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Abstract

Behavioral experience has long been known to influence functional outcome after brain injury, but 

only recently has its pervasive role in the reorganization of the adult brain after damage become 

appreciated. We briefly review findings from animal models on the role of experience in shaping 

neuronal events after stroke-like injury. Experience-dependent neural plasticity can be enhanced or 

impaired by brain damage, depending upon injury parameters and timing. The neuronal growth 

response to some experiences is heightened due to interactions with denervation-induced 

plasticity. This includes compensatory behavioral strategies developed in response to functional 

impairments. Early behavioral experiences can constrain later experience-dependent plasticity, 

leading to suboptimal functional outcome. Time dependencies and facets of neural growth patterns 

are reminiscent of experience-expectant processes that shape brain development. As with sensitive 

periods in brain development, this process may establish behavioral patterns early after brain 

injuries that are relatively resistant to later change.
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INTRODUCTION

“… genes need only roughly outline the pattern of neural connectivity…leaving the 

more specific details to be determined through the organism’s interactions with its 

environment.” (Greenough, Black & Wallace, 1987, p. 543)

In the development and maturation of the nervous system, experience is ubiquitously 

involved in shaping neural and non-neural structure and function, from the level of gene 

expression to activity patterns across systems. This is an understanding propelled by the 

findings and conceptual insights of Greenough and his colleagues (e.g., Greenough, et al., 

1987; 2001; Weiler, Wang, & Greenough, 1994). Brain injury in adulthood results in 

widespread degenerative effects that initiate a prolonged cascade of reorganization of 

synaptic connections and activity patterns of surviving neurons. Though the adult brain 
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seems reticent to grow axons long distances (Cheatwood, Emerick, & Kartje, 2008), injury 

sometimes reveals an impressive capacity for reactive collateral sprouting (Nudo, 2007), 

dendritic remodeling (Brown and Murphy, 2008), cell proliferation (Carmichael, 2006; 

Lichtenwalner & Parent, 2006), and glial and vascular plasticity (Carmichael, 2006). Many 

studies link aspects of the regenerative responses to functional improvement (reviewed in 

Allred & Jones, 2008a; Cheatwood et al., 2008; Darian-Smith, 2009; Johansson, 2004; 

Nudo, 2007).

The similarities between the developing brain and the dynamic milieu of the adult injured 

brain have been noted by many (e.g., Carmichael, 2006; Cramer & Chopp, 2000; Finger & 

Almli, 1985; Murphy & Corbett, 2009). When examined in detail, the analogy to brain 

development is stretched, e.g., by the maturity of remaining circuits, injury-induced 

pathological events and differences in microenvironments (Carmichael, 2006; Finger and 

Almli 1985; Galván, 2010; Kolb & Teskey, 2010). We nevertheless believe that the 

comparison with brain development is useful when considering the central role of behavioral 

experience in re-shaping the brain after injury. Some post-injury neural events seem 

especially reminiscent of the brain developmental process that Greenough and colleagues 

refer to as “experience-expectant” (Greenough et al., 1987; 2001). This is the process in 

which experiences available during early sensitive periods sculpt neural circuits by selective 

stabilization of some synapses at the expense of insufficiently activated ones. We review 

findings indicating that this process of synaptic competition is at play in reorganizing the 

adult injured brain.

There is a growing understanding of the cellular and molecular changes that follow injury to 

the adult nervous system (Carmichael, 2006; Keyvani & Schallert, 2002). However, outside 

of our animal models, we still cannot precisely predict neural events and their behavioral 

consequences after any given CNS injury. The problem seems daunting since the effects of 

injury vary with injury locus, size (Dancause et al., 2006) and type (Carmichael & Chesselet, 

2002), as well as the age, sex and various other characteristics of the individual (see Dobkin, 

2007). However, such breadth can also be said to exist within the fields of development and 

learning, in which model systems have been used to divide and conquer the problems (see 

Churchill et al., 2002). This strategy has yielded many general principles of experience-

dependent plasticity (Kleim & Jones, 2008). It has also made it clear that, without 

considering the role of experience, we are unlikely to tackle the problem of how the brain 

reorganizes when it is damaged. This is the inspiration and context for our model systems 

approach for investigating experience-injury interactions after stroke.

Using Rodents to Model Upper Extremity Impairment after Stroke

Upper extremity (hand and arm) impairments are a leading long-term disability in stroke 

survivors. Rats use their forepaws in dexterous ways that bear some homologies to human 

hand use (Whishaw & Coles, 1996). There is no reliable population bias for limb dominance 

in rats, but they show specializations in the way they use either paw and a strong limb 

preference for lateralized tasks such as reaching to grasp small food pieces (Allred et al., 

2008; Peterson, 1934; Whishaw & Coles, 1996). Several behavioral tasks can sensitively 

characterize and manipulate forelimb behavior in rats (Fig. 1). Mice are also extremely 
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dexterous in forelimb use (Farr & Whishaw, 2002; Tennant & Jones, 2009; Tennant, Asay, 

Allred, Ozburn & Jones, 2010; Xu et al., 2009). Their intrinsic manual dexterity, and certain 

homologies with primates in motor systems organization, including the large territory 

devoted to forelimb movements in motor cortex (Fig. 1A; Donoghue & Wise, 1983; Tennant, 

Adkins, Donlan et al., 2010) have made mice and rats increasingly popular for studies of 

motor skill learning and recovery.

The motor cortex undergoes neural plasticity during motor skill learning (Monfils, Plautz, & 

Kleim, 2005). Greenough, Larson and Withers (1985) were the first to report that learning a 

skilled forelimb reaching task leads to neuronal structural plasticity (growth of dendrites) in 

the adult rat cortex (see also Withers & Greenough, 1989). Since then, many studies in 

humans and animal models have investigated the relationships between motor skill 

acquisition and motor cortical plasticity (e.g., Kleim, Lussnig, Schwarz, Comery, & 

Greenough, 1996; Luft, Buitrago, Ringer, Dichgans, & Schulz, 2004; Monfils & Teskey, 

2004; Monfils et al., 2005; Nudo, Milliken, Jenkins, & Merzenich, 1996; Pavlides, 

Miyashita, & Asanuma, 1993; Rioult-Pedotti, Friedman, & Donoghue, 2000; Withers & 

Greenough, 1989; Xu et al., 2009). Studies of rodent motor cortex have largely followed the 

precedent of Greenough et al. (1985) by focusing on how they learn to skillfully perform 

reach-to-grasp tasks. Skill acquisition in adult animals involves activity-dependent plasticity 

that is reflected in both neuronal structural changes and in reorganization of movement 

representations within the primary motor cortex (Monfils et al., 2005). Cortical synaptic 

structural and functional changes are initiated during early stages of practice (Kleim et al., 

1996; Monfils & Teskey, 2004; Xu et al., 2009) and stabilized by repetition and time (Kleim 

et al., 2004; Tennant, Adkins, Scalco et al., 2010). Skill acquisition is impaired when 

plasticity of the motor cortex is disrupted (Conner, Culberson, Packowski, Chiba, & 

Tuszynski, 2003; Luft et al., 2004).

In rats and mice, the primary motor and somatosensory regions of cortex partially overlap in 

the forelimb representation area (Fig. 1A); hence, this region is termed “sensorimotor” 

cortex (SMC). After unilateral SMC lesions, including stroke-like ischemic infarcts, rats 

have sensory and motor deficits in the contralateral-to-the-lesion (contralesional) forelimb 

(Jones & Schallert, 1992; Whishaw, 2000). We refer to this as the “paretic” limb to use 

terminology consistent with the clinical literature in reference to the weakness and partial 

loss of movement resulting from unilateral cerebral injury. Although some of these 

impairments recover over time, using sufficiently sensitive tasks, such as the skilled reaching 

task (Fig. 1), profound and permanent behavioral impairments can occur. The rats begin to 

disuse the paretic limb, as is evident in home cage observations of postural support and in 

measures of dexterous food handling (Allred et al., 2008; Jones & Schallert, 1992). They 

also begin to rely on the ipsilesional, “nonparetic”, forelimb (Fig. 1D & F) despite subtle 

deficits in this limb (Hsu & Jones, 2006). This disuse of the paretic forelimb and 

compensation with the nonparetic limb in rats resembles the phenomenon of learned nonuse 

in human stroke survivors with upper extremity impairments (Taub, Uswatte, Mark, & 

Morris, 2006).
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Converging Experience- and Injury-Induced Plasticity

“In the harsher world of nature, any incapacitating or debilitating injury affects the 

probability of survival… Thus, characteristics which enhance rate of recovery, such 

as the ability to benefit from experience, may be naturally selected.” (Greenough, 

Fass, & DeVoogd, 1976, p. 12)

It can be expected that injury- and learning-related plasticity interact when they converge 

upon the same neuronal circuits. They are both activity-dependent (Brus-Ramer, Carmel, 

Chakrabarty, & Martin, 2007; Di Filippo et al., 2008) and they have overlapping cellular 

mechanisms for the formation and strengthening of synapses, the restructuring of dendrites 

and coordination of glial and vascular plasticity (Grossman, Churchill, Bates, Kleim, & 

Greenough, 2002; Jones & Greenough, 2002; Nudo, 2007). The neural mechanisms of 

learning are proposed to have an evolutionary basis in primitive cellular responses to injury 

(Sung & Ambron, 2004; Walters & Ambron, 1995). (This idea stems from findings of strong 

overlap in the molecular pathways activated in Aplysia neurons during learning and after 

injury.) Furthermore, their convergence is likely widespread in the injured brain. After 

surviving brain damage, animals undergo dramatic behavioral change because they are 

coping with, and learning to compensate for, functional deficits resulting from the injury 

(Jones & Schallert, 1994; Taub et al., 2006; Whishaw, 2000). The resulting behavioral 

changes can have a profound impact on the underlying neuronal populations that are 

simultaneously responding to the degenerative effects of the initial injury.

Unilateral SMC lesions result in a loss of its transcallosal projections. The degeneration of 

these projections alone triggers glial reactivity, neuronal plasticity and other changes in the 

contralesional cortex, as can be demonstrated by corpus callosum transections (Adkins, 

Bury, & Jones, 2002; Bury, Eichhorn, Kotzer, & Jones, 2000; Gomide & Chadi, 1999). 

However, after unilateral SMC lesions, this occurs at the same time that animals are learning 

to rely on the nonparetic limb, which asserts behavioral pressures on the same region (Jones 

& Schallert, 1992). Thus, there is a convergence in both time and location of behavioral and 

degenerative pressures. This convergence results in neuronal structural plasticity in the 

contralesional cortex that cannot be reproduced as a result of either transcallosal denervation 

or behavioral manipulations alone (Adkins et al., 2002; Bury, Adkins et al., 2000; Jones & 

Schallert, 1994), or if the denervation and behavioral change are uncoupled temporally 

(Jones & Allred, 2004).

The neuronal structural response to this experience-injury interaction resembles the 

sculpting associated with “experience-expectant” development of cortex (Greenough et al., 

1987), in that the dendrites in the contralesional cortex overgrow and then are partially 

eliminated (Jones & Schallert, 1992). The pruning phase corresponds with the appearance of 

greater numbers of mature, efficacious synapses (e.g., perforated synapses; Jones, 1999). On 

the behavioral level, animals show a paradoxical enhancement in the ability to learn new 

motor skills with the nonparetic limb (Bury & Jones, 2002, reviewed in Allred & Jones, 

2008a). Rats have subtle impairments in using the nonparetic limb in motor skills 

established before the injury; however, they can more quickly acquire a novel motor skill 

(skilled reaching) with this limb compared to intact animals (Hsu & Jones, 2006). This is 

also seen if animals are trained on a novel motor skill soon after transecting the corpus 
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callosum (Bury & Jones, 2004). Thus, the convergence of learning (training in a novel task) 

and anatomical denervation is sufficient for the effect.

These results indicate that neural responses to degeneration can sometimes enhance 

experience-dependent plasticity. In this case, it enhances plasticity in the same circuit being 

relied upon for the development of behavioral compensation with the nonparetic body side. 

In the context of the evolutionary selection pressures discussed by Greenough et al. (1976), 

this might enable an animal to rapidly benefit from behavioral experiences in a way that 

optimizes its chances of survival after neural injury. However, this more rapid solution is 

probably suboptimal for the return of more normal function in the paretic limb. In human 

stroke survivors, debility of the paretic arm leads to its disuse, which limits functional 

improvement, a phenomenon termed “learned non-use” (Taub et al., 2006). This could be 

exacerbated by the facilitation of neural plasticity underlying learning with the nonparetic 

limb. Consistent with this, when rats are trained with the nonparetic limb on a skilled 

reaching task, it impairs performance of this task with the paretic limb and also exaggerates 

its disuse in other behavioral measures (Allred, Maldonado, Hsu & Jones, 2005; Allred & 

Jones, 2008a).

Skill acquisition with the nonparetic limb can also negatively impact the way the cortex of 

the injured hemisphere responds to experience with the paretic limb. During repetitive 

activity, the transcription factor ΔFosB accumulates gradually in neurons and persists over 

time spans of at least days (McClung et al., 2004), making it amenable for assaying neuronal 

activation resulting from gradual, practice-dependent, behavioral change. Neuronal 

immunolabeling for FosB/ΔFosB in the perilesion cortex after training with the paretic limb 

is reduced in rats that had previously been trained with the nonparetic limb (Allred & Jones, 

2008b). The reason for this apparent constraint of neuronal activation in the injured 

hemisphere by the nonparetic limb is not yet clear, but it may reflect experience-dependent 

alterations in interhemispheric activity. Cutting the callosal connections between the injured 

and intact hemisphere mitigates the maladaptive effects of learning with the nonparetic limb 

(Allred, Cappellini, & Jones, 2010). In human stroke survivors and in animal models, 

recovery of the paretic limb has been linked to more normal lateralization of hemispheric 

activity (Cramer & Riley, 2008) and plasticity in the residual cortex of the injured 

hemisphere (discussed below). Behavioral experience with the nonparetic limb may 

exacerbate abnormal interhemispheric activity and restrict adaptive plasticity in the injured 

hemisphere.

Here we focus on findings from our own animal model, but many other studies have found 

that aspects of the brain’s response to injury can be altered, often bi-directionally, by 

behavioral manipulations, as reviewed elsewhere (Johansson, 2004; Kleim, Jones, & 

Schallert, 2003; Nudo, 2007; Vaynman & Gomez-Pinilla, 2005). The ease of finding these 

effects suggests that the convergence of behavior and injury on the same neural systems is a 

very common occurrence after stroke and other types of CNS injury. Furthermore, 

experience has the capacity to influence degenerative and regenerative responses in ways 

that can both enhance and impair function, sometimes simultaneously, as in our example of 

training the nonparetic limb following stroke. It is therefore important to understand these 
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interactions in order to avoid worsening function, in addition to finding new ways to 

improve it.

Using Behavioral Manipulations to Improve Brain Reorganization after Injury

“…whatever occurs during these early critical periods, whether or not appropriate, 

appears to “set” the brain, such that in later functioning its range of response is 

limited by those experiences.” (Greenough et al, 1976, p. 13)

We have many tools for manipulating neural activity and connectivity, but there is currently 

no better way of doing this in precisely the manner needed to improve function than to use 

the neural mechanisms of learning. The concept of using experience-dependent neural 

plasticity as a tool to remodel the damaged brain has been embraced in the stroke 

rehabilitation research community (e.g., Gonzalez Rothi, Musson, Rosenbek, & Sapienza, 

2008; Krakauer, 2006; Taub et al., 2006), but in current clinical practice this is primarily a 

conceptual awareness. A better understanding of experience effects on the reorganization of 

the damaged brain may yield more concrete neural targets for behavioral interventions.

Many studies have now found that “rehabilitative” training (that which improves function, 

typically with task practice) can directly influence the structural and functional 

reorganization of residual tissue after cerebral damage (Johansson, 2004; Jones & Adkins, 

2010; Nudo, 2007). Instrumental to this concept was a pivotal study by Nudo, Wise, 

SiFuentes, & Milliken (1996), in which adult squirrel monkeys were given ischemic lesions 

of the distal forelimb representation of the primary motor cortex. Following several weeks of 

spontaneous recovery, in the absence of training, the remaining distal forelimb 

representation was reduced in the perilesion cortex. Post-lesion rehabilitative training in 

skilled reaching with the paretic limb prevented the loss of hand representation territory in 

perilesion cortex and improved hand function. Similarly, in rats following unilateral cortical 

lesions, extensive skilled reach training with the paretic forelimb improves motor function 

and restructuring of motor maps within the remaining cortex of the injured hemisphere 

(Ramanathan, Conner, & Tuszynski, 2006; Winship & Murphy, 2009). It also enhances the 

survival of newly generated cells in this region (Maldonado & Jones, 2009).

These findings indicate that behavioral experience in the form of rehabilitative training can 

modulate cortical plasticity and motor recovery following cerebral injury. However, unlike 

the example of heightened sensitivity to experience in the contralesional cortex discussed 

above, the injured cortex can have impaired experience-dependent plasticity (Carmichael, 

2006; Di Filippo et al., 2008; Jablonka, Witte, & Kossut, 2007). There is a major increase in 

many growth promoting signals after injury (Carmichael, 2006; Cramer & Chopp, 2000; 

Keyvani & Schallert, 2002; Murphy & Corbett, 2009). However, surviving neurons being 

called upon to grow new connections may have to overcome time-dependent elevations in 

growth inhibitory molecules (Benowitz & Carmichael., 2010; Carmichael, 2006; Cheatwood 

et al., 2008). They may also have to surmount dysfunction and metabolic limitations 

resulting from partial denervation, disturbed glial support (Anderson et al., 2003), impaired 

neurovascular coupling (del Zoppo, 2010), and altered cortical and interhemispheric patterns 

of excitatory and inhibitory activity (Neumann-Haefelin & Witte, 2000; Ward & Cohen, 

2004). An enduring elevation in tonic inhibition in peri-infarct cortex (Clarkson et al., 2010) 
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also probably works against activity-dependent synapse formation. Other types of brain 

injury (ablation and traumatic brain injury) may result in an even more unfavorable 

environment for experience-dependent neuronal plasticity (Carmichael & Chesselet, 2002; 

Phillips & Reeves, 2001). Dendrites and axons do grow after stroke, sometimes 

spectacularly (e.g., Brown, Boyd & Murphy, 2010; Carmichael & Chesselet, 2002; 

Dancause et al., 2005; Winship & Murphy, 2009). However, the functional improvements 

that can be driven by rehabilitative training alone are laborious to achieve and often far from 

sufficient to restore normal performance levels. Thus, an increasing focus of current research 

is to combine behavioral manipulations with other treatments intended to facilitate 

experience-dependent plasticity after brain injury (e.g., Huang & Krakauer, 2009; Page, 

Szaflarski, Eliassen, Pan, & Cramer, 2009; Plow, Carey, Nudo, & Pascual-Leone, 2009).

Other behavioral manipulations, including complex environment housing and exercise, can 

influence post-injury neural and non-neural events. For example, exercise can enhance 

recovery on cognitive tasks in traumatic brain injury models (Vaynman & Gomez-Pinilla, 

2005). This is linked with increased expression of synaptic-plasticity related molecules in 

the hippocampus. Complex environment housing has diverse effects on neural events after 

brain injury, and is typically found to be beneficial to behavioral outcome, as reviewed in 

detailed elsewhere (Johansson, 2004; Will et al., 2004).

The time of onset of behavioral training following focal brain injury is an important variable 

in its effects. This is consistent with the interaction of training with injury-induced plasticity, 

which evolves over time after the initial damage (Carmichael, 2006). In monkeys, a delay in 

the onset of rehabilitative reach training until one month after motor cortex damage resulted 

in diminished neural reorganization compared with earlier training (Barbay et al., 2006). In 

rats receiving focal ischemic brain injury, early (5 days post-injury) initiation of 

rehabilitative training, enhanced dendritic growth and skilled forelimb function as compared 

to delayed training (Biernaskie, Chernenko, & Corbett, 2004). Here again it is tempting to 

draw parallels with brain development. If experience interacts with time sensitive injury-

induced changes, then it might shape brain reorganization in a manner that is long lasting 

and that could not be accomplished at more chronic post-injury time points.

There is also the capacity to exacerbate degeneration and worsen behavioral function, 

especially with early behavioral manipulations. This has been found with both intense forced 

forelimb use procedures early after cortical lesions (Schallert, Fleming, & Woodlee, 2003) 

and with voluntary exercise early after traumatic brain injury, an effect that interacts with 

injury severity (Griesbach, Gomez-Pinilla, & Hovda, 2007; see also Ploughman et al., 2007). 

Thus, a major unresolved issue in the field is how to safely capitalize upon early sensitive 

periods after brain injury, when the neuronal growth-permissive environment is at its peak, 

without worsening function by exaggerating degeneration or promoting maladaptive neural 

plasticity.

CONCLUSIONS

Injury places the brain in a malleable state in which it is unusually responsive to some 

behavioral experiences. Experiences that have the capacity to shape neural reorganization 
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after CNS damage include not just overt manipulations, but also the changes in behavioral 

strategies that animals develop on their own to compensate for impairments. The sensitivity 

to experience is reflected in exuberant neuronal growth responses in the cortex that resemble 

aspects of the experience-expectant processes involved in refinement of cortical circuits 

during development. However, the heightened sensitivity can have maladaptive functional 

consequences. Furthermore, some brain regions show impaired experience-dependent 

plasticity, including areas proximal to an injury that may be particularly important for 

functional outcome. Degenerative processes in these same areas can also be exacerbated by 

too early and too intense behavioral activity.

At present, we lack a sufficient understanding of experience-injury interactions to predict 

their contribution after CNS injury and to manipulate them to optimize functional outcome. 

Outside of our animal models, it is unclear how to capitalize on sensitive time windows after 

injury without risking an exacerbation of degenerative effects and functional impairments. It 

is also unclear how to take advantage of neuronal growth permissive environments that 

facilitate learning-related plasticity without promoting neural changes that reinforce 

suboptimal, behavioral strategies. As noted above, this topic seems daunting in its breadth 

and complexity (see Dobkin, 2007). We take inspiration in the remarkable success achieved 

by Greenough and his colleagues in uncovering and conceptualizing principles of 

experience-dependent plasticity and, as a result, dramatically advancing our understanding 

of normal and abnormal brain development and adult brain function.
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Figure 1. 
(A) Ischemic lesions of the sensorimotor cortex result in impairments in the contralesional, 

paretic, forelimb (black arrows) and compensation with the nonparetic limb (white arrows). 

Synaptic structural plasticity in the contralesional motor cortex occurs due to denervation of 

transcallosal projections and increased reliance on the nonparetic limb. The residual cortex 

of the injured hemisphere can be driven to undergo greater neuronal plasticity with focused 

training (“rehabilitative training) of the paretic limb. A representative map of forelimb 

movement representations (green and blue, an average of n = 7 maps) is shown in the intact 

hemisphere. M1, primary motor cortex, S1, primary somatosensory cortex, *perforated 

synapse, scale bars = 400nm. (B) Rats rely more on the nonparetic limb for postural support. 

(C) In handling food pieces (in this example, a piece of uncooked vermicelli pasta), normal 

rats use dexterous forepaw movements. (D) After unilateral SMC lesions, rats use the paretic 

forelimb less and in less coordinated ways. (E) In skilled reaching, normal rats retrieve food 

pellets using a coordinated sequence of proximal and distal forelimb movements. (F) After 

unilateral SMC lesions, rats have movement abnormalities and frequently compensate with 

the nonparetic paw.
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