS: calcd for
C20H17N2S ([M + H]+), 317.1112; found, 317.1108.
1-Benzyl-4-(2-bromophenyl)-2-phenyl-1H-imidazole (3j).

Yield: 20 mg, 21% yield as an amorphous solid; Rf = 0.45
(hexane/ethyl acetate = 80:20); IR (neat, cm−1): 3062, 2927,

1661, 1595, 1472, 1358, 1262, 1183, 1023, 745; 1H NMR (500
MHz, CDCl3): δ 5.28 (s, 2H), 7.09 (t, J = 7.5 Hz, 1H), 7.15
(d, J = 7.5 Hz, 2H), 7.31 (t, J = 7.0 Hz, 1H), 7.37 (t, J = 7.5
Hz, 3H), 7.41−7.42 (m, 3H), 7.59−7.62 (m, 3H), 7.79 (s,
1H), 8.19 (d, J = 8.0 Hz, 1H); 13C NMR (125 MHz, CDCl3):
δ 50.6, 120.7, 121.3, 126.6, 127.5, 127.9, 127.9, 128.7, 129.0,
129.1, 130.3, 130.5, 133.5, 134.5, 136.8, 138.8, 147.7; HRMS:
calcd for C22H18BrN2 ([M + H]+), 389.0653; found, 389.0663.

1-Benzyl-4-(phenanthren-1-yl)-2-phenyl-1H-imidazole
(3k). Yield: 56 mg, 57% yield as a white viscous solid; Rf = 0.31
(hexane/ethyl acetate = 80:20); IR (neat, cm−1): 3032, 2853,
1672, 1603, 1493, 1359, 1240, 1177, 1077, 892; 1H NMR (500
MHz, CDCl3): δ 5.27 (s, 2H), 7.19 (d, J = 7.0 Hz, 2H), 7.34−
7.39 (m, 3H), 7.42 (s, 1H), 7.45−7.46 (m, 3H), 7.55−7.58
(m, 1H), 7.62−7.67 (m, 3H), 7.72 (d, J = 9.0 Hz, 1H), 7.78
(d, J = 8.5 Hz, 1H), 7.87 (dd, J = 7.5 Hz, 1.0 Hz, 1H), 8.07
(dd, J = 8.5 Hz, 1.5 Hz, 1H), 8.42 (d, J = 2.0 Hz, 1H), 8.67 (d,
J = 8.5 Hz, 2H); 13C NMR (125 MHz, CDCl3): δ 50.6, 117.4,
122.6, 122.9, 123.9, 124.1, 126.3, 126.5, 126.8, 127.1, 127.3,
128.1, 128.6, 128.7, 129.1, 129.1, 129.1, 129.2, 130.4, 131.9,
132.3, 132.5, 136.8, 141.3, 148.9; HRMS: calcd for C30H23N2
([M + H]+), 411.1861; found, 411.1801.

1-Benzyl-4-(3,4-dimethoxyphenyl)-2-phenyl-1H-imida-
zole (3l). Yield: 50 mg, 56% yield as a light yellow solid; Rf =
0.10 (hexane/ethyl acetate = 80:20); mp 105−107 °C; IR
(neat, cm−1): 3031, 2935, 1666, 1586, 1457, 1342, 1252, 1165,
1026, 862; 1H NMR (500 MHz, CDCl3): δ 3.89 (s, 3H), 3.96
(s, 3H), 5.22 (s, 2H), 6.87 (d, J = 8.5 Hz, 1H), 7.15 (d, J = 7.0
Hz, 2H), 7.19 (s, 1H), 7.31−7.38 (m, 4H), 7.41−7.45 (m,
4H), 7.61−7.62 (m, 2H); 13C NMR (125 MHz, CDCl3): δ
50.5, 55.9, 56.0, 108.4, 111.3, 116.1, 117.2, 126.7, 127.4, 127.9,
128.7, 129.0, 129.1, 130.5, 136.9, 141.5, 148.1, 148.5, 149.1;
HRMS: calcd for C24H23N2O2 ([M + H]+), 371.1760; found,
371.1710.

1-Benzyl-2-phenyl-4-(3,4,5-trimethoxyphenyl)-1H-imida-
zole (3m). Yield: 43 mg, 45% yield as a light yellow solid; Rf =
0.08 (hexane/ethyl acetate = 80:20); mp 135−137 °C; IR
(neat, cm−1): 3030, 2834, 1671, 1586, 1497, 1340, 1232, 1184,
1006, 853; 1H NMR (500 MHz, CDCl3): δ 3.86 (s, 3H), 3.92
(s, 6H), 5.23 (s, 2H), 7.07 (s, 2H), 7.14 (d, J = 7.0 Hz, 2H),
7.23 (s, 1H), 7.32−7.39 (m, 3H), 7.41−7.44 (m, 3H), 7.61−
7.63 (m, 2H); 13C NMR (125 MHz, CDCl3): δ 50.5, 56.2,
60.9, 102.1, 116.6, 126.6, 128.0, 128.7, 129.1, 129.1, 129.9,
130.4, 136.9, 137.2, 141.5, 148.6, 153.5; HRMS: calcd for
C25H25N2O3 ([M + H]+), 401.1865; found, 401.1807.

1-(4-Methoxybenzyl)-2-(4-methoxyphenyl)-4-phenyl-1H-
imidazole (3n). Yield: 44 mg, 49% yield as an amorphous
solid; Rf = 0.22 (hexane/ethyl acetate = 80:20); IR (neat,
cm−1): 3003, 2844, 1955, 1881, 1610, 1514, 1457, 1252, 1177,
1029; 1H NMR (500 MHz, CDCl3): δ 3.79 (s, 3H), 3.84 (s,
3H), 5.12 (s, 2H), 6.87 (d, J = 8.5 Hz, 2H), 6.95 (d, J = 9.0
Hz, 2H), 7.06 (d, J = 8.5 Hz, 2H), 7.20−7.24 (m, 2H), 7.35 (t,
J = 8.0 Hz, 2H), 7.55 (d, J = 9.0 Hz, 2H), 7.82 (d, J = 7.0 Hz,
2H); 13C NMR (125 MHz, CDCl3): δ 50.0, 55.3, 55.4, 114.1,
114.4, 116.4, 123.0, 124.9, 126.7, 128.1, 128.5, 128.9, 130.5,
134.2, 141.2, 148.5, 159.3, 160.2; HRMS: calcd for
C24H22N2O2 [M + H]+, 371.1760; found, 371.1749.

1-(4-Methylbenzyl)-4-phenyl-2-(p-tolyl)-1H-imidazole
(3o). Yield: 49 mg, 60% yield as an amorphous solid; Rf = 0.45
(hexane/ethyl acetate = 80:20); mp 85−87 °C; IR (neat,
cm−1): 3028, 2732, 1948, 1804, 1664, 1515, 1483, 1417, 1310,
1182; 1H NMR (500 MHz, CDCl3): δ 2.35 (s, 3H), 2.39 (s,
3H), 5.16 (s, 2H), 7.04 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 8.0
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Hz, 2H), 7.22−7.24 (m, 4H), 7.35 (t, J = 8.0 Hz, 2H), 7.51 (d,
J = 8.0 Hz, 2H), 7.82 (d, J = 7.0 Hz, 2H); 13C NMR (125
MHz, CDCl3): δ 21.1, 21.4, 50.3, 116.7, 124.9, 126.7, 128.5,
128.9, 129.3, 129.7, 133.9, 134.2, 137.8, 138.9, 141.3, 148.7;
HRMS: calcd for C24H23N2 ([M + H]+), 339.1861; found,
339.1867.
1-(4-Fluorobenzyl)-2-(4-fluorophenyl)-4-phenyl-1H-imi-

dazole (3p). Yield: 19 mg, 22% yield as an amorphous solid; Rf
= 0.43 (hexane/ethyl acetate = 80:20); IR (neat, cm−1): 3129,
2929, 2049, 1952, 1816, 1671, 1482, 1391, 1159, 732; 1H
NMR (500 MHz, CDCl3): δ 5.16 (s, 2H), 7.02−7.14 (m, 6H),
7.24−7.26 (m, 2H), 7.37 (t, J = 8.0 Hz, 2H), 7.54−7.57 (m,
2H), 7.82 (d, J = 7.0 Hz, 2H); 13C NMR: (125 MHz, CDCl3):
δ 49.9, 115.7, 115.9, 116.0, 116.2, 116.7, 124.9, 126.5, 126.6,
127.0, 128.4, 128.6, 130.9, 130.9, 132.4, 133.8, 141.7, 147.6,
147.6, 162.4 (d, J = 246.25), 163.24 (d, J = 247.50); HRMS:
calcd for C22H17F2N2 ([M + H]+), 347.1360; found, 347.1342.
1-(4-Chlorobenzyl)-2-(4-chlorophenyl)-4-phenyl-1H-imi-

dazole (3q). Yield: 21 mg, 23% yield as an amorphous solid; Rf
= 0.50 (hexane/ethyl acetate = 80:20); IR (neat, cm−1): 2927,
2854, 1901, 1648, 1489, 1412, 1179, 1013, 834, 732; 1H NMR
(500 MHz, CDCl3): δ 5.17 (s, 2H), 7.04 (d, J = 8.5 Hz, 2H),
7.24−7.27 (m, 2H), 7.33 (d, J = 8.0 Hz, 2H), 7.36−7.41 (m,
4H), 7.51 (d, J = 8.5 Hz, 2H), 7.81 (d, J = 8.0 Hz, 2H); 13C
NMR: (125 MHz, CDCl3): δ 49.9, 117.0, 124.9, 127.1, 127.9,
128.7, 128.7, 128.9, 129.3, 130.2, 133.7, 134.1, 135.1, 135.3,
141.9, 147.4; HRMS: calcd for C22H17Cl2N2 [M + H]+,
379.0769; found, 379.0763.
1-(2-Methylbenzyl)-4-phenyl-2-(o-tolyl)-1H-imidazole

(3r). Yield: 52 mg, 64% yield as an amorphous foam; Rf = 0.42
(hexane/ethyl acetate = 80:20); mp 82−84 °C; IR (neat,
cm−1): 3061, 2925, 1668, 1606, 1482, 1351, 1194, 1083, 1027,
869; 1H NMR (500 MHz, CDCl3): δ 2.09 (s, 3H), 2.27 (s,
3H), 4.91 (s, 2H), 6.97 (d, J = 7.5 Hz, 1H), 7.12−7.17 (m,
3H), 7.21 (t, J = 8.0 Hz, 3H), 7.28−7.35 (m, 5H), 7.81 (d, J =
8.0 Hz, 2H); 13C NMR (125 MHz, CDCl3): δ 18.9, 19.9, 48.4,
115.2, 124.8, 125.7, 126.5, 126.7, 127.9, 128.2, 128.6, 129.5,
130.2, 130.4, 130.5, 130.6, 134.3, 134.5, 135.8, 138.7, 140.9,
148.1; HRMS: calcd for C24H23N2 ([M + H]+), 339.1861;
found, 339.1867.
1-(2-Chlorobenzyl)-2-(2-chlorophenyl)-4-phenyl-1H-imi-

dazole (3s). Yield: 24 mg, 26% yield as an amorphous solid; Rf
= 0.27 (hexane/ethyl acetate = 80:20); IR (neat, cm−1): 3062,
2930, 1657, 1605, 1444, 1376, 1277, 1183, 1088, 753; 1H
NMR (500 MHz, CDCl3): δ 5.11 (s, 2H), 6.93 (d, J = 9.0 Hz,
1H), 7.17−7.26 (m, 3H), 7.30−7.42 (m, 6H), 7.47−7.49 (m,
2H), 7.81 (d, J = 7.5 Hz, 2H); 13C NMR (125 MHz, CDCl3):
δ 48.2, 115.8, 124.9, 126.9, 127.0, 127.0, 127.3, 128.6, 128.6,
129.3, 129.5, 129.7, 130.0, 131.1, 132.8, 133.1, 133.8, 133.9,
134.8, 141.6, 145.9; HRMS: calcd for C22H17Cl2N2 ([M +
H]+), 379.0769; found, 379.0764.
1-(3,5-Dichlorobenzyl)-2-(3,5-dichlorophenyl)-4-phenyl-

1H-imidazole (3t). Yield: 14 mg, 13% yield as an amorphous
solid; Rf = 0.27 (hexane/ethyl acetate = 80:20); IR (neat,
cm−1): 3064, 2856, 1665, 1598, 1470, 1276, 1178, 1031, 822,
754; 1H NMR (500 MHz, CDCl3): δ 5.18 (s, 2H), 6.94 (dd, J
= 8.0 Hz, 2.0 Hz, 1H), 7.23 (d, J = 2.0 Hz, 1H), 7.29 (d, J =
7.5 Hz, 1H), 7.35−7.41 (m, 4H), 7.45 (d, J = 8.5 Hz, 1H),
7.50 (d, J = 8.0 Hz, 2H), 7.73 (d, J = 2.0 Hz, 1H), 7.81 (d, J =
7.0 Hz, 2H); 13C NMR (125 MHz, CDCl3): δ 49.6, 117.3,
125.0, 125.8, 127.4, 127.7, 128.6, 128.7, 129.9, 130.7, 130.8,
131.3, 132.7, 133.2, 133.4, 133.6, 133.6, 136.4, 142.4, 146.1.

HRMS: calcd for C22H15Cl4N2 ([(M + 2) + H]+), 448.9960;
found, 448.9962.

1-(3,5-Dimethoxybenzyl)-2-(3,5-dimethoxyphenyl)-4-phe-
nyl-1H-imidazole (3u). Yield: 21 mg, 20% yield as an
amorphous solid; Rf = 0.12 (hexane/ethyl acetate = 80:20);
IR (neat, cm−1): 3001, 2840, 1667, 1600, 1428, 1346, 1204,
1156, 1064, 840; 1H NMR (500 MHz, CDCl3): δ 3.74 (s, 6H),
3.75 (s, 6H), 5.17 (s, 2H), 6.29 (d, J = 2.0 Hz, 2H), 6.38 (t, J =
2.5 Hz, 1H), 6.51 (t, J = 2.5 Hz, 1H), 6.76 (d, J = 2.0 Hz, 2H),
7.24 (t, J = 7.5 Hz, 1H), 7.27 (s, 1H), 7.37 (t, J = 7.5 Hz, 2H),
7.84 (d, J = 7.0 Hz, 2H); 13C NMR (125 MHz, CDCl3): δ
50.6, 55.4, 55.4, 99.6, 101.8, 104.8, 106.9, 117.1, 124.9, 126.9,
128.6, 132.0, 133.9, 139.3, 141.4, 148.4, 160.8, 161.4; HRMS:
calcd for C26H27N2O4 ([M + H]+), 431.1971; found, 431.1985.

1-(3-Bromobenzyl)-2-(3-bromophenyl)-4-phenyl-1H-imi-
dazole (3v). Yield: 19 mg, 17% yield as an amorphous solid; Rf
= 0.43 (hexane/ethyl acetate = 80:20); IR (neat, cm−1): 3061,
2928, 1666, 1597, 1471, 1277, 1177, 1039, 889, 693; 1H NMR
(500 MHz, CDCl3): δ 5.18 (s, 2H), 7.03 (d, J = 8.0 Hz, 1H),
7.23 (t, J = 8.0 Hz, 1H), 7.26−7.30 (m, 3H), 7.38 (t, J = 7.5
Hz, 3H), 7.46 (d, J = 8.0 Hz, 2H), 7.55 (d, J = 8.0 Hz, 1H),
7.78 (s, 1H), 7.82 (d, J = 7.5 Hz, 2H); 13C NMR (125 MHz,
CDCl3): δ 50.0, 117.2, 122.8, 123.2, 125.0, 125.3, 127.2, 127.3,
128.6, 129.8, 130.2, 130.7, 131.4, 132.1, 132.2, 133.7, 138.7,
142.1, 146.9; HRMS: calcd for C22H17Br2N2 ([(M + 2) +
H]+), 468.9738; found, 468.9724.

1-(4-Methoxybenzyl)-4-phenyl-2-(p-tolyl)-1H-imidazole
(4a). Yield: 8 mg, 9% yield as an amorphous solid; Rf = 0.25
(hexane/ethyl acetate = 80:20); IR (neat, cm−1): 3027, 2846,
1664, 1514, 1457, 1308, 1252, 1176, 1029, 887, 693; 1H NMR
(500 MHz, CDCl3): δ 2.93 (s, 3H), 3.80 (s, 3H), 5.14 (s, 2H),
6.88 (d, J = 8.5 Hz, 2H), 7.07 (d, J = 8.5 Hz, 2H), 7.21−7.25
(m, 4H), 7.35 (t, J = 7.5 Hz, 3H), 7.51 (d, J = 8.0 Hz, 2H),
7.81 (dd, J = 8.5 Hz, 1.5 Hz, 2H); 13C NMR (125 MHz,
CDCl3): δ 21.4, 50.0, 55.3, 114.4, 116.5, 124.9, 126.7, 127.7,
128.2, 128.5, 128.9, 129.3, 134.2, 138.9, 141.3, 148.7, 159.3;
HRMS: calcd for C24H23N2O ([M + H]+), 355.1810; found,
355.1809.

2-(4-Methoxyphenyl)-1-(4-methylbenzyl)-4-phenyl-1H-
imidazole (4b). Yield: 9 mg, 10% yield as an amorphous solid;
Rf = 0.24 (hexane/ethyl acetate = 80:20); IR (neat, cm−1):
3061, 2928, 1612, 1597, 1482, 1417, 1277, 1181, 1039, 868,
693; 1H NMR (500 MHz, CDCl3): δ 2.35 (s, 3H), 3.84 (s,
3H), 5.15 (s, 2H), 6.95 (d, J = 9.0 Hz, 2H), 7.03 (d, J = 8.0
Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H), 7.21−7.22 (m, 2H), 7.36 (t,
J = 7.5 Hz, 2H), 7.54 (d, J = 8.5 Hz, 2H), 7.82 (d, J = 7.0 Hz,
1H); 13C NMR (125 MHz, CDCl3): δ 21.1, 50.3, 55.4, 114.1,
116.5, 122.9, 124.9, 126.7, 128.5, 129.7, 130.4, 133.9, 134.2,
137.8, 141.2, 148.5, 160.2; HRMS: calcd for C24H23N2O ([M
+ H]+), 355.1810; found, 355.1811.
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