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Abstract

Introduction

Compositional data analysis is one appropriate method for co-dependent data, even when

data are collected for a subdivision of the 24-hour period, such as the waking day. Objec-

tives were to use compositional analyses to examine the combined and relative associations

of sedentary time (ST), light-intensity physical activity (LPA), moderate-intensity physical

activity (MPA), and vigorous-intensity physical activity (VPA) with cardiometabolic biomark-

ers in a representative sample of children and youth.

Methods

This cross-sectional study included 2544 participants aged 6–17 years from the 2003–2006

United States National Health and Nutrition Examination Survey. ST (<100 counts per min-

ute), LPA (100 counts per minute to <4 METs; Freedson age-specific equation), MPA (4 to

<7 METs), and VPA (�7 METs) were accelerometer-derived. Cardiometabolic biomarkers

included waist circumference, body mass index (BMI) z-score, HDL-cholesterol, C-reactive

protein, and blood pressure. Triglycerides, glucose, insulin, and LDL-cholesterol were mea-

sured in a fasting sub-sample of adolescents (n = 670). Compositional linear regression

models were conducted.

Results

The composition of ST, LPA, MPA, and VPA was significantly associated with BMI z-score,

log waist circumference, systolic and diastolic blood pressure, HDL-cholesterol, and log

plasma glucose (variance explained: 1–29%). Relative to the other three behaviors, VPA

was negatively associated with BMI z-score (γVPA = -0.206, p = 0.005) and waist
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circumference (γVPA = -0.03, p = 0.001). Conversely, ST was positively associated with

waist circumference (γST = 0.029, p = 0.013). ST and VPA were also positively associated

with diastolic blood pressure (γST = 2.700, p = 0.018; γVPA = 1.246, p = 0.038), relative to

the other behaviors, whereas negative associations were observed for LPA (γLPA = -2.892,

p = 0.026). Finally, VPA was positively associated with HDL-cholesterol, relative to other

behaviors (γVPA = 0.058, p<0.001).

Conclusions

The ST and physical activity composition appears important for many aspects of cardiome-

tabolic health in children and youth. Compositions with more time in higher-intensity activi-

ties may be better for some aspects of cardiometabolic health.

Introduction

Children and youth can engage in behaviors of various intensities throughout the day. The

role of moderate- to vigorous-intensity physical activity (MVPA) in the promotion of health

and the prevention of disease in children and youth has been the focus of numerous studies.

[1] Though there has been less research that has considered moderate-intensity physical activ-

ity (MPA) and vigorous-intensity physical activity (VPA) as separate behaviors.[1] At the

other end of the intensity spectrum, there has been extraordinary growth in sedentary behavior

research over the past decade,[2,3] given it makes up a substantial portion (~50–60%) of the

waking day among children and youth.[4,5] Light-intensity physical activity (LPA), which also

makes up a large proportion of the waking day (~30%),[4] has also been the focus of increasing

research.[1]

The increasing research on sedentary behavior and LPA has resulted in growing discussions

and debate on whether sedentary behavior predicts health indicators independent of physical

activity.[6] A number of studies in children and youth have adjusted for MVPA in regression

models examining the association between sedentary behavior and health indicators.[2] How-

ever, LPA is typically not adjusted for because of methodological issues. Specifically, LPA is

highly correlated with sedentary behavior and therefore including both variables in a regres-

sion model results in collinearity issues.[6] In fact, the total time spent in sedentary behavior

(ST), LPA, MPA, and VPA during the waking day is finite and perfectly collinear.[6] These

methodological issues make it challenging to understand the collective impact of these behav-

iors on health and how best to intervene.

Compositional analysis is one appropriate method for finite and co-dependent data but has

only recently been used in the physical activity field.[7,8] This method has primarily been used

in samples of children and youth with 24-hour data (i.e., ST, LPA, MPA, VPA, sleep duration)

and findings across studies indicate that the composition of behaviors within the 24-hour

period is important for health.[8–11] However, some studies are only interested in specific set-

tings to inform targeted interventions (e.g., school)[12] and some studies have not collected

24-hour data. For example, the National Health and Nutrition Examination Survey

(NHANES) has previously used a waking day protocol for accelerometer data with no corre-

sponding sleep duration data in participants <16 years old. Data collected for a subdivision of

the 24-hour period (e.g., waking day) still represents a finite amount of time making composi-

tional analysis an appropriate method.[7] Therefore, the objectives of this study were to use
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compositional analyses to examine: 1) the combined associations of ST, LPA, MPA, and VPA

with cardiometabolic biomarkers; and (2) the association of time spent in ST, LPA, MPA, and

VPA with cardiometabolic biomarkers relative to the time spent in the other three behaviors

in a representative sample of children and youth from the NHANES.

Materials and methods

Participants

Participants were 6–17 year olds of the 2003–2004 and 2005–2006 cycles of the NHANES. This

large survey uses a repeated cross-sectional design and involves a complex, four-stage sampling

procedure to capture a nationally representative sample of the resident civilian noninstitution-

alized United States population.[13] Additional details regarding NHANES are available else-

where.[13–15] Across the two cycles, a total of 5,607 participants aged 6–17 years were

enrolled, and a total of 4,672 wore an accelerometer making them eligible for this study. Ethics

approval was obtained from the National Centre for Health Statistics Research Ethics Review

Board (Protocol # 98–12; Protocol # 2005–06). Written informed consent was obtained from

the parents/guardians of all participants. Consent/assent was also obtained from those 7–17

years.[15]

Sedentary time and physical activity

ST and physical activity (PA) were measured with waist-worn uniaxial ActiGraph 7164 accel-

erometers (ActiGraph, Ft. Walton Beach, FL). Participants were given the accelerometer at a

mobile examination center as part of their physical exam and asked to wear it for 7 consecutive

days apart from sleeping and water-based activities.[14] After data download, biologically

implausible values were excluded by NHANES staff.[14] Data were collected in one minute

epochs, and non-wear time was defined as�60 consecutive minutes of zero counts, with

allowance for 1–2 minutes of counts between zero and 100.[16,17] To be included in the analy-

ses, participants had to have�10 hours of wear time per day for�4 days.[16,17] ST was

defined as<100 counts per minute (cpm), [18–20] LPA as 100 to<4 metabolic equivalents

(METs) according to Freedson’s age-specific regression equation, [21] MPA as 4 to<7 METs,

and VPA as�7 METs. These MET values align with moderate walking and vigorous running

activities identified across child and adolescent age groups in the Youth Compendium of Phys-

ical Activities. [22] Average minutes per day of ST, LPA, MPA, and VPA were calculated

through a series of steps to account for the fact that waking day data will fluctuate between

days for a participant and between participants. First, geometric means of each intensity were

calculated across valid days for each participant. Any daily values equaling zero minutes were

replaced with 0.5 minutes prior to calculating the geometric mean. The vast majority of days

(99.6%) with zero minutes had zero minutes for VPA. Second, wear time was calculated for

each participant by adding up the minutes per day in each intensity. Third, the proportion of

time spent at each intensity during wear time was calculated for each participant by dividing

the geometric mean of each intensity by wear time. Finally, to aid interpretation, the propor-

tions were converted in minutes, by multiplying the proportion of time spent at each intensity

by the sample wear time mean.

Cardiometabolic biomarkers

Cardiometabolic biomarkers were measured by trained personnel at the mobile examination

center. Height, weight, waist circumference, HDL cholesterol, and C-reactive protein (CRP)

were measured in the full analytical sample. Age- and sex-specific body mass index (BMI) z-
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scores were calculated based on the Centers for Disease Control and Prevention growth charts.

[23] Waist circumference was measured at the level of the iliac crest.[24] HDL cholesterol

(Roche/Boehringer-Mannheim Diagnostics direct HDL method) and CRP (nephelometry

method) were measured from venous blood samples. [14] Systolic and diastolic blood pressure

were measured manually three to four consecutive times on the right arm while seated in par-

ticipants�8 years.[14,25] The average blood pressure across the repeated measurements was

calculated. Additionally, LDL cholesterol (calculated using the Friedewald calculation from

measured values of total cholesterol, triglycerides, and HDL-cholesterol), triglycerides (Hitachi

704 method in 2003–2004 and the Hitachi 717/912 method in 2005–2006), plasma glucose

(enzyme hexokinase method in 2003–2004 and the hexokinase-mediated reaction in 2005–

2006), and insulin (two-site immunoenzymometric assay method in 2003–2004 and the

human insulin immunoassay in 2005–2006) were measured from venous blood samples in a

sub-sample of participants (�12 years) who attended the morning examination and provided

fasting blood samples. [14] As recommended, correction equations were applied to plasma

glucose and insulin to account for the different methods between cycles. [14] Only participants

who reported fasting for�8 hours were included in the fasting sub-sample analyses. [14]

Detailed descriptions of the procedures and methods used to measure each cardiometabolic

biomarker are available on the NHANES website. [14]

Covariates

Age, sex, race/ethnicity, socioeconomic status (SES), smoking, total dietary intake, saturated

fat, and sodium intake were considered as covariates based on data availability and previous

ST and PA research.[1,2] Race/ethnicity was classified into four groups (non-Hispanic White,

non-Hispanic Black, Mexican American, other). SES was estimated using a poverty income

ratio (a ratio of family income to poverty threshold). [14] Smoking was assessed by asking par-

ticipants�12 years if they had previously tried cigarette smoking (yes or no). Those <12 years

were categorized as no. Total dietary intake, saturated fat and sodium intake were derived

from a 24-hour dietary recall. Saturated fat (<10% or�10% of total calories) and sodium

(<2300 or�2300 mg/day) were dichotomized based on dietary guidelines in the United

States.[26]

Statistical analysis

Analyses were conducted in 2018/2019 using SAS version 9.4 (SAS Institute Inc., Cary, NC)

and accounted for the complex design and sample weights of NHANES. Sample weights were

re-weighted for the full analytical and fasting sub-sample based on missing data to achieve a

representative sample. Traditional descriptive statistics were calculated for participant charac-

teristics. Compositional descriptive statistics, including compositional geometric means (cen-

tral tendency), a variation matrix (dispersion), and geometric mean bar plots (relative

behavioral profiles for select cardiometabolic biomarkers) were calculated for ST and PA vari-

ables.[7] For the variation matrix, a value closer to zero indicates higher co-dependence

between two behaviors.[7] The compositional geometric mean bar plots were calculated for

BMI z-score, waist circumference, diastolic blood pressure, HDL-cholesterol, and glucose to

capture different aspects of cardiometabolic health risk. Quartiles were used to create sub-

groups for all cardiometabolic biomarkers with the exception of BMI where sub-groups

included: underweight (<5th percentile), normal or healthy weight (5th to<85th percentile),

overweight (85th to<95th percentile), and obese (�95th percentile).[27]

To address objective one of the paper, four compositional linear regression models were

conducted for each cardiometabolic biomarker sequentially rotating the sequence of ST, LPA,
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MPA and VPA and entering the composition of variables into the model via an isometric log-

ratio transformation. The fluctuations in waking day data are accounted for in these analyses

based on the calculation of average minutes per day of ST, LPA, MPA, and VPA described in

the methods section. It is also important to note that the isometric log-ratio transformation is

scale invariant so the proportion of time spent at each intensity based on the geometric means

can also be used in these models and will produce the same results. Model p-values and R2

coefficients were obtained from linear regression models not adjusted by covariates and were

used to determine whether there was a statistically significant association between the compo-

sition of ST and PA variables and each cardiometabolic biomarker, and the proportion of the

variance explained by the composition. Model p-values and R2 coefficients are identical across

the four regression models. After examining residuals, waist circumference, CRP, LDL-choles-

terol, triglycerides, glucose and insulin, were log-transformed in line with the assumption of

normality for regression models.

To address objective two of the paper, the first coefficient and the corresponding p-value

for each of the four linear regression models were used to determine whether the time spent in

each behavior was significantly associated with each cardiometabolic biomarker relative to the

time spent in the other three behaviors. All models adjusted for age, sex, race/ethnicity, SES,

smoking, total energy intake, sodium, and saturated fat. Additional analyses further adjusted

for waist circumference, apart from waist circumference and BMI z-score models. All compo-

sitional analyses methods used have been outlined in detail in previous studies.[7,9,28] Statisti-

cal significance was set a priori at p<0.05.

Results

Of the eligible 4,672 participants, 3,173 had valid accelerometer data, and of those participants,

2,544 had complete cardiometabolic biomarkers and covariate data in the full analytical sam-

ple. For blood pressure, 2,178 (diastolic) to 2,196 (systolic) participants aged 8–17 years had

complete data. For the fasting sub-sample, 2,923 participants aged 12–17 years were eligible

and 1,940 had valid accelerometer data. Of those participants, 670 had complete cardiometa-

bolic biomarkers and covariate data. Participant characteristics for the total sample

(n = 5,607), full analytical sample (n = 2,544), and fasting sub-sample (n = 670) are presented

in Table 1. Through the process of reweighting the sample weights due to missing data, the full

analytical sample and fasting sub-sample (for sex and race/ethnicity) closely aligned with the

total sample.

The geometric means and corresponding % of wear time for the ST and PA variables are

presented in Table 2. In the full analytical sample, participants spent the majority of their wak-

ing day in either ST or LPA, with less than 4% of their time spent in MPA and VPA. The pair-

wise log-ratio variation matrix is presented in Table 3. ST and LPA had the highest co-depen-

dence (0.00025), followed by MPA and VPA (0.00042). The lowest co-dependence was seen

between MPA and ST (0.00205) and VPA and ST (0.00167).

Compositional geometric mean bar plots for select cardiometabolic biomarkers are pre-

sented in Figs 1–4. For BMI categories, the proportion of ST was lower and the proportion of

time spent in all intensities of PA were higher in the normal or healthy weight group relative to

the entire sample. The overweight and obese groups had higher ST and lower MPA and VPA

relative to the entire sample, with the lowest MPA and VPA being observed in the obese

group. Participants in the lowest quartile of waist circumference and diastolic blood pressure

(Q1) tended to have lower ST and higher LPA, MPA, and VPA relative the entire sample. For

the most part, the opposite was observed for participants in the highest quartile (Q4). The

same pattern but reversed was observed for HDL-cholesterol.

Compositional analyses of sedentary time, physical activity, and cardiometabolic biomarkers
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The results of the four compositional linear regression models are shown in Table 4. The

composition of ST and PA variables were significantly associated with BMI z-score, log waist

circumference, systolic and diastolic blood pressure, HDL-cholesterol, and log plasma glucose

(model p-value: 0.004 to<0.001). The proportion of the variance explained by the composi-

tion for those cardiometabolic biomarkers ranged from 1 to 29%.

For the individual behaviors, after adjustments for covariates, ST relative to the other three

behaviors had significant positive associations with log waist circumference (γST = 0.029;

p = 0.013) and diastolic blood pressure (γST = 2.700; p = 0.018). Time spent in LPA relative to

the other three behaviors had a significant negative association with diastolic blood pressure

(γLPA = -2.892; p = 0.026). Time spent in MPA relative to the other three behaviors had a

Table 1. Weighted participant characteristics of the 2003/04 and 2005/06 cycles of the NHANES.

Variables Total sample

(n = 5607)

Full analytical sample

(n = 2544)

Fasting sub-sample

(n = 670)

Age (years) 11.2 (8.1–14.1) 11.9 (8.8–14.3) 13.8 (12.5–15.3)

Sex (%)

Male 51.1 51.1 50.9

Female 48.9 48.9 49.1

Race (%)

Non-Hispanic White 60.8 61.5 63.1

Non-Hispanic Black 14.8 15.0 15.0

Mexican-American 12.4 12.2 11.3

Other 11.9 11.3 10.7

Poverty income ratio - 2.5 (1.2–4.1) 2.8 (1.4–4.3)

Ever tried smoking (%)

Yes - 16.9 28.4

No - 83.1 71.6

Total energy intake (kcal) - 2029.8 (1571.9–2574.0) 2138.5 (1637.0–2751.1)

Sodium Intake (%)

�2300 mg/day - 25.8 25.0

>2300 mg/day - 74.2 75.0

Saturated Fat (%)

�10% of total calories - 30.3 37.1

>10% of total calories - 69.7 62.9

Cardiometabolic Biomarkers

BMI z-score - 0.5 (-0.3–1.3) -

Waist Circumference (cm) - 71.3 (70.5–72.0) -

Systolic Blood Pressure (mmHg; n = 2196) - 105.9 (98.9–112.1) -

Diastolic Blood Pressure (mmHg; n = 2178) - 58.6 (50.9–65.4) -

HDL-Cholesterol (mmol/L) - 1.4 (1.2–1.6) -

C-reactive Protein (mg/L) - 0.3 (0.1–1.0) -

LDL-Cholesterol (mmol/L) - - 2.2 (1.8–2.6)

Triglycerides (mmol/L) - 0.8 (0.6–1.1)

Plasma Glucose (mmol/L) - - 5.0 (4.8–5.3)

Insulin (pmol/L) - - 54.5 (37.3–79.5)

BMI, body mass index; HDL, High-density lipoprotein cholesterol; LDL, Low-density lipoprotein cholesterol; NHANES, National Health and Nutrition Examination

Survey.

Data presented as median (Inter-quartile range) for continuous variables and percentage for categorical variables.

https://doi.org/10.1371/journal.pone.0220009.t001

Compositional analyses of sedentary time, physical activity, and cardiometabolic biomarkers

PLOS ONE | https://doi.org/10.1371/journal.pone.0220009 July 22, 2019 6 / 14

https://doi.org/10.1371/journal.pone.0220009.t001
https://doi.org/10.1371/journal.pone.0220009


significant negative association with HDL-cholesterol; however, this association was no longer

significant after adjusting for waist circumference. Time spent in VPA relative to the other

three behaviors had significant negative associations with BMI z-score (γVPA = -0.206;

p = 0.005) and log waist circumference (γVPA = -0.033; p = 0.001), and significant positive asso-

ciations with diastolic blood pressure (γVPA = 1.246; p = 0.038) and HDL-cholesterol (γVPA =

0.058; p =<0.001). No other significant associations were observed.

Discussion

The objectives of this paper were to use compositional analyses to examine the combined and

relative associations of ST, LPA, MPA, VPA with cardiometabolic biomarkers in a representa-

tive sample of 6–17 year-olds living in the United States. The composition of ST and the vari-

ous intensities of PA were significantly associated with all cardiometabolic biomarkers in the

full analytical sample, except for CRP. Therefore, the combined associations of ST, LPA, MPA,

and VPA during the waking day may be important for cardiometabolic health. In terms of rel-

ative associations, more time spent in VPA relative to the other behaviors was favorable for

adiposity indicators and HDL-cholesterol. In contrast, more time spent in ST relative to other

behaviors was unfavorable for waist circumference and diastolic blood pressure. Few associa-

tions were observed for LPA and MPA. Additionally, almost no associations were observed in

the fasting sub-sample.

Compositional analysis is a novel method that has only been used in a handful of other

studies examining collective and relative behavioral associations with adiposity and other car-

diometabolic biomarkers in children and youth.[8–10] For instance, in a large representative

sample of Canadian 6–17 year-olds, the composition of sleep, ST, LPA, and MVPA were sig-

nificantly associated with all cardiometabolic biomarkers examined including indicators of

Table 2. Geometric means for ST and PA in minutes/day and corresponding percentage of wear time.

Full analytical sample

(6–17 years)

Fasting sub-sample

(12–17 years)

n = 2544 n = 670

Minutes/day % of wear time Minutes/day % of wear time

ST 402 51.8 463 58.3

LPA 347 44.7 318 40.0

MPA 24 3.1 12 1.5

VPA 3 0.4 1 0.1

LPA, light-intensity physical activity; MPA, moderate-intensity physical activity; PA, physical activity; ST, sedentary

time; VPA, vigorous-intensity physical activity.

PA and ST variables have been normalized on average wear time.

https://doi.org/10.1371/journal.pone.0220009.t002

Table 3. Pair-wise log-ratio variation matrix for ST and PA in the full analytical sample (n = 2544).

ST LPA MPA VPA

ST 0 0.00025 0.00205 0.00167

LPA 0.00025 0 0.00161 0.00125

MPA 0.00205 0.00161 0 0.00042

VPA 0.00167 0.00125 0.00042 0

LPA, light-intensity physical activity; MPA, moderate-intensity physical activity; PA, physical activity; ST, sedentary

time; VPA, vigorous-intensity physical activity.

https://doi.org/10.1371/journal.pone.0220009.t003
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adiposity, blood pressure, blood lipids, CRP, and insulin.[9] In general, significant favorable

associations were observed for MVPA and sleep, relative to other behaviors, whereas signifi-

cant unfavorable associations were observed for ST and LPA.[9] Similar findings were

observed for adiposity indicators in a large international sample of 9–11 year olds[8] and a

smaller sample of children aged 10–13 years from Kingston, Canada.[10] However, significant

associations were not observed for ST and sleep, relative to other behaviors in the smaller

Canadian sample.[10]

Compared to previous studies in children and youth using compositional analyses, the pres-

ent study focused on the waking day. Only two other studies to our knowledge have focused

on a subdivision of the 24-hour data when using this method.[12] Similar to the present study

in terms of waist circumference, ST was positively associated and VPA was negatively associ-

ated with BMI z-score in 420 adolescents aged 12–19 years from the Czech Republic.[29]

Additionally, the composition of ST, LPA, and MVPA during the school day was significantly

associated with adiposity indicators in a sample of 318 children aged 10–11 years from the

United Kingdom.[12] These combined cross-sectional findings from all studies using compo-

sitional analyses support an integrated approach for health promotion in children and youth

compared to focusing on movement behaviors in isolation. Future longitudinal and

Fig 1. Compositional geometric mean bar plots comparing the compositional mean of the entire sample with the compositional mean of underweight, normal

weight, overweight, and obese subgroups for sedentary time (ST), light-intensity physical activity (LPA), moderate-intensity physical activity (MPA), and

vigorous-intensity physical activity (VPA). BMI = body mass index.

https://doi.org/10.1371/journal.pone.0220009.g001
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experimental studies are needed to confirm and build on this cross-sectional evidence. Addi-

tionally, future research is needed to examine whether variables such as age and sex moderate

the compositional associations with cardiometabolic health.

A unique aspect of the present study, compared to most other studies using compositional

analyses, is MPA and VPA were considered as separate behaviors, instead of being combined

into MVPA. Though compositional geometric mean bar plots showed a similar pattern for

MPA and VPA, significant relative associations with adiposity indicators were only observed

for VPA and not MPA in regression models. Additionally, VPA associations were in the favor-

able direction, whereas the opposite was observed for LPA and ST. A systematic review of

studies that have used traditional approaches to examine associations between PA, adiposity,

and other cardiometabolic biomarkers, observed more consistent and stronger associations

with higher intensity PA (e.g., VPA) compared to lower intensity PA (e.g., LPA, MPA), in par-

ticular for adiposity.[1] Since the present study examined relative associations that took into

account the time spent in all waking day movement behaviors, study findings strengthen the

evidence base in this area.

Though some general patterns were observed that suggested compositions with more time

in higher-intensity activities may be optimal for some aspects of cardiometabolic health, a

number of null associations and some inconsistent associations were also observed. In

Fig 2. Compositional geometric mean bar plots the compositional mean of the entire sample with the compositional mean of waist circumference quartiles

subgroups for sedentary time (ST), light-intensity physical activity (LPA), moderate-intensity physical activity (MPA), and vigorous-intensity physical activity

(VPA).

https://doi.org/10.1371/journal.pone.0220009.g002
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particular, almost no associations were observed with fasting lipids (LDL-cholesterol, triglycer-

ides), insulin, and glucose measures. This is in contrast to the previous study on a representa-

tive sample of Canadian children and youth where a number of associations were observed

across cardiometabolic biomarkers using compositional analyses.[9] Some methodological dif-

ferences exist between the Canadian and present study, with one notable difference being the

inclusion of sleep in the Canadian sample. A number of interactions have been observed

between sleep and sedentary behavior and between sleep and PA in children and youth.[30]

Sleep also has important links with cardiometabolic health.[31] Therefore, it seems important

for future studies to consider 24-hour accelerometer wear protocols so the health impact of

24-hour compositions and relevant subdivisions can be examined.

Main strengths of this study include the representative sample, the compositional analyses

that took into account the co-dependent nature of the ST and PA data, the objective measures

of ST and PA, and the range of cardiometabolic biomarkers. A main limitation of the study is

the cross-sectional data, which prevents casual inferences from being made. Data on sleep

duration were also not available for this age group. Additionally, in order to conduct the analy-

ses some daily zero values, mainly for VPA, were replaced with 0.5 minutes. It is important to

note that previous research has shown that VPA is significantly lower when using 60 second

Fig 3. Compositional geometric mean bar plots comparing the compositional mean of the entire sample with the compositional mean of diastolic blood pressure

quartiles subgroups for sedentary time (ST), light-intensity physical activity (LPA), moderate-intensity physical activity (MPA), and vigorous-intensity physical

activity (VPA).

https://doi.org/10.1371/journal.pone.0220009.g003
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epochs, as was used in NHANES, compared to 30, 15, and 5 second epochs in both children

and adolescents. [32] Though accelerometer cut-points are useful for categorizing the data

into different intensities, novel analytical techniques to identify patterns of behaviors, such as

machine learning, [33] may provide new insights into the collective and relative associations

between movement behaviors and cardiometabolic health. Finally, though we adjusted for a

number of potential confounders, residual confounding cannot be ruled out.

Conclusions

Compositional analysis is an appropriate method for examining collective and relative associa-

tions between waking day movement behaviors and cardiometabolic biomarkers. The compo-

sition of ST, LPA, MPA, and VPA in this large representative sample of children and youth

from the United States was significantly associated with many aspects of cardiometabolic

health. Findings from this study also suggest that compositions with more time in higher-

intensity activities may be better for some aspects of cardiometabolic health, such as adiposity.

This study contributes to a growing body of evidence that supports an integrated approach to

movement behaviors for health promotion in the pediatric population. Future longitudinal

and experimental studies are needed to build on these findings as well as research that exam-

ines potential effect modifiers of these associations.

Fig 4. Compositional geometric mean bar plots comparing the compositional mean of the entire sample with the compositional mean of HDL-cholesterol

quartiles subgroups for sedentary time (ST), light-intensity physical activity (LPA), moderate-intensity physical activity (MPA), and vigorous-intensity physical

activity (VPA); HDL = High-density lipoprotein cholesterol.

https://doi.org/10.1371/journal.pone.0220009.g004
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