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Abstract
Individual differences in educational attainment are linked to differences in intelligence, and predict important social,
economic, and health outcomes. Previous studies have found common genetic factors that influence educational
achievement, cognitive performance and total brain volume (i.e., brain size). Here, in a large sample of participants from the
UK Biobank, we investigate the shared genetic basis between educational attainment and fine-grained cerebral cortical
morphological features, and associate this genetic variation with a related aspect of cognitive ability. Importantly, we
execute novel statistical methods that enable high-dimensional genetic correlation analysis, and compute high-resolution
surface maps for the genetic correlations between educational attainment and vertex-wise morphological measurements.
We conduct secondary analyses, using the UK Biobank verbal–numerical reasoning score, to confirm that variation in
educational attainment that is genetically correlated with cortical morphology is related to differences in cognitive
performance. Our analyses relate the genetic overlap between cognitive ability and cortical thickness measurements to
bilateral primary motor cortex as well as predominantly left superior temporal cortex and proximal regions. These findings
extend our understanding of the neurobiology that connects genetic variation to individual differences in educational
attainment and cognitive performance.
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Introduction
Educational attainment as a heritable trait (Krapohl et al. 2014;
Polderman et al. 2015) is predictive of many social, economic

and health outcomes. Although linked to a range of diverse fac-
tors, it is highly phenotypically and genetically correlated with
intelligence (Rietveld et al. 2014; Okbay et al. 2016; Savage et al.
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2017; Sniekers et al. 2017), and has been successfully used as a
proxy phenotype to facilitate the discovery of genetic variants
associated with cognitive ability (Rietveld et al. 2014). In addi-
tion, polygenic scores of educational attainment are predictive
of cognitive performance in adolescents and adults (Belsky
et al. 2016; Selzam et al. 2017; Plomin and von Stumm 2018).
Dissecting the biological bases of educational achievement may
thus contribute to our understanding of cognition and adult
functional outcomes.

Large-scale genome-wide association studies (GWAS) have
found substantial genetic overlap between educational attain-
ment and total brain volume (TBV) (i.e., brain size) (Adams
et al. 2016; Okbay et al. 2016). In particular, a recent GWAS of
educational attainment has identified genomic loci regulating
brain-specific gene expression, and biological pathways
involved in neural development (Okbay et al. 2016). Twin stud-
ies have implicated common genetic factors that influence
both brain size and intelligence (Thompson et al. 2001;
Posthuma et al. 2002, 2003; Toga and Thompson 2005; Hulshoff
pol et al., 2006), a major contributor to the heritability of aca-
demic achievement (Krapohl et al. 2014). Our recent investiga-
tion further suggested that genetic influences on individual
differences in educational attainment might be mediated by
brain development (Elliott et al. 2018). However, to the best of
our knowledge, no prior work has mapped the genetic correla-
tions between educational attainment and fine-grained brain
morphological measurements, likely due to methodological
challenges and sample size (statistical power) limitations.
Filling this knowledge gap represents an important next step in
identifying the specific brain regions that lie in the pathway
connecting genetics to educational outcomes.

In this study, we leverage the structural brain magnetic reso-
nance imaging (MRI) scans and genomic data from a large sam-
ple of the UK Biobank participants (http://www.ukbiobank.ac.
uk) (Sudlow et al. 2015) to investigate the shared genetic basis
between educational attainment (years of schooling completed)
and vertex-wise cortical thickness and surface area measure-
ments. We also conduct secondary analyses, using the UK
Biobank verbal–numerical reasoning score, to confirm that vari-
ation in years of education that is genetically correlated with
cortical morphology is related to individual differences in cogni-
tive ability. The verbal–numerical reasoning score assesses gen-
eral cognitive ability and is heavily weighted towards math
reasoning and vocabulary. Thus, it emphasizes learned knowl-
edge, which has a strong relationship to educational attainment
(Kaufman et al. 2009).

Well-established genetic correlation estimation methods
such as genome-wide complex trait analysis (GCTA; also
known as the GREML method) (Yang et al. 2011) and LD (linkage
disequilibrium) score regression (Bulik-Sullivan et al., 2015)
require either individual genotypes or GWAS summary statis-
tics for the 2 traits of interest. However, to examine the genetic
overlap between educational attainment/cognitive perfor-
mance (verbal–numerical reasoning) and massive numbers of
brain morphological measurements in a large sample, both
GCTA and LD score regression can be computationally intracta-
ble. For example, one would have to run thousands of GWAS in
order to use LD score regression, and multiple testing correc-
tion would be challenging in the presence of complex spatial
correlation structures. Here we develop a computationally effi-
cient method that enables high-dimensional genetic correlation
estimation, and the empirical identification of brain regions

that are genetically correlated with our constructs of interest
above and beyond global brain volumetric measurements. The
power requirements for this method as well as our interest in
relating genetic variation, cognition and real world functional
outcomes dictate our approach. We first conduct genetic corre-
lation analyses based on our larger sample with data on educa-
tional attainment, and then relate the variation in educational
attainment that is genetically correlated with cortical morphol-
ogy to differences in cognitive performance. These analyses
expand the literature on the genetic underpinnings and brain
morphological correlates of educational attainment, and may
contribute to our understanding of the neurobiology of cogni-
tive ability.

Materials and Methods
The UK Biobank

UK Biobank is a prospective cohort study of approximately
500 000 individuals recruited across Great Britain during
2006–2010 (Sudlow et al. 2015). The protocol and consent were
approved by the UK Biobank’s Research Ethics Committee.
Details about the UK Biobank project are provided at http://
www.ukbiobank.ac.uk. Data for the current analyses were
obtained under an approved data request (ref: 32 568; previ-
ously 13 905).

Genetic Data

The genetic data for the UK Biobank comprised 488 377 sam-
ples. Two closely related Affymetrix arrays were used to geno-
type ∼800 000 markers spanning the genome. In addition, the
dataset was phased and imputed to ∼96 million variants with
the Haplotype Reference Consortium (HRC) (McCarthy et al.
2016) and the UK10K haplotype resource. We constrained all
analyses to the HRC panel in the present study, which com-
bines whole-genome sequence data from multiple cohorts of
predominantly European ancestry, and thus covers a large
majority of the common genetic variants in the European
population.

The genetic data was quality controlled (QC) by the UK
Biobank. Important information such as population structure
and relatedness has been released. Details about the QC proce-
dures can be found in Bycroft et al. (2017). We leveraged the QC
metrics provided by the UK Biobank and removed samples that
had mismatch between genetically inferred sex and self-
reported sex, high genotype missingness or extreme heterozy-
gosity, sex chromosome aneuploidy, and samples that were
excluded from kinship inference and autosomal phasing. We
removed one individual from each pair of the samples that
were third degree or more closely related relatives, and
restricted our analysis to participants that were estimated to
have white British ancestry using principal component analysis
(PCA).

Brain Imaging

We used the T1 structural brain MRI scans from 10 102 partici-
pants released by the UK Biobank in February 2017. FreeSurfer
(Fischl 2012) version 6.0 was used to process the MRI scans. All
processed images were manually inspected and those with pro-
cessing errors, motion artifacts, poor resolution, pathologies
(e.g., tumors) and other abnormalities were removed. Among
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the 9 229 participants that passed imaging QC, a subset of 7 818
unrelated white British participants (age, 45–79 y; female,
52.24%; see Table 1) additionally passed the genetic QC described
above and were included in the analysis. We resampled subject-
specific morphological measurements (cortical thickness and
surface area) onto FreeSurfer’s fsaverage representation, which
consists of 163,842 vertices per hemisphere with an inter-vertex
distance of approximately 1-mm. We further smoothed the co-
registered surface maps using a surface-based Gaussian kernel
with 20-mm full width at half maximum (FWHM).

Educational Attainment

Following Okbay et al. (2016), we mapped each of the educa-
tional qualifications collected from the UK Biobank participants
(UK Biobank field ID: 6138) to 1 of the 7 categories defined in the
1997 International Standard Classification of Education (ISCED)
of the United Nations Educational, Scientific and Cultural
Organization, and imputed the number of years of schooling
completed for each ISCED category. The mapping is shown in
Supplementary Tables S1 and S2. Of all the participants that
passed genetic QC, 332 613 (age, 39–72 y; female, 53.77%; years
of education, 14.8 ± 5.1 y) had years of schooling imputed at the
baseline assessment visit (2006–2010) and were used in the
GWAS of educational attainment. There was no overlap
between the GWAS sample and the neuroimaging sample.

Test of Verbal–Numerical Reasoning

The verbal–numerical reasoning score (UK Biobank field ID:
20 016; labeled as fluid intelligence score) used in the present
study is an unweighted sum of the number of correct answers
given to the 13 higher-order reasoning questions (Lyall et al.
2016) in the UK Biobank touchscreen questionnaire. Participants
who did not answer all of the 13 questions within the allotted
2-min limit were scored as 0 for each of the unattempted ques-
tions. Of all the participants that passed genetic QC, 108 147
(age, 40–70 y; female, 53.51%; verbal–numerical reasoning score,
6.2 ± 2.1) had verbal–numerical reasoning scores at the baseline
assessment visit (2006–2010) and were used in the GWAS. There
was no overlap between the GWAS sample of the verbal–
numerical reasoning score and the neuroimaging sample.

GWAS of Educational Attainment and the Verbal–
Numerical Reasoning Score

We performed GWAS of educational attainment (years of
schooling completed) and the verbal–numerical reasoning score
in 332 613 and 108 147 UK Biobank participants, respectively. In

addition to the sample QC described above, we filtered out
genetic markers with minor allele frequency <1% and imputa-
tion quality score <0.8. A total of 7 656 609 and 7 658 275
imputed SNPs on the HRC panel were included in the 2 GWAS,
respectively. Association tests were conducted using SNPTEST
v2.5.2 (Marchini and Howie 2010). For each genetic marker, a
linear regression model was fitted, adjusting for age (at the
baseline assessment visit), sex, age2, age × sex, age2 × sex,
genotype array, UK Biobank assessment center, and top 10
principal components (PC) of the genotype data as covariates.
GWAS results were visualized using FUMA (Watanabe et al.
2017) and the R package qqman (Turner 2014).

Estimator for SNP Heritability

Consider the linear model β ϵ= +y X , where y is an ×N 1 vector
of covariate-adjusted and standardized phenotypes, = [ ] ×X xij N M

is an ×N M matrix of genotypes with each column xj normal-
ized to mean zero and variance one, β is an ×M 1 vector of (ran-
dom) SNP effect sizes, and ϵ is an ×N 1 vector of residuals. In
Supplementary Material, we show that under a polygenic
model, the following moment-matching estimators for SNP her-
itability are asymptotically equivalent:
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We note that ĥg,LDSC
2

is the LD score regression estimator based
on GWAS summary statistics, with the intercept constrained
to one and the reciprocal of the LD score as the regression
weight (Bulik-Sullivan et al., 2015). ĥg,HE

2
is the Haseman–Elston

regression estimator based on individual genotypes (Haseman
and Elston 1972; Elston et al. 2000; Golan et al. 2014; Ge, Chen,
et al. 2017). ĥg,PGS

2
formulates SNP heritability estimation as a

polygenic score analysis. The equivalence between ĥg,LDSC
2

and
ĥg,HE

2
has been established both theoretically and empirically

in prior work (Bulik-Sullivan 2015; Ge, Chen, et al. 2017; Zhou
2017).

Estimator for SNP Coheritability

Consider the bivariate model β ϵ= +y X1 1 1 1 and β ϵ= +y X2 2 2 2,
where y1 and y2 are ×N 11 and ×N 12 vectors of covariate-
adjusted and standardized phenotypes, X1 and X2 are ×N M1

and ×N M2 matrices of standardized genotypes, β1 and β2 are
×M 1 vectors of SNP effect sizes, ϵ1 and ϵ2 are ×N 11 and ×N 12

vectors of residuals, respectively. Without loss of generality, we
assume that the first Ns samples are identical for the 2 pheno-
types. In Supplementary Material, we show that under a poly-
genic model, the following moment-matching estimators for
SNP coheritability are asymptotically equivalent:

Table 1 Sample sizes and demographics of the nonimaging samples
for the genome-wide association analyses of educational attain-
ment and the verbal–numerical reasoning score, and the neuroim-
aging sample. There is no overlap between the nonimaging samples
and the neuroimaging sample

Trait Sample
size

Age
range
(y)

Female
(%)

Educational attainment 332,613 39–72 53.77
Verbal–numerical reasoning score 108,147 40–70 53.51
Neuroimaging measurements 7 818 45–79 52.24
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We note that ρ̂g,LDSC is the LD score regression estimator

based on GWAS summary statistics, with a constrained inter-
cept and the reciprocal of the LD score as the regression weight
(Bulik-Sullivan et al., 2015). ρ̂g,HE is the Haseman–Elston regres-
sion estimator based on individual genotypes. ρ̂g,PGS formulates
SNP coheritability estimation as a polygenic score analysis, and
thus enables coheritability analysis when GWAS summary sta-
tistics are available for one trait and individual genotypes are
available for the other trait. The equivalence between ρ̂g,LDSC

and ρ̂g,PGS has been established in prior work (Bulik-Sullivan
2015).

Statistical Genetic Analysis

For all heritability and genetic correlation analyses, we used
SNPs in the HapMap3 panel whose LD scores have been com-
puted and released as part of the LD score regression software.
We further filtered out genetic markers with imputation quality
score <0.9, missing rate >1%, minor allele frequency <1%, and
significant deviation from Hardy–Weinberg equilibrium (P < 1 ×
10−10) in the UK Biobank. A total of 870 962 SNPs were used in
the heritability and genetic correlation analyses.

The SNP heritability of educational attainment, denoted as
ĥedu

2
, was computed using the LD score regression estimator

ĥg,LDSC
2

in Eq. (1) and the summary statistics of the education
GWAS in the UK Biobank. The SNP heritability of the verbal–
numerical reasoning score was computed similarly. The SNP
heritability of the cortical thickness measurement at vertex v,
denoted as ĥv

2
, was computed using the Haseman–Elston

regression estimator ĥg,HE
2

in Eq. (1) and individual genotypes of
the imaging sample (N = 7818). We adjusted for age (at the
imaging visit), sex, age2, age × sex, age2×sex, handedness, geno-
type array, and top 10 PCs of the genotype data as covariates.
We also controlled for the TBV to remove global genetic influ-
ences on brain size. Vertex-wise estimates ĥv

2
, = …v V1, 2, , ,

where, V is the total number of vertices, form a surface map for
the heritability of cortical thickness measurements. The sur-
face map for the heritability of surface area measurements was
constructed similarly.

The SNP coheritability between educational attainment and
the cortical thickness measurement at vertex v, denoted as
ρ̂ vedu, , were computed using the estimator ρ̂g,PGS in Eq. (2). More
specifically, the summary statistics of the education GWAS (N =
332 613) were used to calculate an individual-specific polygenic

score in the imaging sample (N = 7818) where individual geno-
types were available. The polygenic score was then correlated
with the cortical thickness measurement at each cortical loca-
tion and properly scaled to produce the coheritability estimate
ρ̂ vedu, . Since there was no overlap between the education GWAS
sample and the neuroimaging sample, the bias term in the esti-
mator, that is, ρN N N/s 1 2 , was set to zero. We adjusted for age
(at the imaging visit), sex, age2, age × sex, age2 × sex, handed-
ness, TBV, genotype array, and top 10 PCs of the genotype data
as covariates in the coheritability (polygenic score) analysis.
The genetic correlation between educational attainment and
the cortical thickness measurement at each vertex was then
computed as follows:
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The genetic correlations between the verbal–numerical rea-
soning score and cortical thickness measurements were com-
puted similarly.

Vertex-wise estimates r̂ vedu, , = …v V1, 2, , , form a surface
map for the genetic correlations between educational attain-
ment and cortical thickness measurements. Clusters on the
surface map can be defined by spatially contiguous vertices
with P-values below a threshold. To assess the significance of
the size (number of vertices) of a cluster while accounting for
the spatial correlation of cortical thickness measurements, we
employed the following permutation procedure. We recom-
puted and thresholded the P-value map using a permuted poly-
genic score, and recorded the maximal cluster size Mk across
the 2 hemispheres for each permutation = …k N1, 2, , perm. For
an observed cluster C with size c, the family-wise error (FWE)
corrected P-value was then computed as follows (Westfall and
Young 1993):

( ) = #{ ≥ } ( )p
M c
N

C . 4k
FWE

perm

10 000 permutations were used in this study. We repeated
the genetic correlation analyses using vertex-wise surface area
measurements.

Results
GWAS of Educational Attainment

Genome-wide association analysis of educational attainment
(years of schooling completed; N = 332 613) in the UK Biobank
identified 158 independent genome-wide significant loci. Figure 1A
shows the Manhattan plot for the GWAS. Supplementary
Figure S1 provides additional information on each of the genome-
wide significant regions. The heritability of educational attainment
was estimated to be 0.156 (s.e. 0.004).

Heritability of Cortical Thickness

We estimated the SNP heritability of vertex-wise cortical thick-
ness measurements using an unbiased and computationally
efficient moment-matching method. As an empirical justifica-
tion, our method produced virtually identical heritability esti-
mates to LD score regression when applied to the average
cortical thickness measurements in 68 regions of interest (ROIs;
34 ROIs per hemisphere) defined by the Desikan-Killiany atlas
(Desikan et al. 2006) (Supplementary Fig. S2, left; also see
Supplementary Material for a theoretical treatment). As shown
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in Figure 2, fine-grained cortical thickness measurements were
moderately heritable across the cortical mantle.

Genetic Correlation Between Educational Attainment
and Cortical Thickness

Given that educational attainment and cortical thickness mea-
surements were both heritable, we sought to examine whether
they have a shared genetic basis. An empirical comparison of
the genetic correlation between educational attainment and
the average cortical thickness measurement in each of the 68
Desikan-Killiany ROIs estimated by the proposed polygenic
score analysis and LD score regression showed that the 2 meth-
ods produced almost identical estimates (Supplementary Fig.
S2, right). Theoretical equivalence between the 2 methods is
established in Supplementary Material.

Figure 3A and B shows surface maps for the genetic correla-
tion and its statistical significance between educational attain-
ment and cortical thickness measurements, respectively.
Moderate and positive genetic correlations were observed in
bilateral motor cortex and predominantly left superior tempo-
ral cortex and proximal regions. We thresholded the signifi-
cance map using P = 0.01 as the threshold (Fig. 3B), and
assessed the significance of the size of each identified cluster
(spatially contiguous vertices) and computed their FWE cor-
rected P-values using a permutation procedure. Statistically sig-
nificant clusters were observed in bilateral primary motor
cortex (cluster 1, PFWE = 0.033; cluster 2, PFWE = 0.042; and clus-
ter 4, PFWE = 0.012). Cluster 2 on the left hemisphere also
extended into the pars opercularis (also known as Brodmann
area 44 or BA44), which is part of the Broca’s speech area. In

addition, cluster 3 (PFWE = 0.005) spanned the left temporal pole
and superior temporal cortex, and overlapped with the auditory
cortex and the Wernicke’s language area. The right inferiortem-
poral cortex (cluster 5) also showed a strong genetic correlation
with educational attainment but did not survive multiple test-
ing correction (PFWE = 0.110). Adjusting for Townsend depriva-
tion index, a proxy for socioeconomic status (SES), as a
covariate in the analyses produced highly similar results
(Supplementary Fig. S3).

Analyses of the Verbal–Numerical Reasoning Score

Analyses of educational attainment indicated that cortical
thickness in several regions, including the primary motor cor-
tex and Broca’s speech and Wernicke’s language areas, may
have shared genetic origins with cognitive ability. We thus con-
ducted a secondary analysis using the verbal–numerical rea-
soning score in the UK Biobank, which captures general
cognitive ability but particularly knowledge of learned material,
to investigate whether the variation in years of schooling that
is genetically correlated with cortical thickness is related to
individual differences in cognitive performance.

Genome-wide analysis of the verbal–numerical reasoning
score in the UK Biobank (N = 108 147) identified 35 genome-
wide significant loci, among which 17 overlapped with the
genomic loci identified in the educational attainment GWAS.
Figure 1B shows the Manhattan plot for the GWAS.
Supplementary Figure S4 provides additional information on
each of the genome-wide significant regions. The heritability of
the verbal–numerical reasoning score was 0.247 (s.e. 0.008).
Educational attainment and the verbal–numerical reasoning

Figure 1. (A) Manhattan plot for the genome-wide association analysis of educational attainment (years of schooling completed) in the UK Biobank (N = 332 613).

(B) Manhattan plot for the genome-wide association analysis of the verbal–numerical reasoning score in the UK Biobank (N = 108 147). In both panels, the dash line

indicates the genome-wide significant threshold P < 5 × 10–8.
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score were both phenotypically (Pearson correlation r = 0.353;
N = 110 233; P < 1e-323) and genetically (genetic correlation rg =
0.710; s.e. 0.016; P < 1e-323) correlated.

Figure 4A and B shows surface maps for the genetic correla-
tion and its statistical significance (thresholded at the nominal
P = 0.05) between the verbal–numerical reasoning score and
cortical thickness measurements, respectively. Both maps
showed similar patterns to the surface maps for educational
attainment, with positive genetic correlations observed in the
predominantly left inferior precentral gyrus (including Broca’s
speech area), superior temporal cortex (including auditory cor-
tex), supramarginal gyrus (including Wernicke’s language area),
and proximal regions. The genetic correlation estimates
showed a similar range to those between educational attain-
ment and cortical thickness measurements, but were less sta-
tistically significant due to the reduced power afforded by the
smaller number of subjects in the verbal–numerical reasoning
GWAS relative to the education GWAS.

Surface area Analyses

We repeated all analyses using surface area measurements.
Vertex-wise surface area measurements were substantially less
heritable than cortical thickness measurements (Supplementary
Fig. S5). In contrast to cortical thickness, no significant cluster
of genetic correlations between educational attainment and
surface area measurements was identified (all PFWE > 0.10;
Supplementary Fig. S6).

Discussion
In this article, we examined the genetic overlap between educa-
tional attainment and fine-grained brain morphological mea-
surements. Leveraging the large-scale brain imaging and
genomic data in the UK Biobank, we found a shared genetic
basis between years of schooling and cortical thickness mea-
surements in bilateral primary motor cortex and predomi-
nantly left superior temporal cortex. A secondary analysis of
the verbal–numerical reasoning score confirmed that the varia-
tion underlying education achievement that is genetically

correlated with cortical thickness is related to individual differ-
ences in cognitive performance.

Although educational attainment is a complex behavioral
trait that is linked to intelligence, personality, family environ-
ments, and many social factors, it is highly phenotypically and
genetically correlated with intelligence (Okbay et al. 2016;
Savage et al. 2017; Sniekers et al. 2017), and has been success-
fully used as a proxy phenotype to identify genetic variants
associated with general cognitive ability (Rietveld et al. 2014).
Recent studies have associated the polygenic scores of educa-
tional attainment with cognitive test scores and brain size
(Belsky et al. 2016; Selzam et al. 2017; Plomin and von Stumm
2018), and further implicated that genetic influences on educa-
tional outcomes might be mediated through brain development
and intelligence (Elliott et al. 2018). Within the UK biobank,
tests of cognitive functioning were brief and only completed by
a subsample of the participants. In contrast, educational quali-
fications, which can be mapped directly to years of schooling,
were available for virtually all UK Biobank participants.
Therefore, we leveraged educational attainment as a proxy for
general cognitive ability in the identification of genetic overlap
between cerebral cortical morphology and cognitive perfor-
mance. We used this trait in our discovery analysis because its
size and objective reliability would boost the statistical power
relative to the brief cognitive screening tests with substantially
smaller sample sizes in the UK Biobank.

Of the 13 questions that comprise the UK Biobank verbal–
numerical reasoning score, 6 relate to numeric reasoning, 4
relate to vocab/verbal reasoning, and 3 are logic questions.
Conventionally, the 10 verbal and numeric reasoning questions
would fall within the domain of crystallized ability, which
reflects learned knowledge, including material absorbed in the
educational setting (Wilhelm 2004). Logic questions relate to
novel problem-solving, and fall within the domain of fluid
intelligence (Wilhelm 2004). Thus, our cognition measure,
which is labeled as “fluid intelligence” in the UK Biobank direc-
tory, captures both crystallized and fluid intelligence (the major
domains in a commonly accepted model of general ability)
(Horn and Cattell 1966), but is more heavily loaded towards
crystallized knowledge. Given that crystallized ability would be

Figure 2. Surface maps for the SNP heritability of cortical thickness measurements (N = 7818).
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expected to increase over time whereas fluid ability would
decrease, our conceptualization of this measurement is consis-
tent with Lyall et al. (2016) that this score in the UK Biobank
improved slightly over a roughly 4-year period. Measurements
of crystallized ability are well-known to relate to educational
attainment, and more recently measurements of fluid ability
have been associated with this outcome (Kaufman et al. 2009).
As such, educational attainment was considered well-suited to
serve as a proxy index of this cognitive ability measurement in
our analyses. This rationale was supported by the large genetic
correlation between these measures in our sample. That said,
future studies that map the genetic correlations between corti-
cal morphology and comprehensive cognitive measures will be
interesting.

Our analyses of educational attainment and the verbal–
numerical reasoning score produced highly similar surface
maps for genetic correlations and localized a common genetic
basis between cognitive performance and cortical thickness
measurements in bilateral primary motor cortex and predomi-
nately left inferior precentral gyrus, pars opercularis, superior
temporal cortex, supramarginal gyrus, and their adjacent

regions. Intriguingly, some of these regions overlap with the
auditory cortex, Broca’s speech area, and Wernicke’s language
area, suggesting that educational attainment and our cognitive
measurement may have common genetic origins with auditory
and language-related brain regions. The distinctiveness of lan-
guage and cognition has been debated over the 20th century
(Harris 2003). Our data provides evidence of potentially shared
biological underpinnings that, if confirmed, could contribute to
this line of inquiry. The primary motor cortex and its vicinity
have been found to be consistently activated during reasoning
tasks (Acuna et al. 2002; Prado et al. 2011), and implicated in
lesion mapping of intelligence (Glascher et al. 2010; Woolgar
et al. 2010). Therefore, our results also suggest that cognitive
performance may have a shared genetic basis with brain
regions involved in motor processes.

Previous studies have used neuroimaging to examine the
relationships between intelligence, cognitive ability, education,
and brain structure in vivo (Luders et al. 2009; Cox et al. 2016;
Sabuncu et al. 2016). Higher intelligence has been associated
with larger brains (Wickett et al. 2000; McDaniel 2005; Witelson
et al. 2006; Rushton and Ankney 2009; Pietschnig et al. 2015),
and greater total and regional gray matter volumes (Andreasen

Figure 3. Vertex-wise genetic correlations between educational attainment and

cortical thickness measurements. (A) Surface maps for the genetic correlation

estimates. (B) Surface maps for the –log10 P-values of the genetic correlations.

Clusters identified by a cluster-forming threshold of P = 0.01 are shown.

Family-wise error corrected significant (or marginally significant) clusters are

annotated.

Figure 4. Vertex-wise genetic correlations between the verbal–numerical score

and cortical thickness measurements. (A) Surface maps for the genetic correla-

tion estimates. (B) Surface maps for the −log10 P-values of the genetic correla-

tions, thresholded at uncorrected P = 0.05.
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et al. 1993; Flashman et al. 1997; MacLullich et al. 2002; Colom
et al. 2006; Haier et al. 2004, 2009). Beyond TBV, positive correla-
tions have been reported between scores of cognitive tests and
cortical thickness measurements in a number of cortical
regions (Narr et al. 2007; Choi et al. 2008; Karama et al. 2009;
Joshi et al. 2011; Menary et al. 2013). Our results expanded this
literature by identifying brain regions in which cortical thick-
ness measurements are genetically correlated with cognitive
performance above and beyond global brain volumetric mea-
surements. Cortical surface area has also been associated with
general cognitive ability (Colom et al. 2013; Fjell et al. 2013;
Schnack et al. 2014), and some recent studies have suggested
that the phenotypic and genetic correlations between brain vol-
ume and cognitive performance are predominantly driven by
surface area rather than cortical thickness (Vuoksimaa et al.
2014; Cox et al. 2018); however, we did not observe significant
genetic correlations between educational attainment and sur-
face area measurements in our analyses.

We note that we used different methods to estimate heritabil-
ity for our imaging and nonimaging data due to computational
considerations. As shown by prior studies (Bulik-Sullivan 2015;
Ge, Chen, et al. 2017) and in this paper (see Supplementary
Material and Supplementary Fig. S2), LD score regression and
Haseman–Elston regression for heritability estimation are asymp-
totically equivalent under certain conditions. LD score regression
is flexible and computationally efficient when summary statistics
of large-scale GWAS are available. Haseman–Elston regression
requires individual-level genotypes but is particularly useful
when analyzing massive numbers of phenotypes and conducting
GWAS for each phenotype is computationally infeasible. Given
their equivalence, we selected the most appropriate method for
each analysis based on joint consideration of data types available
and computational cost.

A major contribution of this study is that we developed a
novel statistical method to examine the shared genetic basis
between educational attainment and cortical morphology at
high spatial resolution. Prior studies along this line used the
twin design and largely focused on global brain volumes.
Existing methods for genetic correlation analyses in unrelated
individuals either require individual-level genotypes (e.g.,
GCTA or GREML) (Yang et al. 2011) or GWAS summary statistics
(e.g., LD score regression) (Bulik-Sullivan et al., 2015) for both
traits, which become challenging to apply in high-dimensional
settings. We filled this technical gap by formulating genetic cor-
relation estimation as a polygenic score analysis. More specifi-
cally, the summary statistics of the educational attainment (or
verbal–numerical reasoning) GWAS were used to weight indi-
vidual genotypes of the imaging sample and calculate an
individual-specific polygenic score. The polygenic score was
then correlated with the morphological measurement at each
cortical location and properly scaled and normalized to produce a
genetic correlation estimate. Our method is thus highly computa-
tionally efficient and can be applied to estimate the genetic corre-
lation between any trait (e.g., a cognitive, behavioral, or disease
phenotype) whose GWAS summary statistics are available, and a
high-dimensional phenotype, such as the MRI-derived vertex-
wise cortical thickness or surface area measurements in the pres-
ent study. Permutation procedures can also be devised to enable
flexible statistical inferences, such as the cluster-wise analysis
(Friston et al. 1994, 1996) on the surface map of genetic correla-
tions. Although cluster-wise inference combined with the rela-
tively large amount of smoothing applied in this study may
reduce spatial resolution, this approach follows our prior expecta-
tion that genetic influences on cortical morphology are spatially

distributed. Standard polygenic score analyses may achieve simi-
lar results and findings but our method avoids the selection of
the GWAS P-value threshold (or screening multiple thresholds)
used in the calculation of polygenic scores, and produce more
interpretable estimates (i.e., genetic correlation) at no additional
computational cost.

To apply this new genetic correlation estimation method,
we conducted genome-wide association analyses of educa-
tional attainment and the verbal–numerical reasoning score in
the UK Biobank, and identified 158 and 35 independent
genome-wide significant loci, respectively. Previous studies
have conducted large-scale genome-wide meta-analyses of
educational attainment (Okbay et al. 2016) and general intelli-
gence (Savage et al. 2017; Sniekers et al. 2017), and GWAS with
a similar or larger total sample size than the present study
exists. Although we could have leveraged the summary statis-
tics of existing GWAS in our analyses, we performed GWAS in
the UK Biobank to exclude all participants that had neuroimag-
ing data, and thus protected the genetic correlation estimates
from potential bias induced by sample overlap.

Findings in this analysis should be generalized with caution
to populations with different sample characteristics with
respect to age range, sex composition, ancestry groups, SES, or
other environmental exposures. Educational attainment in our
analysis reflects life-time academic achievement, while both
human intelligence and the cortex undergo rapid development
in childhood and adolescence, and age-related decline and
degeneration in late adulthood. More importantly, a number of
studies have found that the relationship between cognitive abil-
ity and brain morphology is dynamic over time and sex-
dependent (Reiss et al. 1996; Gur et al. 1999; Shaw et al. 2006;
Witelson et al. 2006; Burgaleta et al. 2014). In this study, we con-
trolled for age, sex, age2, age × sex, age2 × sex in all the analyses
to remove the (potentially nonlinear) effect of age and sex on
cognitive performance, brain structure, and their correlations.
However, since the UK Biobank only recruited middle- and
older-aged participants, our results may not be generalizable to
other age ranges. In addition, genetic influences on cognitive
performance may be moderated by educational opportunities
and SES (Deary et al., 2010; Hanscombe et al. 2012; Von Stumm
and Plomin 2015). Although adjusting for Townsend deprivation
index, a measure of material deprivation that can serve as a
proxy for SES, did not have a notable impact on the results, our
findings should be interpreted in light of the fact that UK
Biobank participants are on average more educated and have
higher SES than the general population (Tyrrell et al. 2016; Ge
et al., 2017).

Although we identified genetic overlap between educational
attainment and cortical thickness measurements in several
brain regions, these correlations do not necessarily indicate
causal relationships. Future work is needed to shed light on
whether genetic influences on cognitive performance are medi-
ated through brain morphology. Also, genetic correlation is a
genome-wide metric and does not provide any information
about specific genes that might underlie both cognitive ability
and brain structure. Further statistical and molecular genetic
analyses are needed to dissect their genetic overlap. Lastly, in
addition to gray matter volumes, cortical thickness and surface
area measurements, white matter volumes, diffusion tensor
imaging derived measurements, functional MRI task activa-
tions, and indices of complex brain networks have also been
associated with cognitive performance (Luders et al. 2009; Deary
et al. 2010). Given that a range of features derived from brain
morphology, resting state networks, and the structural and
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functional connectomes are substantially heritable (Glascher
et al., 2010; Thompson et al. 2013; Kochunov et al. 2015; Ge et al.
2015, 2016; Ge, Holmes, et al. 2017), integration of multimodal
imaging data might provide further insights into possible neural
mechanisms of educational attainment and cognitive ability.
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Supplementary material is available at Cerebral Cortex online.
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