Table 2. Optimization Studies Using Heterogeneous NP Catalystsa.
| entry | catalyst | base | solvent | yield (%)b |
|---|---|---|---|---|
| 1 | rGO-CuPd | NaOAc | DMSO | 46 |
| 2 | rGO-CuPd | NaOAc | DMSO/H2Oc | 37 |
| 3 | rGO-CuPd | NaOAc | DMSO/H2Od | 62 |
| 4e | rGO-CuPd | NaOAc | DMSO/H2Od | 51 |
| 5f | rGO-CuPd | NaOAc | DMSO/H2Od | 44 |
| 6 | rGO-CuPd | NaOAc | DMF/H2Og | <5 |
| 7 | rGO-CuPd | NaOAc | DMA/H2Oh | 55 |
| 8 | Pd/Ci | NaOAc | DMSO/H2Od | 26 |
| 9 | rGO-CuPd | KOAc | DMSO/H2Od | 43 |
| 10 | rGO-CuPd | K2CO3 | DMSO/H2Od | 32 |
| 11 | rGO-CuPd | Cs2CO3 | DMSO/H2Od | 21 |
| 12 | rGO-Cu32Pd68 | NaOAc | DMSO/H2Od | 19 |
| 13j | rGO-Cu75Pd25 | NaOAc | DMSO/H2Od | <5 |
Reaction conditions: 0.13 mmol 5, 0.15 mmol 6a, 0.65 mmol base, 4.0 mg of nanocatalyst (rGO-CuPd contains 6.5 wt % Pd corresponding to 0.0024 mmol Pd and 1.8 mol % Pd loading), 120 °C, 24 h.
Isolated yields.
DMSO/H2O = 5:1.
DMSO/H2O = 10:1.
2.0 mg of nanocatalyst was used.
T = 100 °C.
DMF/H2O = 10:1.
DMA/H2O = 10:1.
10 wt % Pd on carbon (5.0 mg).
5.0 mg of catalyst was used.
