Skip to main content
. 2017 Dec 7;2(12):8689–8696. doi: 10.1021/acsomega.7b01566

Table 2. Optimization Studies Using Heterogeneous NP Catalystsa.

graphic file with name ao-2017-01566m_0005.jpg

entry catalyst base solvent yield (%)b
1 rGO-CuPd NaOAc DMSO 46
2 rGO-CuPd NaOAc DMSO/H2Oc 37
3 rGO-CuPd NaOAc DMSO/H2Od 62
4e rGO-CuPd NaOAc DMSO/H2Od 51
5f rGO-CuPd NaOAc DMSO/H2Od 44
6 rGO-CuPd NaOAc DMF/H2Og <5
7 rGO-CuPd NaOAc DMA/H2Oh 55
8 Pd/Ci NaOAc DMSO/H2Od 26
9 rGO-CuPd KOAc DMSO/H2Od 43
10 rGO-CuPd K2CO3 DMSO/H2Od 32
11 rGO-CuPd Cs2CO3 DMSO/H2Od 21
12 rGO-Cu32Pd68 NaOAc DMSO/H2Od 19
13j rGO-Cu75Pd25 NaOAc DMSO/H2Od <5
a

Reaction conditions: 0.13 mmol 5, 0.15 mmol 6a, 0.65 mmol base, 4.0 mg of nanocatalyst (rGO-CuPd contains 6.5 wt % Pd corresponding to 0.0024 mmol Pd and 1.8 mol % Pd loading), 120 °C, 24 h.

b

Isolated yields.

c

DMSO/H2O = 5:1.

d

DMSO/H2O = 10:1.

e

2.0 mg of nanocatalyst was used.

f

T = 100 °C.

g

DMF/H2O = 10:1.

h

DMA/H2O = 10:1.

i

10 wt % Pd on carbon (5.0 mg).

j

5.0 mg of catalyst was used.