Skip to main content
. 2019 Jun 12;8(12):e012673. doi: 10.1161/JAHA.119.012673

Table 1.

Phenotypes of the Animal Models in Which Glucose Metabolism Is Altered

Animal Model Background Condition Events Cardiac Outcome References
Cardiac‐specific knockout of GLUT4 C57BL/6, FVB Baseline ↑Insulin‐independent glucose uptake
↓Insulin‐dependent glucose uptake
Mild hypertrophy 12
I/R ↓Glycolysis ↑I/R injury 13
Cardiac‐specific overexpression of GLUT1 FVB Baseline ↑Insulin‐independent glucose uptake
↑Glycolysis
Normal 14
8 wks post‐TAC ↔Myocardial energetics ↓Cardiac dysfunction
↑Long‐term survival rate
Inducible cardiac‐specific overexpression of GLUT1 FVB Baseline (6–10 wks old) ↑Glucose utilization, glycolysis Normal 15
4 wks post‐TAC ↑Glucose oxidation, [G‐1‐P], [lactic acid], [glycogen], ATP synthesis
↑FA metabolism, OXPHOS genes
↓Fibrosis
↑Cardiac hypertrophy
Cardiac‐specific knockout of GLUT1 C57BL/6 Baseline (6–10 wks) ↓Glycolysis, glucose oxidation
↑FAO
Normal 16
4 wks post‐TAC ↓Glycolysis, glucose oxidation
↑FAO
↔Hypertrophy
↔Mitochondrial function
Cardiac‐specific kinase‐deficient PFK‐2 FVB Baseline (3–4 m) ↓Glycolysis, [F‐2,6‐P2], [F‐1,6‐P2]
↑[G‐6‐P], [F‐6‐P], [UDP‐GlcNAc], [glycogen]
↓Insulin sensitivity
Mild hypertrophy
↑Fibrosis
↓Cardiac function
24
13 wks post‐TAC ↓[F‐2,6‐P2], glycolysis ↑Cardiac hypertrophy
↑Fibrosis, cardiac dysfunction
25
WT FVB/NJ 4 wks of treadmill training ↓Glycolysis, PFK activity, acute
↑Glycolysis, PFK activity, recovered
↑Physiological hypertrophy
↑Cardiac function
26
Cardiac‐specific kinase‐deficient PFK‐2 Baseline (15–16 wks old) ↓Glycolysis, PFK activity ↑Physiological hypertrophy
↑Cardiac function
Cardiac‐specific phosphatase‐deficient PFK‐2 Baseline (15–16 wks old) ↑Glycolysis ↑Pathological hypertrophy
Cardiac‐specific phosphatase‐deficient PFK‐2 FVB/NJ Baseline (3–4 m) ↑Glycolysis, [F‐2,6‐P2]
↓[G‐6‐P], [glycogen], FAO
↑Cardiac hypertrophy, fibrosis
↓Hypoxia‐induced contractile inhibition in cardiomyocytes
31
I/R ↔Insulin sensitivity ↔Myocardial infarct size
AR‐null mice C57BL/6 Base line (14–16 wks old) ↓Ejection fraction, slightly 63
2 wks post‐TAC (12–16 wks old) ↑Lipid peroxidation‐derived aldehydes
↑Aldehyde‐modified proteins
↑Autophagy
↑Pathological cardiac hypertrophy
↓Cardiac function
Cardiac‐specific overexpression of human AR C57BL/6 Baseline (3 m) ↔Glucose uptake
↔GLUT1, GLUT4, CPT1, AOX mRNA
↑SDH mRNA level
Normal 79
Baseline (12 m) ↓FA metabolism ↑Cardiac dysfunction
I/R ↓ mRNA levels of FA metabolism related genes
↑ROS
↑Infarct size, apoptosis
↑Cardiac dysfunction
PPARα−/− ↑Glucose uptake/utilization
↑[fructose], [ceramide], ROS
↓FAO, PDK4
↑Apoptosis, fibrosis
↓Cardiac function
G6PD‐deficient C3H/HeJ 3 m Normal 99
9 m ↑Oxidative stress
↓[Ca2+]i transport
↓Cardiac function over time
6 wks post‐TAC ↓Superoxide production Tendency to develop LV dilation 100
17 wks post‐TAC (high fructose diet) ↓Aconitase ↑Pathological hypertrophy
↓Cardiac function
3 m post‐MI ↑Oxidative stress ↑LV dilation
↔Cardiac function, survival
I/R ↓Cellular glutathione (GST, GSH) ↑I/R injury 108
Cardiac‐specific overexpression of HK2 FVB/N Baseline ↓Oxygen consumption Normal 101
Isoproterenol infusion (2–3 mo old) ↑O‐GlcNAcylation ↓Cardiac hypertrophy
Cardiac‐specific knockout of OGT C57BL/6 Baseline (4–5 wks) ↑COX IV, HK, PFK, GLUT1 mRNA levels Perinatal death and heart failure
↑Apoptosis, fibrosis, ER stress
↑Cardiac hypertrophy
133
Cardiac‐specific het of OGT C57BL/6 Baseline (2–4 m) Progressive cardiomyopathy
Inducible cardiac‐specific knockout of OGT C57BL/6 Baseline (<1 m) ↑GAPDH mRNA level Normal 153, 158
Baseline (1–3 m) ↓Cardiac function over time 34
2 and 4 wks post‐TAC ↑TGFβ2 mRNA level
↓GATA4
↓Cardiac function 134
5 d post‐MI ↓PGC1‐α, PGC1‐β, CPT1, CPT2, MCAD, ATP‐5O, COXIV‐5B, GLUT1, GLUT4 mRNA levels 158
4 wks post‐MI ↑Apoptosis, fibrosis
↓Cardiac function
Ventricular‐specific knockout of HIF1α Baseline ↓GLUT1, HK2, GPD1, GPAT, PPARγ mRNA levels
↑PPARα, PPARβ/δ mRNA levels
↑Mitochondrial‐related genes at mRNA levels
↑PGC1α, M‐CPT1, VDAC, SDHA
↑Repiratory function, DNA content, surface area of mitochondria
↓SERCA2, Ca2+ reuptake
↓ATP, phosphocreatine, lactate
↓Contractile function, mild hypovascularity 37, 38
14 to 18 d post‐TAC ↓TAG content
↓GAPDH, GPD1, GPAT activities
↓Apoptosis
↓Pathological hypertrophy
166
Ventricular‐specific knockout of Vhlh Baseline ↑Glycolytic genes, GPD1, GPAT, PPARγ mRNA levels
↓PPARβ/δ mRNA level
↓Mitochondrial‐related genes at mRNA levels
↑HIF1α, PPARγ, FAT/CD36, GPAT
↓PGC1α, M‐CPT1, VDAC, SDHA
↓Repiratory function, DNA content, surface area of mitochondria
Cardiac hypertrophy 166

AOX indicates acyl‐CoA oxidase 1; AR, aldose reductase; ATP‐5O, ATP synthase subunit 5; COX 5B, cytochrome C oxidase subunit 5B; COX IV, cytochrome C oxidase subunit 4; CPT1, carnitine palmitoyltransferase; FA, fatty acid; FAO, fatty acid oxidation; FAT/CD36, fatty acid translocase/cluster of differentiation 36; G6PD, glucose 6‐phosphate dehydrogenase; GAPDH, glyceraldehyde 3‐phosphate dehydrogenase; GATA4, GATA binding protein 4; GLUT1, glucose transporter type 1; GLUT4, glucose transporter type 4; GPAT, glycerol phosphate acyltransferase; GPD1, glycerol 3‐phosphate dehydrogenase; HK2, hexokinase 2; I/R, ischemia/reperfusion; LV, left ventricle; MCAD, medium chain acyl‐CoA dehydrogenase; MI, myocardial infarction; OGT, O‐GlcNAc transferase; OXPHOS, oxidative phosphorylation; PDK4, pyruvate dehydrogenase kinase 4; PFK‐2, phosphofructokinase‐2; PGC1‐β, PPARγ coactivator 1 β; PGC1‐α, PPARγ coactivator 1 α; PPARα, peroxisome proliferator‐activated receptor α; ROS, reactive oxygen species; SDH, sorbitol dehydrogenase; SDHA, succinate dehydrogenase complex subunit A; SERCA2, sarcoplasmic/endoplasmic reticulum calcium ATPase 2; TAC, thoracic aortic constriction; TAG, triglyceride; TGFβ2, transforming growth factor β2; VDAC, voltage‐dependent anion channel.