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ABSTRACT: Quantitative structure−activity relationship (QSAR) models
have long been used for making predictions and data gap filling in diverse
fields including medicinal chemistry, predictive toxicology, environmental fate
modeling, materials science, agricultural science, nanoscience, food science,
and so forth. Usually a QSAR model is developed based on chemical
information of a properly designed training set and corresponding
experimental response data while the model is validated using one or more
test set(s) for which the experimental response data are available. However, it
is interesting to estimate the reliability of predictions when the model is
applied to a completely new data set (true external set) even when the new
data points are within applicability domain (AD) of the developed model. In
the present study, we have categorized the quality of predictions for the test
set or true external set into three groups (good, moderate, and bad) based on
absolute prediction errors. Then, we have used three criteria [(a) mean
absolute error of leave-one-out predictions for 10 most close training compounds for each query molecule; (b) AD in terms of
similarity based on the standardization approach; and (c) proximity of the predicted value of the query compound to the mean
training response] in different weighting schemes for making a composite score of predictions. It was found that using the most
frequently appearing weighting scheme 0.5−0−0.5, the composite score-based categorization showed concordance with
absolute prediction error-based categorization for more than 80% test data points while working with 5 different datasets with
15 models for each set derived in three different splitting techniques. These observations were also confirmed with true external
sets for another four endpoints suggesting applicability of the scheme to judge the reliability of predictions for new datasets. The
scheme has been implemented in a tool “Prediction Reliability Indicator” available at http://dtclab.webs.com/software-tools
and http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab/, and the tool is presently valid for multiple linear regression models only.

1. INTRODUCTION

Quantitative structure−activity relationship (QSAR) models
are now used as popular tools for prediction of response data
of chemicals to bridge data gaps.1 They have varied
applications in medicinal chemistry, agricultural chemistry,
environmental chemistry, nanosciences, food sciences, materi-
als science, and so forth.2 The statistical quality of QSAR
models is typically judged by a series of quality metrics while
the quality of predictions is examined by methods such as
cross-validation, test set validation, Y-randomization, and so
forth, and the results are expressed in terms of different
validation metrics, for which different threshold values have
been reported in the literature.3,4 However, it is not always
obvious how well a QSAR model will perform for truly new,
unknown data points in spite of having different quality
measures related to internal and external validation tests. A
model with respectable values of different correlation
coefficients (R2, QLOO

2, QExt‑F1
2, QExt‑F2

2, QExt‑F3
2, rm

2, etc.)
and/or error measures [mean absolute prediction error

(MAE), RMSEP, etc.]5 is not necessarily expected to perform
well while predicting the response for a new query chemical.
This is because usually QSAR models are developed using
rather limited datasets. While they exhibit good performance
for closely related chemicals, the prediction error may increase
heavily when the new query chemical is far from the training
set.6 In other words, the QSAR model performance is not
consistent across molecules, as it is typically better for
compounds whose molecular structures were adequately
represented by training compounds. It is very important to
establish the credibility of the computational models to the
experimental community who do the actual laboratory tests to
find out the response values experimentally. A prediction with
a good reliability measure or confidence can only be used as a
replacement of experimentally derived data. At the same time,
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it is true that it is not possible to experimentally derive
response values of all possible compounds in the large chemical
space for numerous chemical/biological/toxicological end-
points. We must have some computational tools to derive
prediction data for the real or hypothetical compounds for
possible screening purposes, and we should have some
measures to estimate the reliability of predictions. This will
help us in prioritizing potential compounds for costly
experiments. Although the concept of confidence of
predictions was originally introduced7,8 through applicability
domain (AD) of QSAR models,9 the reliability of predictions is
certainly not dependent only on chemical similarity, as from
QSAR modeling experiences one can see that different
compounds within the AD (those which are sufficiently similar
to training compounds) might also show bad predictions.10

Recently, different attempts have been made to provide
measures of confidence estimates of QSAR predictions. Some
of these reports include methods based on the number of
neighbors in the training dataset,7 average Euclidean distance
to the training dataset,11,12 local sensitivity of a regression
model,13 leave-one-out (LOO) cross-validation of nearest
neighbors,14 bagging (variance of the predicted responses),15,16

and so forth. The first three among these do not consider the
prediction model and, hence, might be less sensitive to model
specific prediction behavior. Additionally, none of these
approaches take actual prediction errors into account.
Briesemeister and others6 have proposed two confidence
estimators CONFINE and CONFIVE. The first one
determines the error rates of the nearest members of a test
compound in the training set, whereas the second one
examines the variance in the surrounding local environment.
Sazonovas et al.17 proposed a property-based similarity index
using a bootstrapping technique to define a reliability index for
predictions. Huang and Fan used prediction confidence in
terms of probability for checking reliability of predictions in
case of a tree-based classification problem.10 Sahlin et al.
discussed AD-dependent predictive uncertainty in QSAR
regressions based on Euclidean distances and standard
deviation in perturbed predictions, combined with variance
estimated by nearest-neighbor averaging.18 Toplak et al.
suggested methods to quantify prediction confidence through
estimation of the prediction error at the point of interest and
showed that these methods can outperform standard reliability
scores relying only on similarity-based approaches.19 However,
recently, a probability oriented distance-based approach
(which is essentially an AD-based approach) was proposed
by another group as a robust and automatic method for
defining the interpolation space where true and reliable
predictions can be expected.20 In the conformal prediction
approach, the prediction values are complemented with
measures of their confidence, in the form of prediction
intervals, which are determined by some measures of
dissimilarity of the new chemical compound to the training
compounds.21 Very recently, Liu and others have proposed a
new AD metric that considers the contributions of every
training compound, each weighted by its distance to the
molecule for which a QSAR prediction is made. They show
that their proposed metric correlates strongly with prediction
error.22

In the literature, several attempts have been made to
increase the quality of predictions and to ensure the reliability
of the developed models. The model performance is usually
tested by employing the hold-out method. However, because

the composition of the training set remains the same in this
method, it is not certain that the resultant model is optimal, as
there may be a bias in descriptor selection. As compared to a
single test set, double cross-validation (in which, the training
set is further divided into “n” calibration and validation sets
resulting in diverse compositions) provides a more realistic
picture of model quality and should be preferred over a single
test set.23,24 Double cross-validation reliably and unbiased
estimates prediction errors under model uncertainty for
regression models. In another approach, consensus modeling
has been applied by several researchers to improve the quality
of predictions.25,26 In this method, the final result takes into
account the different assumptions characterizing each model,
encompassing chemical structure to partitioning and cut-off
criteria allowing for a more reliable judgment in a complex
situation. Hewitt et al. have discussed a scheme for the peer
verification of in silico models that enables end users and
modelers to assess the scientific validity of the models.27 Patel
et al. have recently emphasized on the assessment of model
reproducibility, particularly by users who might be non-
experts.28 However, to ascertain the quality of predictions for a
new query chemical is a challenge for QSAR model developers
and a key concept central to the applicability of computational
predictive models by the experimental scientists. Many of the
reliability estimates developed so far are in some way related to
similarity measures of the query compounds to the training
compounds. However, the current similarity-based reliability
scoring approaches should be complemented with alternative
estimation techniques, as AD solely cannot justify the
reliability of predictions.19 On the basis of our previous
QSAR modeling exercises and observations made in those
studies,29−31 we have developed here a scheme to define
reliability of predictions from QSAR models for new query
compounds and implemented the method in an online tool
freely available from http://dtclab.webs.com/software-tools
and http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab/. Present-
ly, the tool is applicable for predictions of multiple linear
regression (MLR) models, but the suggested method may
potentially be applied to other chemometric models as well.

2. MATERIALS AND METHODS
The aim of the present work has been to formulate a set of
rules/criteria that will eventually enable the user to forecast the
quality of predictions for individual test (external) compounds.
Please note that usually test set compounds are derived from
the original whole data set after application of a rational
division strategy while external compounds are derived from a
completely different source not reporting the original data set.
In general, in our QSAR modeling exercises, we always observe
that while predicting a set of test/external compounds, the
quality of predictions of every external compound might not
always be very good; for some query compounds, the quality of
predictions is good, for some other compounds it is moderate,
while some predictions can be poor or outside the reliability
zone (unreliable). Keeping this in mind, in this work, we have
proposed a set of three rules/criteria which might help in
categorizing the quality of predictions for individual test/
external set compounds into good, moderate, and poor/
unreliable ones. The rules suggested here are based on the
results of some of our previous studies and hypotheses
proposed in those reports.26,29−31 For analyzing the results, we
have used a scoring system (1, 2, and 3) in this work. After
applying each rule/criterion, the compounds whose quality of
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predictions are categorized as “good” are given the highest
score, that is, 3, and the compounds with moderate quality
predictions are given a moderate score equal to 2 and
compounds with poor/unreliable predictions are given the
lowest score of 1. The final categorization of each test/external
compound is performed based on a composite score
(described later), which is computed using the three individual
scores (with different weighting schemes) obtained from each
rule/criterion. We have also implemented the proposed
scheme in a software tool “Prediction Reliability Indicator”
that is made freely available for download from http://dtclab.
webs.com/software-tools and http://teqip.jdvu.ac.in/QSAR_
Tools/DTCLab/ (see a snapshot shown in Figure 1). This
tool can presently deal with the MLR model-derived
predictions only. Now, we will discuss all three rules/criteria
and the categorization/scoring techniques in detail.

2.1. Rule/Criterion 1: Scoring Based on the Quality of
LOO Predictions of Closest 10 Training Compounds to
a Test/External Compound.26,28 According to this rule, 10
training set compounds are initially identified that are most
similar to a particular test/external compound in the descriptor
space, where similarity is determined based on a distance
metric (in our case, we have used Euclidean distance). Next,
the mean of absolute LOO prediction error (MAELOO) is
calculated for the selected closest 10 compounds. Further, we
have considered that the test/external set compounds whose
corresponding closest training compounds have the lowest
MAELOO value will be predicted well and thus should get the
highest score (equal to 3), while those test compounds with
corresponding close training compounds have medium
MAELOO values should get a moderate score (equal to 2),
and those test compounds with corresponding close training
compounds having high MAELOO values should get the least
score (equal to 1). Here, the scoring/categorization is
performed based on the MAE-based criteria28 (proposed by
us earlier) which considers both MAELOO and standard
deviation (σLOO) of the absolute prediction error values and
is defined as follows:
2.1.1. Good Predictions.

σ

≤ ×

+ × ≤ ×

ANDMAE 0.1 training set range MAE

3 0.2 training set range
LOO LOO

LOO

Here, the MAELOO denotes mean absolute LOO error for the
selected closest training compounds to a test compound and
σLOO value denotes the standard deviation of the absolute error
values for the same observations.
Thus, the test/external compounds obeying the above

conditions get score 3.
2.1.2. Bad Predictions.

σ

> ×

+ × > ×

ORMAE 0.15 training set range MAE

3 0.25 training set range
LOO LOO

LOO

The test/external compounds obeying this condition get score
1.

2.1.3. Moderate Predictions. The predictions which do not
fall under either of the above two conditions may be
considered as of moderate quality. Thus, the rest of the test/
external compounds get scores 2.
Now, to make sure that the selected set of 10 closest training

compounds do not have any outlier in terms of chemical
structural similarity, we have employed one additional
criterion, that is, if the Euclidean distance of a test set
compound to a particular training set compound out of those
10 selected ones is higher than the set threshold value, then
discard that training set compound. Here, the threshold value
is equal to the meanED + k × σED (in our case, k = 3), where
both meanED and standard deviation (σED) are calculated using
the Euclidean distance scores computed among all the training
set compounds using the descriptor matrix appearing in the
input training model. Notably this criterion is based on the
assumption that the computed Euclidean distance scores
between a test set compound and the training set compounds
hypothetically follows a normal distribution pattern, and
according to this distribution, most (99.7%) of the population
remains inside the mean + 3 × σrange. Thus, any distance score
that is outside the threshold value can be considered dissimilar
to the most of the training set compounds and is considered as
an outlier. Further, in the developed software, a user can
optionally set a Euclidean distance cutoff value (between 0 and
1) to limit the selection of only those training set compounds
with Euclidean distance score less than or equal to the user-
defined cut-off value. Here, the Euclidean distance score
calculated between a test set compound and a training set
compound “i” is scaled using the maximum and minimum
distance scores computed for that training set compound “i”
from all the remaining training set compounds. In a similarity
scale, the Euclidean distance score “0” means exactly similar
compounds, whereas, as the distance score value increases, the
similarity decreases. Moreover, after applying these criteria, if
the number of selected similar training compounds becomes
less than 3, then we have set the lowest score to that particular
test set compound. In this case, there are only limited or no
similar compounds present in the training set, and thus the
chemical features of the particular test chemical are less likely
to be dealt with by the training model which is not trained for
the features present in the particular test chemical. In case, the
number of similar training compounds is equal or greater than
3, the model is considered as “qualified” for prediction of
respective test set compound and the scoring is then
performed based on the MAE-based criteria.

Figure 1. Snapshot of the developed software Prediction Reliability
Indicator.
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2.2. Rule/Criterion 2: Scoring Based on the Similarity-
Based AD Using Standardization Method.30 The AD of a
QSAR model plays an important role for identifying the
uncertainty in the prediction of a specific chemical by that
model, which is based on the similarity of that chemical to the
training set chemicals that were employed to develop the
model.30 If a test set compound is similar to none or a very
small fraction of the training set compounds, then its
prediction is expected not to be reliable, as the model has
not captured the features of that test set compound which is
different from all or majority of the training set compounds.
Such test set compounds are expected to be outside the AD of
the model and their predictions are not reliable. Thus, the
prediction is valid only if the compound being predicted falls
within the AD of the model. We have considered the
abovementioned fact to derive our rule/criterion 2. Here, we
have employed a simple AD method, that is, AD using the
standardization approach30 (previously proposed by us) for
scoring or categorizing the quality of test/external set
predictions. Further, the methodology of scoring based on
the similarity-based AD using standardization method is
discussed here.
First, the modeled descriptors columns are standardized

based on the corresponding mean and standard deviation (for
the training set compounds only) of respective descriptors.
The logic behind standardization of descriptors is that if the
corresponding standardized value for descriptor i of compound
k (Ski) is more than 3, then the compound should be outside
AD based on the descriptor i.
The scoring performed for each test set compound is

defined as follows:

(i) If the maximum Si value of a test compound k is lower
than 3, then the test compound is quite similar to a good
number of compounds in the training set with respect to
all descriptors (the compound is within AD). Therefore,
such test compounds are assigned with the highest score,
that is, 3.

(ii) If the minimum Si value of a test compound k is higher
than 3, then the test compound is quite dissimilar to
most of the compounds in the training set with respect
to all descriptors (the compound is not within AD).
Therefore these test compounds get the lowest score,
that is, 1.

If the compound has a maximum Si value above 3 but the
minimum Si value below 3, then the compound is similar to
some of the training set compounds with respect to some
descriptors and at the same time dissimilar to some of the
training set compounds with respect to other descriptors.
Thus, in such cases:

(iii) If mean of the Si values of a test compound for all
descriptors in a model plus 1.28 times corresponding
standard deviation (denoted as Snew) is lower than 3,
there is 90% probability that the Si values of that test
compound are lower than 3. Thus, when Snew value of a
test compound is lower than 3, then the test compound
can be considered to be within the AD. For such test
compounds, we have assigned a moderate score, that is,
2.

(iv) If Snew value of a test compound is higher than 3, then
the test compound can be considered as outside the AD.
As these test compounds are outside AD, they get the
lowest score, that is, 1.

2.3. Rule/Criterion 3: Scoring Based on the Proximity
of Predictions to the Training Set Observed/Exper-
imental Response Mean.31 We have previously observed31

that the quality of fit or predictions of MLR models is better
for compounds having the experimental response values
(training and test compounds) close to the training set
observed response mean. Thus, in rule/criterion 3, we have
proposed to judge the prediction quality of a test compound
based on the proximity of predicted response value to the
training set observed/experimental response mean. Note that
here the predicted response of test compounds is taken as a
measure of their experimental response as an approximation, as
for new query compounds, experimental response values might
be unavailable. First, the predicted response value (Ypred

Test) of
each test compound is calculated using the training set model,
and then this Ypred

Test value is compared with the training set
experimental response mean (Ymean

Train) and the corresponding
standard deviation (σTrain) in the following manner:

(i) A test compound with Ypred
Test value falling within the range

inside Ymean
Train ± 2σTrain, that is, (Ymean

Train + 2σTrain) ≥ Ypred
Test ≥

(Ymean
Train − 2σTrain) can be presumed to be predicted well

by the model and thus gets score 3.
(ii) A test compound with Ypred

Test value falling within the range
(Ymean

Train + 3σTrain) ≥ Ypred
Test ≥ (Ymean

Train − 3σTrain) and (Ymean
Train +

2σTrain) < Ypred
Test < (Ymean

Train − 2σTrain) can be presumed to
be predicted moderately by the model and thus gets
score 2.

(iii) A test set compound with Ypred
Test value falling within the

range (Ymean
Train + 3σTrain) < Ypred

Test < (Ymean
Train − 3σTrain) can be

presumed to be predicted poorly by the model and thus
gets score 1.

2.4. Computation of a Composite Score. Further, we
have employed a weighting scheme to compute a composite
score for judging the prediction quality of each test compound
using all the three individual scores that are obtained after
applying above three rules. The composite score is defined as
follows:

= × + ×

+ ×

W W

W

Composite score score score

score
1 rule1 2 rule2

3 rule3

where scorerule1, scorerule2, and scorerule3 represent individual
scores obtained after applying respective rules, whereas W1,
W2, W3 indicate user-defined or automatic weighting given to
each of the three individual scores.
The derived composite score is then converted to the

nearest whole number and interpreted as follows: Score 3
(good confidence); Score 2 (moderate confidence) and Score
1 (poor/unreliable confidence).
For testing our scheme, we have performed a few case

studies using five datasets comprising corresponding training
and test sets with known observed/experimental responses.
The first dataset represents 224 cyclin-dependant kinase 5/p25
(CDK5/p25) inhibitors,32 the second set represents acetyl-
cholinesterase (AChE) inhibitory activity of 426 functionalized
organic chemicals,33 the third set deals with solubility of C60 in
156 organic solvents,34 the fourth set represents 104 chemicals
with bioluminescent repression of the bacterium genus
Pseudomonas,35 and the final set comprises persistent,
bioaccumulative, and toxic (PBT) index values of 180
chemicals.36 All five datasets were first rationally divided into
respective training and test sets using three different
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techniques, namely, sorted response, Kennard−Stone algo-
rithm,37 and modified-k-medoids clustering38 using two
software tools, namely, Dataset Division version 1.2 (for
sorted response and Kennard−Stone algorithm based
divisions) and Modified k-medoid version 1.2 developed by
us.39 The Kennard−Stone algorithm and modified-k-medoids
clustering-based division are widely known techniques that are
well described in the literature,37,38 whereas the sorted
response-based division involves sorting of all of the chemicals
based on the response values, and then a predetermined
number of chemicals are selected from the list at a constant
interval as the test set chemicals while the remaining chemicals
are utilized as the training set chemicals. Here, all of the
divisions were performed such that in each case the entire
dataset was divided into a training set and a test set of about
70:30 ratio with respect to the number of compounds.
Followed by this, five individual models were developed for
each division employing any one or more of the diverse
statistical approaches like stepwise MLR, genetic function
algorithm, and so forth. All developed models were validated
based on the internal validation metrics such as R2, QLOO

2,
MAETrain and external validation metrics such as QF1

2, MAETest.
Note that the training and test sets information for all of the
developed models in this study are provided in the Supporting
Information.
As experimental responses are available for the test set

compounds, one can easily compute absolute prediction errors
of all of the test compounds using the experimental and
predicted response values. Further, based on the actual
absolute prediction errors, we have classified the prediction
quality of each test set compound into three groups: good,

moderate, and poor or unreliable predictions. The criteria for
this classification based on the absolute prediction errors of
test compounds are defined as follows:

(i) A test compound with absolute prediction error ≤(0.15
× training set range) gets score equal to 3 (good
predictions).

(ii) A test compound with absolute prediction error >(0.25
× training set range) gets score equal to 1 (bad
predictions).

(iii) A test compound with absolute prediction error >(0.15
× training set range), but ≤(0.25 × training set range),
gets score equal to 2 (moderate predictions)

Now, for each test set, we have two sets of rank, that is, one
based on the composite score (predicted scores) and other
based on the absolute prediction error (reference scores).
Therefore, now we have computed percent (%) correct
predictions by comparing the scores derived directly from
the absolute residual errors and the composite score obtained
by giving different weighting to each of the individual scores
and iteratively changing the weighting values from 1:0:0 to
0:0:1 with an increment of 0.1 at each step. Here, our objective
was to find out the correct weighting combination (to all three
individual scores), which will give the maximum percent
correct predictions. The workflow of the whole process is
shown in Figure 2.

2.5. Validation of Our Scheme. For validation of our
scheme, we have employed four additional datasets, each
comprising a training set, a test set, and a true external set. In
this case, the true external datasets are not part of the original
modeling sets, but they are collected separately and with
experimental response values. The first dataset represents

Figure 2. Schematic diagram of workflow of the analysis.
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refractive index of 319 (including 98 true external data
points)polymers,40 the second set represents BACE1 activity of
90 (including 17 true external data points) chemicals,41 the
third set deals with glass transition temperature of 244
(including 38 true external data points) polymers,42 and the
fourth set comprises sweetness potency of 300 (including 60
true external data points) organic molecules.43 All four datasets
were rationally divided into respective training and test sets
using Kennard−Stone (first and second datasets) and sorted
response (third and fourth datasets) techniques, respectively,
as reported in the original studies. Here, five models were
developed for each dataset. The model development and
validation tests were performed in the similar way as
mentioned in the previous section. Note that the training,
test, and external set information for all of the models are
provided in the Supporting Information. Further, for each
model, at first the best weighting combination (to all three
individual scores) was selected based on the optimal % correct
prediction (test set) value, which are calculated and compared
for all possible weighting combinations (using test set data).
Then the % correct predictions for the true external set were
computed using the selected weighting combination to confirm
whether the selected combination (using the test set) also
works aptly for judging the prediction quality of the true
external set compounds. In the present work, the external sets
have never been used to tune the weighting scheme, and these
have only been used only once for the final calculations shown.
2.6. Retrospective Analysis. In the present study, we

have also performed the retrospective analysis for the test or
true external set compounds which do not show concordance
between the reference score (based on the actual absolute
prediction error) and the predicted composite score. For such
compounds, we have analyzed the following:

1. Whether such test or true external compounds are
outside the AD?

2. Whether their observed responses are close to the
training set mean, that is, within ±1σTrain or distant at
different levels, that is, between ±1σTrain and ±2σTrain or
between ±2σTrain and ±3σTrain or beyond ±3σTrain?

3. The minimum Euclidean distance between the test/
external compound and the closest member in the
training set.

4. The generalized Jaccard similarity coefficient (similarity
index based on the modeled descriptors)44 between the
test/external compound and the close member in the
training set. Here, before calculating the generalized
Jaccard coefficient, the descriptor matrix is first
normalized by scaling between 0 and 1, and then the
Jaccard similarity coefficient is computed using the
following formula:

=
∑

∑
=
=

=
=J x y

x y

x y
( , )

min( , )

max( , )
i
i n

i i

i
i n

i i

0

0

where x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) are two vectors;
x vector represents modeled normalized descriptor values for a
test/external compound; y vector represents modeled
normalized descriptor values for the closest training set
compound to the test/external compound; min(xi,yi) denotes
minimum value between xi and yi; max(xi,yi) denotes
maximum value between xi and yi; and n represent number
of modeled descriptors.
The above analysis was made to get an insight into the

factors responsible for imprecise predictions from otherwise
predictive MLR models for some specific query compounds.

3. RESULTS AND DISCUSSION
The present communication has defined a composite score
which can be used as a marker of prediction quality of each
individual compound of a true external test set. The success of
any QSAR model lies in precisely predicting a true external test
set which has not been used during model development as well
as in validation stage. Thus, we have employed three criteria
which use information about experimental response values as
well as structural and physicochemical properties of training
compounds to provide us with a final composite score based
on which we can categorize the prediction quality in terms of
“good”, “moderate”, and “bad”. The details about the scoring

Table 1. Results for CDK Dataset (Model Dataset 1) with Best Weighting (0.5−0−0.5) Combination as Obtained from the
Retrospective Study

model division method R2 Q2 MAE95%Train QExt‑F1
2 MAE95%Test

correct prediction
in %

training set
range

number of compounds outside
ADa

1 sorted responseb 0.74 0.71 0.15 0.73 0.14 87.84 2.396 0
2 0.71 0.69 0.14 0.69 0.13 86.49 0
3 0.68 0.66 0.14 0.68 0.13 85.14 1 (122)
4 0.70 0.67 0.14 0.67 0.13 85.14 4 (118, 119, 122, 123)
5 0.63 0.61 0.17 0.65 0.17 77.02 0
6 Kennard−Stonec 0.78 0.75 0.14 0.63 0.13 85.29 2.342 0
7 0.77 0.75 0.14 0.59 0.14 79.41 1 (195)
8 0.74 0.71 0.14 0.54 0.13 89.71 0
9 0.72 0.70 0.14 0.56 0.12 83.82 0
10 0.71 0.68 0.14 0.54 0.13 86.76 0
11 modified-k-medoidsd 0.74 0.71 0.13 0.70 0.17 86.67 2.397 0
12 0.69 0.66 0.13 0.65 0.14 89.33 3 (30, 38, 39)
13 0.69 0.66 0.13 0.65 0.14 88 0
14 0.70 0.68 0.14 0.68 0.13 92 0
15 0.64 0.61 0.16 0.65 0.14 88 0

aAD using standardization technique is used and compound ID mentioned under parenthesis. bNTraining = 154, NTest = 74. cNTraining = 156, NTest =
68. dNTraining = 149, NTest = 75.
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system have already been discussed in the Materials and
Methods section.
To judge the composite scoring system, we have used nine

diverse datasets previously used by us for developing predictive
QSAR/QSPR/QSTR models against different activity, phys-
icochemical property, and toxicity endpoints. The first five
datasets (modeling datasets) had training and test set divisions
derived using different methods and these were used to find
out the optimum weighting of different criteria (as discussed
before) to obtain the best possible quality of predictions. For
each of these cases, each dataset was divided into training and
test sets using three different approaches, namely, sorted
response-based method, Kennard−Stone method, and modi-
fied-k-medoids methods. Thereafter, models were developed

employing the GA-MLR approach from each training set and
in each case five models were recorded. Thus, 15 models were
developed for each dataset. Followed by this, an automatic
weighting checking of three criteria was performed employing
the training and respective test set by selecting “automatic
weightage” tab of the developed software tool. For each
dataset, we have checked which weighting combination is
emerging for maximum number of times for the 15 models
developed giving best % correct predictions for the test set(s).
Followed by this, automated weighting selection-based analysis
of the results was performed and the outcomes are illustrated
in Tables S1−S5 in the Supporting Information. The obtained
optimum weighting was then used to check the correct
percentage prediction of test set compounds for all developed

Table 2. Results for AChE Dataset (Model Dataset 2) with Best Weighting (0.5−0−0.5) Combination as Obtained from the
Retrospective Study

model division method R2 Q2 MAE95%Train QExt‑F1
2 MAE95%Test

correct
prediction in %

training set
range number of compounds outside ADa

1 sorted responseb 0.68 0.65 0.49 0.58 0.55 87.32 7.82 10 (13, 336−338, 340, 342−344, 347, 360)
2 0.67 0.64 0.49 0.61 0.52 85.92 5 (242−244, 323, 360)
3 0.64 0.60 0.46 0.52 0.53 86.62 11 (32, 33, 35, 336−338, 340, 342−344,

347)
4 0.52 0.47 0.48 0.56 0.52 85.21 15 (32, 33, 242−244, 323, 336−338, 340,

342−344, 347, 368)
5 0.64 0.60 0.46 0.53 0.55 86.62 14 (32, 33, 35, 174, 218, 323, 336−338,

340, 342−344, 347)
6 Kennard−Stonec 0.71 0.69 0.49 0.48 0.58 84.38 7.82 1 (201)
7 0.69 0.67 0.51 0.48 0.58 91.41 1 (201)
8 0.74 0.71 0.47 0.53 0.56 91.41 1 (1)
9 0.69 0.67 0.51 0.50 0.59 85.94 1 (1)
10 0.70 0.68 0.48 0.53 0.57 88.26 0
11 modified-k-

medoidsd
0.68 0.65 0.48 0.63 0.51 86.62 7.76 8 (177−179, 203, 219, 246, 310, 311)

12 0.68 0.65 0.49 0.61 0.52 87.32 8 (177−179, 203, 219, 246, 310, 311)
13 0.66 0.63 0.49 0.60 0.53 85.92 7 (177−179, 203, 219, 310, 311)
14 0.67 0.65 0.50 0.55 0.58 85.21 8 (177−179, 203, 219, 246, 310, 311)
15 0.65 0.62 0.50 0.58 0.56 87.32 1 (246)

aAD using standardization technique is used and compound ID mentioned under parenthesis. bNTraining = 284, NTest = 142. cNTraining = 284, NTest =
142. dNTraining = 284, NTest = 142.

Table 3. Results for C60 Solubility in Organic Solvents Dataset (Model Dataset 3) with Best Weighting (0.5−0−0.5)
Combination as Obtained from the Retrospective Study

model division method R2 Q2 MAE95%Train QExt‑F1
2 MAE95%Test

correct prediction
in %

training set
range

number of compounds outside
ADa

1 sorted responseb 0.87 0.85 0.34 0.85 0.33 97.87 6.97 1 (128)
2 0.88 0.85 0.33 0.84 0.34 95.74 1 (128)
3 0.88 0.87 0.33 0.81 0.33 91.49 1 (85)
4 0.88 0.86 0.34 0.85 0.32 95.74 1 (21)
5 0.87 0.86 0.33 0.81 0.36 95.74 1 (128)
6 Kennard−Stonec 0.85 0.84 0.33 0.88 0.35 100 6.97 0
7 0.86 0.85 0.33 0.87 0.35 97.87 0
8 0.86 0.85 0.32 0.86 0.34 95.74 2 (87, 148)
9 0.79 0.77 0.37 0.84 0.39 95.74 0
10 0.86 0.85 0.33 0.87 0.34 95.74 0
11 modified-k-

medoidsd
0.84 0.83 0.36 0.82 0.32 93.62 6.97 0

12 0.84 0.83 0.37 0.80 0.34 93.62 2 (64, 144)
13 0.89 0.88 0.34 0.78 0.34 89.36 0
14 0.88 0.85 0.33 0.82 0.33 95.74 1 (128)
15 0.89 0.88 0.34 0.79 0.33 89.36 0

aAD using standardization technique is used and compound ID mentioned under parenthesis. bNTraining = 109, NTest = 47. cNTraining = 109, NTest =
47. dNTraining = 109, NTest = 47.
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Table 4. Results for Bioluminescent Repression of the Bacterium Genus Pseudomonas Dataset (Model Dataset 4) with Best
Weighting (0.5−0−0.5) Combination as Obtained from the Retrospective Study

model division method R2 Q2 MAE95%Train QExt‑F1
2 MAE95%Test

correct prediction
in %

training set
range

number of compounds outside
ADa

1 sorted responseb 0.78 0.73 0.32 0.42 0.32 80.65 4.06 0
2 0.73 0.69 0.35 0.45 0.31 80.65 2 (45, 47)
3 0.80 0.74 0.28 0.64 0.30 87.10 1 (47)
4 0.78 0.73 0.29 0.55 0.30 83.87 1 (47)
5 0.80 0.74 0.29 0.66 0.31 83.87 1 (47)
6 Kennard−Stonec 0.67 0.61 0.32 0.62 0.40 81.25 4.06 0
7 0.72 0.60 0.32 0.66 0.39 84.38 0
8 0.68 0.65 0.32 0.62 0.39 78.13 0
9 0.67 0.60 0.33 0.62 0.40 81.25 0
10 0.69 0.63 0.32 0.63 0.39 78.13 0
11 modified-k-medoidsd 0.75 0.70 0.30 0.63 0.32 80.65 4.06 0
12 0.72 0.68 0.31 0.65 0.34 83.87 0
13 0.72 0.68 0.32 0.62 0.32 77.42 0
14 0.71 0.67 0.31 0.63 0.31 80.65 1 (64)
15 0.69 0.65 0.32 0.62 0.29 87.10 1 (64)

aAD using standardization technique is used and compound ID mentioned under parenthesis. bNTraining = 73, NTest = 31. cNTraining = 72, NTest = 32.
dNTraining = 73, NTest = 31.

Table 5. Results for PBT Index of Chemicals (Model Dataset 5) with Best Weighting (0.5−0−0.5) Combination as Obtained
from the Retrospective Study

model division method R2 Q2 MAE95%Train QExt‑F1
2 MAE95%Test

correct prediction
in %

training set
range

number of compounds outside
ADa

1 sorted responseb 0.88 0.87 0.36 0.92 0.37 91.67 8.1 1 (189)
2 0.90 0.89 0.33 0.95 0.27 100 2 (41, 189)
3 0.89 0.88 0.35 0.94 0.30 100 2 (14, 189)
4 0.89 0.88 0.34 0.93 0.34 91.67 1 (14)
5 0.89 0.88 0.34 0.94 0.32 88.89 4 (14, 41, 189, 206)
6 Kennard−Stonec 0.91 0.90 0.35 0.87 0.34 95.56 8.1 2 (211, 212)
7 0.90 0.89 0.34 0.88 0.29 95.56 0
8 0.91 0.90 0.34 0.88 0.34 95.56 0
9 0.91 0.90 0.34 0.88 0.31 95.56 0
10 0.92 0.91 0.33 0.88 0.31 95.56 0
11 modified-k-medoidsd 0.91 0.90 0.32 0.84 0.45 88.64 7.24 3 (11, 25, 189)
12 0.90 0.89 0.32 0.87 0.40 86.36 2 (11, 25)
13 0.92 0.91 0.31 0.86 0.43 93.18 2 (11, 25)
14 0.90 0.89 0.32 0.88 0.39 93.18 0
15 0.92 0.91 0.31 0.86 0.43 93.18 2 (11, 25)

aAD using standardization technique is used and compound ID mentioned under parenthesis. bNTraining = 144, NTest = 36. cNTraining = 135, NTest =
45. dNTraining = 136, NTest = 44.

Table 6. Results for Refractive Index of Polymers Dataset (True External Dataset 1) with Best Weighting (0.5−0−0.5)
Combination as Obtained from the Retrospective Study

training set test set true external test set

model R2 Q2 MAE95%Train QExt‑F1
2 MAE95%Test

correct
prediction

in %

number of
compounds
outside ADa QExt‑F1

2 MAE95%Test

correct
prediction

in %

number of
compounds
outside ADa

1 0.90 0.88 0.01 0.88 0.01 98.51 1 (143) 0.87 0.01 94.90 0
2 0.91 0.90 0.01 0.89 0.01 97.01 1 (1) 0.87 0.01 91.84 5 (319, 333, 334,

339, 340)
3 0.90 0.89 0.01 0.89 0.01 97.01 2 (1, 143) 0.87 0.01 94.90 6 (319, 331, 333,

334, 339, 340)
4 0.90 0.88 0.01 0.90 0.01 97.01 2 (1, 185) 0.88 0.01 94.90 7 (319, 331, 333,

334, 339, 341)
5 0.90 0.89 0.01 0.90 0.01 98.51 2 (1, 143) 0.88 0.01 93.88 0

aAD using standardization technique is used and compound ID mentioned under parenthesis; division method: Kennard−Stone; NTraining = 154,
NTest = 67, NTrue‑External‑Test = 98.
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models by selecting “give weightage manually” in the
developed software tool along with additional validation
metrics and AD information for each model. The obtained
results are reported in Tables 1−5.
Each of the remaining four datasets had a true external set

each along with training and test set divisions. Each of these
datasets consists of one training, one test and one true external
test sets on which five models are applied. Employing the
methodology previously described, an “automatic weightage”
scheme was selected in the developed software tool using the
training and test set compounds to find out the optimum
weighting. We have checked for occurrence of a specific
weighting for maximum number of times, and then we have
used each selected weighting to predict the true external test
set by selecting “give weightage manually” option in the
developed software. Interestingly, in many circumstances, we
got a different percentage of correct predictions for the true
external set employing the weighting combinations obtained
from the automatic weighting selection scheme, although these

weightages showed same percentage correct predictions for the
respective test sets. After automated weighting selection based
analysis (Tables S6−S9 in the Supporting Information), we
have used the optimum weighting to predict the response for
the respective test and true external test sets for each model
along with different validation metrics and information on AD
(Tables 6−9). The results from different datasets are described
in detail below.

3.1. Results for Modeling Datasets. 3.1.1. Model
Dataset 1: Cyclin-Dependant Kinase 5/p25 (CDK5/p25)
Inhibitors. Among 15 models (5 models obtained from each
of three different division strategies), 9 models showed highest
percentage of correct predictions (for the respective test sets)
with the weighting combinations of 0.5−0−0.5 [weighting −
score(MAE-LOO)/weighting − score(AD)/weighting −
score(train-mean)] along with other combinations. For the
remaining models, the combination 0.5−0−0.5 stays at second
or third position with a very low difference in % correct
predictions from the winner combination. The % correct

Table 7. Results for BACE1 Dataset (True External Dataset 2) with Best Weighting (0.5−0−0.5) Combination as Obtained
from the Retrospective Study

training set test set true external test set

model R2 Q2 MAE95%Train QExt‑F1
2 MAE95%Test

correct
prediction

in %

number of
compounds outside

ADa QExt‑F1
2 MAE95%Test

correct
prediction

in %

number of
compounds outside

ADa

1 0.83 0.76 0.37 0.75 0.32 86.36 0 0.90 0.31 82.35 2 (81, 91)
2 0.80 0.75 0.37 0.79 0.32 91.30 0 0.72 0.37 88.24 2 (81, 89)
3 0.80 0.76 0.35 0.91 0.24 95.65 0 0.83 0.34 88.24 1 (81)
4 0.76 0.71 0.38 0.77 0.27 91.30 0 0.75 0.37 88.24 2 (81, 89)
5 0.79 0.75 0.38 0.79 0.28 91.30 0 0.86 0.33 82.35 1 (81)

aAD using standardization technique is used and compound ID mentioned under parenthesis; division method: Kennard−Stone; NTraining = 51,
NTest = 23, NTrue‑External‑Test = 17.

Table 8. Results for Glass Transition Temperature of Polymers Dataset (True External Dataset 3) with Best Weighting (0.5−
0−0.5) Combination as Obtained from the Retrospective Study

training set test set true external test set

model R2 Q2 MAE95%Train QExt‑F1
2 MAE95%Test

correct
prediction

in %

number of
compounds outside

ADa QExt‑F1
2 MAE95%Test

correct
prediction

in %

number of
compounds
outside ADa

1 0.74 0.68 0.04 0.74 0.04 86.54 3 (2, 16, 37) 0.75 0.06 68.42 2 (14, 39)
2 0.75 0.71 0.04 0.73 0.05 88.46 3 (2, 16, 324) 0.77 0.05 84.21 1 (39)
3 0.76 0.72 0.04 0.80 0.04 88.46 3 (2, 16, 37) 0.85 0.04 84.21 1 (39)
4 0.71 0.66 0.04 0.70 0.04 90.38 3 (2, 16, 37) 0.80 0.04 84.21 1 (14)
5 0.76 0.70 0.05 0.72 0.04 82.69 4 (2, 16, 37, 324) 0.81 0.04 81.58 1 (39)

aAD using standardization technique is used and compound ID mentioned under parenthesis; division method: activity sorted; NTraining = 154,
NTest = 52, NTrue‑External‑Test = 38.

Table 9. Results forf Sweetness Potency of Organic Molecules (True External Dataset 4) with Best Weighting (0.5−0−0.5)
Combination as Obtained from the Retrospective Study

training set test set true external test set

model R2 Q2 MAE95%Train QExt‑F1
2 MAE95%Test

correct
prediction

in %

number of
compounds
outside ADa QExt‑F1

2 MAE95%Test

correct
prediction

in %

number of
compounds
outside ADa

1 0.84 0.82 0.40 0.87 0.40 93.75 1 (228) 0.74 0.59 80 0
2 0.85 0.83 0.43 0.87 0.42 95 2 (137, 228) 0.75 0.63 83.33 0
3 0.71 0.69 0.59 0.75 0.57 73.75 2 (137, 228) 0.64 0.79 75 0
4 0.86 0.85 0.39 0.83 0.48 93.75 1 (228) 0.69 0.66 73.33 0
5 0.85 0.83 0.39 0.85 0.40 92.5 1 (228) 0.79 0.56 86.67 0

aAD using standardization technique is used and compound ID mentioned under parenthesis; division method: activity sorted; NTraining = 160,
NTest = 80, NTrue‑External‑Test = 60.
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prediction ranges from 83.78 to 92% for all 15 models (Table
S1). In case of the six models where the weighting combination
of 0.5−0−0.5 does not evolve as the winner, we checked those
specific models with 0.5−0−0.5 manual weighting selection
(correct % prediction for model 5: 78%, model 6: 85.29%,
model 7: 79.41%, model 8: 89.71%, model 9: 83.82%, model
11: 86.67%), and in each case reduction in % correction for a
specific model is within 5% in comparison to the value when
the model is predicted with the obtained optimum weighting
combination, which is different from 0.5−0−0.5 (Table S1).
Thus, employing the weighting combination of 0.5−0−0.5, we
got the % correct prediction ranging around 78−92%. Model
qualities were checked through classical QSAR metrics
followed by AD studies. The values of R2 metric range from
0.63 to 0.78, Q2 range from 0.61 to 0.75, and QExt‑F1

2 or Rpred
2

range from 0.54 to 0.73, considering all developed 15 models.
The AD study suggested that no compounds remain outside
the AD for 11 models and 1, 4, 1, and 3 compounds remain
outside the AD for models 3, 4, 7, and 12, respectively.
Considering 74, 74, 68, and 75 compounds in the test sets for
models 3, 4, 7, and 12, respectively, the obtained results are
highly acceptable and reliable ones. The details about the
number of training and test compounds in different divisions
along with training set range followed by results of statistical
parameters and AD are enlisted in Table 1 and in Supporting
Information excel files.
3.1.2. Model Dataset 2: AChE Inhibitory Activity. In case of

AChE inhibitory activity dataset, 13 models showed best
weighting combinations of 0.5−0−0.5 out of developed 15
models along with other weighting combinations for the
highest % of correct predictions. More interestingly, the
weighting combinations of 0.5−0−0.5 evolved as the sole
winner for 6 models. Considering all 15 models, the % correct
prediction ranges from 84.38 to 91.41% (Table S2). Two
models where 0.5−0−0.5 weighting does not evolve as the
winner, we checked them with 0.5−0−0.5 manual weighting
combination (% correct predictions for model 4: 85.21%,
model 9: 85.93%) and the % correct prediction change is
around 1−2.5% for the specific models (Table S2). This result
supports that all 15 models can be successfully predicted with
the obtained best weighting combination of 0.5−0−0.5 for this
specific dataset and the % correct prediction range for the test
set remain within the range of 84.38−91.41%. The developed
models showed R2 metric values ranging from 0.52 to 0.74, Q2

ranging from 0.50 to 0.71, and QExt‑F1
2 or Rpred

2 ranging from
0.50 to 0.63, which support that all models are valid and
acceptable, considering a large number of data points of 426
where the training and test sets in each case consist of 284
compounds and 142 compounds, respectively. The AD study is
also performed concurrently suggesting that the number of
compounds stay outside the AD for all models reported in
Table 2. The details about the number of training and test
compounds in different divisions along with the training set
response range followed by results of statistical parameters and
AD information are enlisted in Table 2 and in Supporting
Information excel files.
3.1.3. Model Dataset 3: C60 Solubility in Organic Solvents.

Like previous datasets, for this specific dataset also we have
checked which weighting combination emerges for maximum
number of times among 15 models. Interestingly, 11 models
showed best weighting combinations of 0.5−0−0.5 with other
combinations for this dataset. Among the 11 models, for 2
models, the weighting combination of 0.5−0−0.5 evolved as

the sole winner. With the automated weighting screening, the
% correct prediction ranges from 91.49 to 100%, taking into
consideration all 15 models (Table S3). Four models, where
0.5−0−0.5 weighting combination does not evolve as the
winner, we checked them with 0.5−0−0.5 manual weighting
(correct % prediction for model 3: 91.5%, model 11: 93.62%,
model 13: 89.36%, model 15: 89.36% for the best weighting
combinations) and the % correct prediction range reduces by
about 2% in case of the manually selected combination of 0.5−
0−0.5 compared with automated weighting (Table S3).
Therefore, taking the 0.5−0−0.5 weighting combination for
all 15 models, the % correct predictions range (89.36−100%)
remain almost similar and highly acceptable and reliable ones
for checking external data points. The values of R2 metric range
from 0.79 to 0.89, Q2 range from 0.77 to 0.88, and QExt‑F1

2 or
Rpred

2 range from 0.78 to 0.88, taking into consideration all 15
models. Although the dataset consists of 156 data points (all
divisions consist of 109 compounds in the training set and 47
compounds in the test set), still the obtained values of
statistical parameters are highly acceptable. The AD study
suggested that no compounds remain outside the AD for seven
models and one compound each remains outside the AD for
six models. For remaining two models, two compounds each
remain outside the AD. The training set response ranges along
with the statistical metric values and the details of AD analysis
are enlisted in Table 3. The values of model descriptors and
division pattern for each model are illustrated in Supporting
Information excel files.

3.1.4. Model Dataset 4: Bioluminescent Repression of the
Bacterium Genus Pseudomonas. A similar trend as in case of
the previous datasets is observed in case of this dataset also.
Among the developed 15 models, 13 models showed 0.5−0−
0.5 as the best weighting combination out of 15 models along
with other combinations. Now, taking the obtained automated
weighting for all models, the % correct prediction ranges from
78.13 to 87.10% (Table S4). For the two models, where the
0.5−0−0.5 weighting combination does not emerge as the
winner, we checked them with the 0.5−0−0.5 manual
weighting (correct % prediction for model 5: 83.87%, model
13: 77.42%) and the % correct prediction reduces for about
less than 1% compared with that in case of automatically
selected weighting combination (Table S4). The values of R2

metric range from 0.67 to 0.80, Q2 range from 0.60 to 0.74, and
QExt‑F1

2 or Rpred
2 range from 0.42 to 0.66, taking all 15 models

into consideration. It is interesting to point out that two
models failed based on external predictive parameter QExt‑F1

2

and this is why the values of this specific parameter are below
the acceptable limit for these two models although both
models possessed acceptable internal validation parameter
values. On the contrary, the % correct prediction for both these
models is 80.65% which is an acceptable value for our present
study. The AD study suggested that no compounds remain
outside the AD for nine models and one compound each
remain outside the AD for five models. For the remaining one
model, two compounds remain outside the AD. The
information about training set response ranges along with
the values of statistical parameters values of individual models,
and the details of AD are reported in Table 4. The values of
individual descriptors appearing in the models and the division
pattern of each model are illustrated in Supporting Information
excel files.

3.1.5. Model Dataset 5: PBT Index of Chemicals. This
dataset also followed the same trend as described above, and
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11 out of 15 models showed the occurrence of the weighting
combination of 0.5−0−0.5 along with other weighting in case
of automated weighting selection setting to obtain the best %
correct prediction for the respective test sets. Considering the
automatically obtained weighting combinations for all models,
the % correct predictions range from 86.36 to 100%. In case of
the four models, for which the 0.5−0−0.5 weighting
combination does not emerge as the winner with the
automated weighting selection, we checked them with the
0.5−0−0.5 manual weighting setting (model 1: 91.67%, model
4: 91.67%, model 11: 88.64%, model 14: 93.18%) and the %
correct predictions for these models reduce around 2−5%
compared with that in case of the best automated weighting
setting results (Table S5). The values of R2 metric range from
0.88 to 0.92, Q2 range from 0.87 to 0.91, and QExt‑F1

2 or Rpred
2

range from 0.84 to 0.95 taking into consideration all 15 models
which support that all models are highly reliable and
acceptable, considering the large number of data points. The
concurrent AD study suggested that no compounds remain
outside the AD for five models, and 1 and 2 compounds
remain outside the AD for models 2 and 6, respectively. For
the remaining two models, 3 and 4 compounds remain outside
the AD. Information about training set response ranges along
with the values of statistical parameters of the individual
models and the details of AD are reported in Table 5. The
values of the individual descriptors appearing in the models
and the division pattern of each model are illustrated in
Supporting Information excel files.
3.2. Results for True External Datasets. The idea for

using a true external test set is to check the % correct
prediction for them using the obtained optimum weighting
from the modeling set (training and test sets). The real success
of predictions and their reliability depend on the performance
of a model on a true external test set. As discussed earlier, four
datasets are studied, and each dataset was divided into different
sets of training and test sets. Additionally, a true external test
set was also available for each data set which was not a part of
the original data set and obtained separately. Thus, the true
external set was not used during model development and
validation process.
3.2.1. True External Dataset 1: Refractive Index of

Polymers. To find the optimum weighting employing training
and test sets, five models were subjected to automated
weighting combination selection. The obtained results for all
five models suggested that 0.5−0−0.5 combination evolved as
the real winner, as this weighting emerged singly for four
models and jointly along with other combinations for the best
% correct prediction in case of model 2. The % correct
predictions for the test sets in case of all models range from
97.01 to 98.51%, which is no doubt a highly respectable
number range (Table S6). As for this dataset, 0.5−0−0.5 is a
distinct winner as the optimum weighting combination, we
have employed our true external test set to check the % correct
predictions using the mentioned weighting combination
employing the manual weighting tab in the software tool.
The true external test set also showed highly acceptable %
correct prediction range of 91.84−94.90%. The values of R2

metric range from 0.90 to 0.91, Q2 range from 0.88 to 0.90, and
QExt‑F1

2 or Rpred
2 range from 0.88 to 0.90 for the test sets, while

those for QExt‑F1
2 range from 0.87 to 0.88 for the true external

test set taking into account all five models, and this supports
the robustness, quality, and high predictive ability of the
developed models. Out of 67 test set data points, one

compound each for models 1 and 2 and two compounds each
for models 3 to 5 remained outside the AD zone defined by the
respective training data. On the contrary, out of 98 true
external test set data points, 0, 5, 6, 7, and 0 molecules
remained outside the domain of applicability for models 1, 2, 3,
4, and 5, respectively. Considering the large number of
compounds in both test and true external test sets, the number
of compounds remaining outside the AD is quite low, and the
developed models can reliably perform predictions for majority
of the molecules. Different statistical qualities and outcome
from the AD study are illustrated in Table 6. The values of the
descriptors appearing in the models and distribution pattern of
the data set into training and test sets are reported in
Supporting Information excel files.

3.2.2. True External Dataset 2: BACE1 Activity of
Chemicals. A similar scheme as discussed above is applied
to find the optimum weighting for this dataset using the
automatic weighting tab in the developed software tool. Like
the other datasets, for all five models, the 0.5−0−0.5
combination evolved as the common weighting combination
in case of all five models for with the highest % correct
predictions for the test set compounds. In the automated
weighting selection based analysis, we have employed each
weighting combination to check the % correct predictions for
the true external test sets. Interestingly, in case of models 2, 3,
and 4, we got same % correct predictions of 91.30, 88.24, and
85.35%, respectively, employing all available weighting
combinations from automated weighting selection scheme
(Table S7). In case of models 1 and 4, we got two values
82.35%/76.47% and 82.35%/88.24%, respectively, employing
all obtained weighting combinations for the true external test
set (Table S7). Most importantly, we got the best % correct
prediction values (82.35 and 88.24%) for models 1 and 4 when
we have used the 0.5−0−0.5 combination. Here, it is
important to mention that two combinations of weighting
0−0.1−0.9 and 0−0.2−0.8 also showed similar % correct
predictions like that of the 0.5−0−0.5 combination, not only
based on test sets but also using the true external test set.
However, just on the basis of the outcome of modeled datasets
and the true external dataset, we can consider the 0.5−0−0.5
combination among the best three combinations for this
dataset. Once the optimum weighting is established for this
dataset for five models, all models were used to check the final
% correct predictions for the test and true external sets along
with other statistical parameters and AD information (Table
7). The values appearing in the models and the composition of
training and test sets are reported in Supporting Information
excel files. The ranges of % correct predictions for five models
for the test set and the true external test set are 86.6−95.65
and 82.35−88.24%, respectively. The values of R2 range from
0.76 to 0.83, Q2 range from 0.71 to 0.76, and QExt‑F1

2 or Rpred
2

range from 0.75 to 0.91 for the test set, while QExt‑F1
2 values

range from 0.72 to 0.90 for the true external test set
considering all 5 models; this supports the robustness, quality,
and high predictability of the developed models. Out of 23 test
set compounds, not a single compound remained outside the
AD zone defined by the respective training data. On the
contrary, out of 17 true external test set data points, 2, 2, 1, 2,
and 1 molecules remained outside the domain of applicability
for models 1, 2, 3, 4, and 5, respectively.

3.2.3. True External Dataset 3: Glass Transition Temper-
ature of Polymers. For this specific dataset, out of five models,
the 0.5−0−0.5 weighting combination emerged as the best
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combination for two models (models 1 and 2) only. On the
contrary, combinations like 0−0.1−0.9, 0−0.2−0.8, 0.1−0−
0.9, 0.1−0.1−0.8, and 0.2−0−0.8 are the winners using
automated weighting selection for the test set predictions. In
the automated weighting selection-based analysis, the %
correct predictions for five models for the test set are 86.54,
88.46, 92.31, 94.23, and 86.54%. Now, considering the winner
weighting combinations used manually for the true external
test set, the % correct predictions are 68.42, 84.21, 86.84,
78.95, and 78.95% (Table S8). Although 0.5−0−0.5 weighting
is not the winner for the test set predictions, still we have
employed this combination to check the % corrected
predictions for the true external test set, and we found the
obtained % values (68.42, 84.21, 84.21, 84.21, and 81.58%)
very similar to or even better in few cases than those obtained
in case of the best combination derived from the automated
weighting selection based analysis. It is important to note that
we have checked the models 3−5 for the test set predictions
where 0.5−0−0.5 combination is not the winner with this
specific combination to know how the % correct predictions
are changing compared with the predictions when the best
weighting combination has been employed. We found the %
correct predictions are 84.21, 84.21 and 81.58% for models 3,
4, and 5, respectively, which are lower values compared with
the best ones, but still acceptable considering more than 80%
correct predictions. Therefore, for the final analysis of five
models for the test set and the true external test set, we have
employed 0.5−0−0.5 combination as the optimum weighting
for this dataset considering automated weighting selection
based analysis and taking into account the outcome from other
datasets. The final % correct predictions along with values of
statistical parameters and the AD information for this dataset
are provided in Table 8. The values of different descriptors and
the composition of training and test sets are reported in
Supporting Information excel files. The values of R2 range from
0.76 to 0.74, Q2 range from 0.66 to 0.72, and QExt‑F1

2 or Rpred
2

range from 0.70 to 0.80 for the test sets, while the values of
QExt‑F1

2 range from 0.75 to 0.85 for the true external test set
considering all five models; this supports the robustness,
quality, and high predictability of the developed models. Out
of 52 test set compounds, 3 compounds each for models 1−4
and 4 compounds for model 5 remained outside the AD
defined by the respective training data (Table 8). On the
contrary, out of the 38 true external set data points, 1
compound each for models 2−5 and 2 compounds for model 1
reside outside the domain of applicability (Table 8).
3.2.4. True External Dataset 4: Sweetness Potency of

Organic Molecules. Out of five models, only one combination,
that is, 0.1−0.5−0.4 emerged for all five test sets with the
automated weighting selection scheme. In the automated
weighting selection-based analysis, with the winner combina-
tion from automated weighting, the % correct predictions for
five test sets are 95, 95, 80, 93.75, and 92.5%. Now, considering
the specific combinations manually for true external test sets,
the % correct predictions are 80, 83.33, 75, 73.33, and 86.67%
(Table S8). For this dataset, 0.5−0−0.5 weighting combina-
tion occurred in three models (models 2, 4, and 5). Although,
0.5−0−0.5 weighting is not the winner for test set predictions,
still we have employed this combination to check the % correct
predictions for the true external test set and we found the %
correct prediction values (93.75, 95, 73.75, 93.75, and 92.5%)
are almost similar for four models and this is a little bit lower
for model 3 compared with the performance observed with the

best weighting combination as found from the automated
weighting selection-based analysis. It is important to note that
we found the % correct predictions for five true external sets
with the 0.5−0−0.5 combination are 80, 83.33, 75, 73.33, and
86.67% which are completely same with those obtained with
the winner combination weighting 0.1−0.5−0.4 for this
dataset. Therefore, for the final analysis of the test set and
the true external set for the five models, we have employed
0.5−0−0.5 combination as the optimum weighting for this
dataset considering automated weighting selection-based
analysis and taking into account outcome from other datasets.
The final % correct predictions along with values of statistical
parameters and AD information for this dataset are provided in
Table 9. The values of different descriptors and composition of
training and test sets are reported in Supporting Information
excel files. The values of R2 range from 0.71 to 0.86, Q2 range
from 0.69 to 0.85, and QExt‑F1

2 or Rpred
2 range from 0.75 to 0.87

for the test sets, while the values of QExt‑F1
2 range from 0.64 to

0.79 for the true external test set considering all 5 models,
which supports the robustness, quality, and high predictability
of the developed models. Out of 80 test set data points, 1, 2, 2,
1, and 1 molecules were outside the domain of applicability for
models 1, 2, 3, 4, and 5, respectively. On the contrary, out of
60 true external test set compounds, not a single compound
remained outside the AD zone defined by the respective
training data. On the basis of the number of data points and
considering the AD study and % correct predictions, the
statistical quality and predictability of the developed models
are highly reliable and confident ones.

3.3. Results of Retrospective Analysis. In the
retrospective analysis, we have closely checked the effects of
each weighting combination on the composite score for
predictions from a specific model of an explicit dataset taking
into account different aspects such as closeness of the response
of a particular test set compound to the training set response
mean, ED distance, and Jaccard similarity coefficient between a
test compound and its close congeners in the training set along
with AD of each test set compound. We have identified the
cases showing nonconcordance between the composite score
(based on our defined criteria) and the prediction score (based
on absolute predicted residual). From several examples, we
have come to the following generalized consensus that
nonconcordance between the two scores occur mostly in the
following cases:

1. Euclidean distance value is high (>0.025) (a higher
Euclidean distance means lower similarity of a test
compound to training compounds, thus the model may
not be able to efficiently predict such compounds); or

2. The Jaccard coefficient between a test compound and its
closest congener in the training set is lower (signifying
lower degree similarity); or

3. The test compound’s (actual) response value is away
from training response mean (in the range of 1 SD to 2
SD or more than 2 SD from training response mean).
The model performs the best when a particular data
point has a response close to training response mean.

While determining the quality of predictions, we have not
apparently found any significant role of the AD test. Majority
of compounds which are showing nonconcordance between
two scores (because of any one of the abovementioned three
criteria) are inside the AD. This observation is also supported
by the obtained optimum weighting combination of 0.5−0−
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0.5 for all modeled datasets. In this particular weighting
combination, the obtained results are most acceptable and
maximum number of compounds show concordance between
the two scoring system (all CSV files are provided in the
Supporting Information). Considering the score derived from
absolute predicted residual as a reflection of the true prediction
quality, a high degree of concordance between the two scoring
system actually indicates the reliability of the suggested criteria
in evaluating the quality of predictions for new compounds.
However, this does not mean that AD is not important. All
QSAR models are developed based on a similarity principle,
and in AD we usually measure chemical similarity. Within the
acceptable AD zone of a model, there may be different clusters
of compounds for which prediction quality of the model might
be different. This aspect is taken into account by the criterion 1
of the scoring system which also account for chemical
similarity to some extent.
Considering the results of retrospective analysis, we have

proposed that the weighting combination 0.5−0−0.5 is the
optimum one among the studied combinations for the studied
datasets. In the similar way, we have performed a retrospective
analysis for true external datasets (vide infra) and a similar
trend was observed where 0.5−0−0.5 weighting evolved as the
winner for those datasets for reliable and confident predictions
in terms of % correct predictions (degree of concordance
between two scoring systems). The occurrences of weighting
0.5−0−0.5 as the winner combination for maximum % correct
predictions for the developed models are shown in radar plots
for individual datasets and all datasets in Figure 3. Although
the AD feature might appear useless due to the occurrence of
its 0 weighting in most of the cases, it may be noted that the
other two studied aspects (LOO performance and closeness to
the training set response mean) are other forms to define a sort
of “applicability potential” or “AD”. In other words, the
concept of AD might still be necessary, while the method to
evaluate or represent it properly may be a challenging task to
explore.

4. OVERVIEW AND CONCLUSION

The real challenge of a QSAR model is to estimate the
reliability of predictions when the model is applied to a
completely new data set (true external set) even when the new
data points are within AD of the developed model. Thus, in the
present study, we have classified the quality of predictions for
the test set or true external set into three groups “good”,
“moderate”, and “bad” based on absolute prediction errors.
Then, we have used three criteria as suggested earlier in
different weighting schemes for making a composite score of
predictions. The observations are summarized as following:
It was found that using the most frequently appearing

weighting scheme 0.5−0−0.5, the composite score-based
categorization showed concordance with absolute prediction
error-based categorization for more than 80% test data points
while working with five different datasets with 15 models for
each set derived in three different splitting techniques. These
observations were also confirmed with four true external sets
suggesting the applicability of the scheme to judge the
reliability of predictions for new datasets.
For QSAR modelers’ and beginners’ ease, we have

developed an user friendly tool named Prediction Reliability
Indicator to check the prediction reliability score, followed by
classification of predictions in term of “good”, “moderate”,
“bad” along with details about AD information and QSAR
statistical parameters. The tool is presently valid for MLR
models only.
The studied datasets in the present study showed 0.5−0−0.5

weighting combination as one of the optimum ones. For
almost 80% of models, we got the optimum weighting 0.5−0−
0.5 as the best combination considering the three criteria. On
the basis of this, we can find that there is no apparent
contribution from the similarity-based AD weighting. There
are many evidences where a compound within AD may have
bad predictions and a compound outside AD might have good
predictions.19 Therefore, the quality of predictions might not
be completely related to AD. However, the first criterion of
LOO-based MAE based on close 10 training compounds
capture the behavior of similar 10 training compounds.

Figure 3. Radar plots showing occurrence (in fractions of all cases) of weighting 0.5−0−0.5 for maximum % correct predictions for individual
datasets and combined datasets.
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Therefore, it appears that it is not only closeness or similarity
that is important, but behavior of the similar compounds for
being predicted by a particular model is also important, and
this actually varies for different clusters of compounds because
of a fixed composition of the model with respect to descriptors.
Thus, we can conclude that chemical AD may only grossly
show reliability of predictions but the criteria proposed here
can reflect both reliability and prediction quality. The
employed datasets in this present study showed 0.5−0−0.5
weighting combination as one of the optimum ones. However,
users should check the optimum weighting for their respective
dataset employing their own training and test sets. Once they
are sure with their optimum weighting for their respective
dataset, they should use the obtained weighting manually for
the true external set for classifying the quality of predictions for
individual compounds.
Users can set different options like Euclidean cutoff distance

and threshold value based on their requirement under the tool
GUI. Along with the mentioned outcomes, users can get
information like closest training compound, Euclidean
distance, and generalized Jaccard coefficient for individual
test set and true external test set compounds denoting their
similarity to their close congeners in the training set.
We can finally conclude that the reliability of predictions for

a new compound can be confidently judged using the
developed tool Prediction Reliability Indicator.
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