Table 1.
Animal Model | Background | Condition | Events | Cardiac Outcome | References |
---|---|---|---|---|---|
Cardiac‐specific knockout of GLUT4 | C57BL/6, FVB | Baseline |
↑Insulin‐independent glucose uptake ↓Insulin‐dependent glucose uptake |
Mild hypertrophy | 12 |
I/R | ↓Glycolysis | ↑I/R injury | 13 | ||
Cardiac‐specific overexpression of GLUT1 | FVB | Baseline |
↑Insulin‐independent glucose uptake ↑Glycolysis |
Normal | 14 |
8 wks post‐TAC | ↔Myocardial energetics |
↓Cardiac dysfunction ↑Long‐term survival rate |
|||
Inducible cardiac‐specific overexpression of GLUT1 | FVB | Baseline (6–10 wks old) | ↑Glucose utilization, glycolysis | Normal | 15 |
4 wks post‐TAC |
↑Glucose oxidation, [G‐1‐P], [lactic acid], [glycogen], ATP synthesis ↑FA metabolism, OXPHOS genes |
↓Fibrosis ↑Cardiac hypertrophy |
|||
Cardiac‐specific knockout of GLUT1 | C57BL/6 | Baseline (6–10 wks) |
↓Glycolysis, glucose oxidation ↑FAO |
Normal | 16 |
4 wks post‐TAC |
↓Glycolysis, glucose oxidation ↑FAO |
↔Hypertrophy ↔Mitochondrial function |
|||
Cardiac‐specific kinase‐deficient PFK‐2 | FVB | Baseline (3–4 m) |
↓Glycolysis, [F‐2,6‐P2], [F‐1,6‐P2] ↑[G‐6‐P], [F‐6‐P], [UDP‐GlcNAc], [glycogen] ↓Insulin sensitivity |
Mild hypertrophy ↑Fibrosis ↓Cardiac function |
24 |
13 wks post‐TAC | ↓[F‐2,6‐P2], glycolysis |
↑Cardiac hypertrophy ↑Fibrosis, cardiac dysfunction |
25 | ||
WT | FVB/NJ | 4 wks of treadmill training |
↓Glycolysis, PFK activity, acute ↑Glycolysis, PFK activity, recovered |
↑Physiological hypertrophy ↑Cardiac function |
26 |
Cardiac‐specific kinase‐deficient PFK‐2 | Baseline (15–16 wks old) | ↓Glycolysis, PFK activity |
↑Physiological hypertrophy ↑Cardiac function |
||
Cardiac‐specific phosphatase‐deficient PFK‐2 | Baseline (15–16 wks old) | ↑Glycolysis | ↑Pathological hypertrophy | ||
Cardiac‐specific phosphatase‐deficient PFK‐2 | FVB/NJ | Baseline (3–4 m) |
↑Glycolysis, [F‐2,6‐P2] ↓[G‐6‐P], [glycogen], FAO |
↑Cardiac hypertrophy, fibrosis ↓Hypoxia‐induced contractile inhibition in cardiomyocytes |
31 |
I/R | ↔Insulin sensitivity | ↔Myocardial infarct size | |||
AR‐null mice | C57BL/6 | Base line (14–16 wks old) | ↓Ejection fraction, slightly | 63 | |
2 wks post‐TAC (12–16 wks old) |
↑Lipid peroxidation‐derived aldehydes ↑Aldehyde‐modified proteins ↑Autophagy |
↑Pathological cardiac hypertrophy ↓Cardiac function |
|||
Cardiac‐specific overexpression of human AR | C57BL/6 | Baseline (3 m) |
↔Glucose uptake ↔GLUT1, GLUT4, CPT1, AOX mRNA ↑SDH mRNA level |
Normal | 79 |
Baseline (12 m) | ↓FA metabolism | ↑Cardiac dysfunction | |||
I/R |
↓ mRNA levels of FA metabolism related genes ↑ROS |
↑Infarct size, apoptosis ↑Cardiac dysfunction |
|||
PPARα−/− |
↑Glucose uptake/utilization ↑[fructose], [ceramide], ROS ↓FAO, PDK4 |
↑Apoptosis, fibrosis ↓Cardiac function |
|||
G6PD‐deficient | C3H/HeJ | 3 m | Normal | 99 | |
9 m |
↑Oxidative stress ↓[Ca2+]i transport |
↓Cardiac function over time | |||
6 wks post‐TAC | ↓Superoxide production | Tendency to develop LV dilation | 100 | ||
17 wks post‐TAC (high fructose diet) | ↓Aconitase |
↑Pathological hypertrophy ↓Cardiac function |
|||
3 m post‐MI | ↑Oxidative stress |
↑LV dilation ↔Cardiac function, survival |
|||
I/R | ↓Cellular glutathione (GST, GSH) | ↑I/R injury | 108 | ||
Cardiac‐specific overexpression of HK2 | FVB/N | Baseline | ↓Oxygen consumption | Normal | 101 |
Isoproterenol infusion (2–3 mo old) | ↑O‐GlcNAcylation | ↓Cardiac hypertrophy | |||
Cardiac‐specific knockout of OGT | C57BL/6 | Baseline (4–5 wks) | ↑COX IV, HK, PFK, GLUT1 mRNA levels |
Perinatal death and heart failure ↑Apoptosis, fibrosis, ER stress ↑Cardiac hypertrophy |
133 |
Cardiac‐specific het of OGT | C57BL/6 | Baseline (2–4 m) | Progressive cardiomyopathy | ||
Inducible cardiac‐specific knockout of OGT | C57BL/6 | Baseline (<1 m) | ↑GAPDH mRNA level | Normal | 153, 158 |
Baseline (1–3 m) | ↓Cardiac function over time | 34 | |||
2 and 4 wks post‐TAC |
↑TGFβ2 mRNA level ↓GATA4 |
↓Cardiac function | 134 | ||
5 d post‐MI | ↓PGC1‐α, PGC1‐β, CPT1, CPT2, MCAD, ATP‐5O, COXIV‐5B, GLUT1, GLUT4 mRNA levels | 158 | |||
4 wks post‐MI |
↑Apoptosis, fibrosis ↓Cardiac function |
||||
Ventricular‐specific knockout of HIF1α | Baseline |
↓GLUT1, HK2, GPD1, GPAT, PPARγ mRNA levels ↑PPARα, PPARβ/δ mRNA levels ↑Mitochondrial‐related genes at mRNA levels ↑PGC1α, M‐CPT1, VDAC, SDHA ↑Repiratory function, DNA content, surface area of mitochondria ↓SERCA2, Ca2+ reuptake ↓ATP, phosphocreatine, lactate |
↓Contractile function, mild hypovascularity | 37, 38 | |
14 to 18 d post‐TAC |
↓TAG content ↓GAPDH, GPD1, GPAT activities |
↓Apoptosis ↓Pathological hypertrophy |
166 | ||
Ventricular‐specific knockout of Vhlh | Baseline |
↑Glycolytic genes, GPD1, GPAT, PPARγ mRNA levels ↓PPARβ/δ mRNA level ↓Mitochondrial‐related genes at mRNA levels ↑HIF1α, PPARγ, FAT/CD36, GPAT ↓PGC1α, M‐CPT1, VDAC, SDHA ↓Repiratory function, DNA content, surface area of mitochondria |
Cardiac hypertrophy | 166 |
AOX indicates acyl‐CoA oxidase 1; AR, aldose reductase; ATP‐5O, ATP synthase subunit 5; COX 5B, cytochrome C oxidase subunit 5B; COX IV, cytochrome C oxidase subunit 4; CPT1, carnitine palmitoyltransferase; FA, fatty acid; FAO, fatty acid oxidation; FAT/CD36, fatty acid translocase/cluster of differentiation 36; G6PD, glucose 6‐phosphate dehydrogenase; GAPDH, glyceraldehyde 3‐phosphate dehydrogenase; GATA4, GATA binding protein 4; GLUT1, glucose transporter type 1; GLUT4, glucose transporter type 4; GPAT, glycerol phosphate acyltransferase; GPD1, glycerol 3‐phosphate dehydrogenase; HK2, hexokinase 2; I/R, ischemia/reperfusion; LV, left ventricle; MCAD, medium chain acyl‐CoA dehydrogenase; MI, myocardial infarction; OGT, O‐GlcNAc transferase; OXPHOS, oxidative phosphorylation; PDK4, pyruvate dehydrogenase kinase 4; PFK‐2, phosphofructokinase‐2; PGC1‐β, PPARγ coactivator 1 β; PGC1‐α, PPARγ coactivator 1 α; PPARα, peroxisome proliferator‐activated receptor α; ROS, reactive oxygen species; SDH, sorbitol dehydrogenase; SDHA, succinate dehydrogenase complex subunit A; SERCA2, sarcoplasmic/endoplasmic reticulum calcium ATPase 2; TAC, thoracic aortic constriction; TAG, triglyceride; TGFβ2, transforming growth factor β2; VDAC, voltage‐dependent anion channel.