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Abstract

Objective: Local reactions are the most common vaccine-related adverse event. There is no 

specific diagnosis code for local reaction due to vaccination. Previous vaccine safety studies used 

non-specific diagnosis codes to identify potential local reaction cases and confirmed the cases 

through manual chart review. In this study, a natural language processing (NLP) algorithm was 

developed to identify local reaction associated with tetanus-diphtheria-acellular pertussis (Tdap) 

vaccine in the Vaccine Safety Datalink.

Methods: Presumptive cases of local reactions were identified among members ≥ 11 years of age 

using ICD-9-CM codes in all care settings in the 1–6 days following a Tdap vaccination between 

2012 and 2014. The clinical notes were searched for signs and symptoms consistent with local 
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reaction. Information on the timing and the location of a sign or symptom was also extracted to 

help determine whether or not the sign or symptom was vaccine related. Reactions triggered by 

causes other than Tdap vaccination were excluded. The NLP algorithm was developed at the lead 

study site and validated on a stratified random sample of 500 patients from five institutions.

Results: The NLP algorithm achieved an overall weighted sensitivity of 87.9%, specificity of 

92.8%, positive predictive value of 82.7%, and negative predictive value of 95.1%. In addition, 

using data at one site, the NLP algorithm identified 3326 potential Tdap-related local reactions 

that were not identified through diagnosis codes.

Conclusion: The NLP algorithm achieved high accuracy, and demonstrated the potential of NLP 

to reduce the efforts of manual chart review in vaccine safety studies.

Keywords

Natural language processing; Clinical notes; Vaccine safety; Vaccine adverse event; Electronic 
health record

1. Introduction

The Vaccine Safety Datalink (VSD) project plays a critical role in monitoring adverse events 

after vaccinations [1]. Currently, safety outcomes in the VSD are primarily assessed using 

structured health care data such as diagnosis codes. However, diagnosis codes can be 

unreliable in terms of specificity and sensitivity [2,3]. Because of these concerns about the 

coding accuracy of structured data [4], manual review of medical records is often required to 

confirm the diagnosis, or provide additional detail that can aid in the outcome attribution. 

The process is labor-intensive, time-consuming, costly, and introduces additional variability.

Local reactions (also known as injection site reactions) are the most common vaccine 

adverse events (VAE) [5] and are included as primary outcome measures in vaccine clinical 

trials. Although local reactions are generally mild, patients may seek medical care for more 

severe manifestations of local reactions [6] which adds burden to healthcare systems and 

may contribute to vaccine hesitancy for some patients. Many factors could affect the risk of 

local reactions including type of vaccine, age of the patient, and location of the injection 

[7,8].

Study of vaccine-related local reactions can provide information on how to administer 

vaccine to minimize the risk of local reactions. For example, studies have evaluated whether 

there is reduced risk for local reaction based on the limb the vaccine was given, or reduced 

risk of local reaction specific to the first or second dose in a vaccine series. It can also help 

clinicians to provide better instruction to patients regarding possible local reactions 

following vaccination.

Based on the Brighton Collaboration case definition [9], local reaction is any morphological 

or physiological change at or near the injection site such as pain or redness. Since local 

reaction includes a group of signs and symptoms that are commonly associated with non-

vaccine causes, and there is a lack of International Classification of Diseases (ICD) 

diagnosis codes for local reactions due to vaccination, it is difficult to identify vaccine-
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related local reaction cases. Previous studies used a group of non-specific codes to identify 

potential cases of local reactions [7,8,10] and confirmed the cases by chart review [7]. 

However, due to the large number of possible cases identified when using non-specific 

codes, manual review of all suspected cases required significant resources.

Natural language processing (NLP) is a field of computer science that is focused on the 

processing of human language. NLP systems have been used to capture clinically important 

data that are unavailable or inaccurate in structured data fields from electronic health records 

(EHR) [11–13]. This study examined the feasibility of applying NLP to clinical notes to 

identify a medical condition (medically-attended local reactions) relevant to vaccine safety 

research.

2. Methods

2.1. Study population

The study was conducted among members at five U.S. health care systems participating in 

the VSD Project [14]. Each participating VSD site routinely creates structured datasets 

containing demographic and medical information (e.g., vaccinations, diagnoses) on its 

members [1]. For this study, participating sites also created text datasets of clinical notes 

from their EHR for the study population. When available, clinical notes associated with 

physical encounters (e.g., outpatient visits) and virtual encounters (email and telephone) 

were included. Kaiser Permanente Southern California (KPSC) served as the lead study site. 

Two other KP sites (Kaiser Permanente Colorado, Kaiser Permanente Northwest) and two 

non-KP sites (Group Health, Marshfield Clinic) participated. The Institutional Review Board 

of each participating organization approved this study.

Past studies of vaccine-related local reactions relied on diagnosis codes and used a risk 

window of 1–6 days after vaccination [8,15,16]. Events on the day of vaccination (Day 0) 

were excluded since Day 0 diagnosis codes often represent conditions with onset prior to 

vaccination [8,15,16]. In this study, the overall study population included patients of 11 

years of age or older with tetanus–diphtheria–acellular pertussis (Tdap) vaccination between 

2012 and 2014 (inclusive). We created three mutually exclusive sub-populations based on 

the codes and the risk window. The first two sub-populations were identified by ICD-9-CM 

codes (Table 1). These ICD-9-CM codes were previously used in other VSD studies 

[8,15,16]. To exclude conditions that were present before vaccination, presumptive cases 

with any of the codes in the 30 days prior to vaccination were excluded. The third sub-

population included all vaccinees who were not included in the first two groups, who may or 

may not have had a medical encounter in the six days after vaccination, but who did not have 

any of the Table 1 ICD-9-CM codes assigned in the six days after vaccination. The purpose 

of this group was to examine the “false negative” rate of the traditional code-based 

approach.

2.1.1. Search by codes on Days 1–6—This group was created based on an approach 

similar to that of past studies [7,8]. Presumptive cases were identified using ICD-9-CM 

codes documented in all care settings in the 1–6 days following Tdap vaccination. For the 

selected patients, chart notes on Days 1–6 after vaccination were included.
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The training dataset included 250 patients from KPSC. The size of training dataset was 

determined based on experience from past studies and it was created using the same criteria 

used in developing the reference standard (Appendix A).

The validation dataset included 250 different patients from KPSC and an additional 250 

patients from the other four sites in proportion to their population size. Based on the sample 

size calculation with an assumption of 75% sensitivity and specificity, 500 cases would have 

a margin of error of 5%. Patients were randomly selected from the presumptive cases. The 

results of chart review (described below) were used to create the training and validation 

datasets.

2.1.2. Search by codes on Day 0—Using KPSC data only, we identified patients with 

a local reaction code only on the day of vaccination. All the chart notes from the day of 

vaccination were included.

2.1.3. Broad search without codes—This population included KPSC Tdap vaccinees 

who were not in the first two sub-populations. All the chart notes from the 1–6 days after 

vaccination were included.

2.2. Reference standard

Information from the medical record was abstracted by experienced chart abstractors 

according to an abstraction manual, and results were documented in the Research Electronic 

Data Capture (REDCap) system [17]. The REDCap system served as the database to record 

data abstracted from the medical record. Participating sites adhered to their standard 

practices for ensuring chart review quality. Quality review of completed abstraction forms 

against source medical records by a secondary abstractor was performed on 10% of the 

cases. A KPSC physician adjudicated cases that could not be confirmed as local reaction by 

the abstractors.

A presumptive case was considered a confirmed Tdap-related local reaction if 1) information 

in the medical record indicated the presence of signs or symptoms (S/S) consistent with a 

local reaction, including pain, tenderness, redness, warmth, swelling, itch, rash, induration, 

ulceration, lymphadenopathy, inflammation, and cellulitis; 2) those S/S were confirmed to 

be in the limb injected with Tdap; 3) the reaction was not known to have had onset before 

vaccination; and 4) the reaction did not clearly have another cause (e.g., injury, infection).

Chart abstraction of the training dataset and NLP algorithm development occurred in 

parallel. The NLP algorithm was built and refined based on the incremental release of 

training data. This process allowed identification of any issues or inconsistencies between 

chart abstraction and algorithm development. It also enabled us to measure the NLP 

algorithm’s performance incrementally. Chart abstraction of the validation dataset was 

performed after training data abstraction was finished. The results of the chart review for the 

validation dataset served as the reference standard against which NLP was compared.
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2.3. NLP algorithm

A rule-based NLP algorithm was developed and iteratively improved using the training 

dataset. The algorithm was implemented on a NLP system that was internally developed by 

KPSC which was based on NLTK [18], pyConText/NegEx [19], and Stanford NLP [20]. The 

final NLP program was executed locally at each participating site. Results without protected 

health information were sent back to KPSC for analysis.

First, the clinical notes were pre-processed through section detection, sentence separation, 

and tokenization (i.e., segmenting text into linguistic units such as words and punctuation). 

Second, keywords were compiled based on published case definitions and ontologies [21], 

and enriched by the training data to capture additional linguistic variations such as 

abbreviations and misspellings (Appendix B). Third, using these compiled terms, pattern 

matching was used to identify vaccination, S/S of local reaction, site(s) of vaccination and 

reaction, and cause. Negated terms and pre-existing conditions were identified and excluded. 

The site of reaction was compared to the vaccination site coded in the structured data, and 

excluded if the sites did not match. S/S with causes other than Tdap or clearly stated to be 

unrelated to vaccination were excluded. To identify a possible relationship between the 

outcome (local reaction) and the cause (e.g., Tdap), spatial information (e.g., specific body 

location) and temporal information (e.g., onset time) were also captured. The evidence 

(Table 2) identified was combined and assigned an output level between 1 and 8, with 

smaller values indicating stronger probability of being a true positive case (Table 3). A 

sample clinical note with NLP-identified concepts and relationship is provided in Appendix 

C.

For the Day 0 search, only output Levels 1–5 were treated as positive to increase specificity. 

The NLP algorithm was further modified to determine the temporal relationship between 

vaccination and S/S occurring on the same day. Since the vaccination data only contained 

the date without the time of vaccination [22], the timestamp of the notes was used to 

determine the sequence of events. Tdap was routinely administered at the end of a clinical 

encounter which typically lasted 15–30 minutes. Therefore, we grouped notes within a 30-

minute window and treated them as a single encounter. Vaccine-related local reactions often 

were documented in a follow-up encounter. The S/S identified by NLP in the first encounter 

on Day 0 were classified as pre-vaccination symptoms since the vaccination likely had not 

yet been given based on chart review. The S/S identified in later encounters were classified 

as post-vaccination symptoms.

For the broad search, without the restriction of diagnosis codes, the S/S identified in Level 8 

were often not caused by vaccine. Therefore, only output Levels 1–7 were considered true 

positive cases.

2.4. Analysis

For the Day 0 search, all the NLP positive cases were selected for chart review. For the 

broad search, we randomly selected 200 NLP positive cases for chart review.

The final NLP algorithm was tested on the manually chart reviewed reference standard 

validation dataset. We then used the numbers of true positive (TP), false positive (FP), true 
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negative (TN), and false negative (FN) cases to estimate the NLP algorithm’s sensitivity, 

specificity, positive predictive value (PPV), and negative predictive value (NPV) [23,24]. 

The positive (or negative) likelihood ratios (LRs) indicate the degree of increase (or 

decrease) of the probability of having the outcome, if the test was positive (or negative) [25]. 

Confidence intervals were calculated using MedCalc [24]. To provide a more accurate 

estimate of NLP performance for the population from which the sample was drawn, the 

accuracy measurements were weighted to incorporate sampling fractions.

3. Results

Our study population included 1,904,595 patients ≥11 years of age who received Tdap. The 

KPSC population included 1,240,594 patients. Among the KPSC population, 5271 patients 

had a local reaction code on Days 1–6, of which 89.4%, 9.2% and 1.4% were diagnosed in a 

clinic, emergency room, and inpatient setting, respectively. Among the 5271 patients, 37.4% 

received multiple vaccines, and 4.6% were missing vaccination site information. The median 

number of notes per patient during Days 1–6 was 4 (interquartile range: 2–7). Some patients 

had over 100 notes due to their inpatient stay.

3.1. NLP performance for search by codes on Days 1–6

Of the 500 patients in the validation dataset, 134 (26.8%) were chart-confirmed as Tdap-

related local reactions (Table 4). The NLP algorithm achieved an overall weighted sensitivity 

of 87.9%, specificity of 92.8%, PPV of 82.7%, and NPV of 95.1%. Compared to KPSC, the 

two other KP sites had lower PPV and the two non-KP sites had lower sensitivity (Appendix 

D). The frequencies of identified evidence types and NLP output levels are listed in Tables 2 

and 3. The accuracies of the NLP output levels decreased as the levels increased.

After comparing the results of NLP and chart review, we identified ten cases of chart review 

errors caused by human error [26,27]. We corrected the chart review errors (n = 10), 

removed cases where notes were either not found (n = 9) or were missing key information (n 

= 4), and reported the results adjusted for the chart review errors in Appendix E. The 

adjusted estimates reflect the performance of the NLP algorithm after removing factors not 

related to NLP. The remaining NLP-related errors (n = 32) were caused by variable data 

quality in the notes and incorrect identification of cause or S/S (Table 5). The types of chart 

review errors are summarized in Appendix F. The frequencies of S/S identified by NLP are 

listed in Appendix G. The note types that were included or excluded are listed in Appendix 

H. NLP performance varied depending on the diagnosis code of interest (Appendix I). Of the 

5271 patients, 10% had symptoms identified on the mismatched site.

3.2. NLP performance for search by codes on Day 0

Of the 45,744 cases with a Day 0 local reaction diagnosis code, the NLP algorithm identified 

14 Day 0 cases. Five out of these 14 cases were confirmed as true Day 0 local reactions 

(PPV 35.7%).
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3.3. NLP performance for broad search without codes

Of the 1,189,579 KPSC Tdap vaccinees that were not identified by the code-based 

approaches, 363,749 (30.6%) people had at least one note on Days 1–6. Among them, the 

NLP algorithm identified 3326 potential Tdap-related local reactions, and 59% were from 

virtual encounter notes. The PPV was 79.5% (159/200). Error analysis of the 41 false 

positive cases is presented in Appendix J. The estimated number of Tdap-related local 

reaction cases that did not have a local reaction code was 2644 (3326*79.5%); 1084 from 

physical encounters and 1560 from virtual encounters. In comparison, the estimated number 

of positive cases using codes was 1581 (5271*30.0%).

3.4. Estimated incidence rates

For the medically-attended Tdap-related local reactions, the estimated incidence rate based 

on the NLP search by codes on Days 1–6 was 11.9 per 10,000 vaccines (n = 2267, Table 6) 

for the overall population. For the KPSC population only, the estimated incidence rate based 

on the three NLP searches was 41.2 per 10,000 vaccinees (n = 1770 + 14 + 3326).

4. Discussion

In this study, the NLP system was deployed and executed at multiple institutions and, 

without transferring clinical notes, achieved reasonable accuracy in identifying a specific 

vaccine-related adverse event. This study demonstrates the feasibility of using NLP to 

reduce the potential burden of conducting manual chart review in future vaccine safety 

studies.

A text mining system for the Vaccine Adverse Event Reporting System (VAERS) was 

developed and achieved sensitivity of 83.1% and specificity of 73.9% for classification of 

anaphylaxis reports [28]. VAERS collects self-reported VAE from the public and is useful 

for safety signal detection and hypothesis generation. However, such spontaneous reporting 

systems only account for a small fraction of all adverse events [29], especially for less severe 

conditions such as local reactions [30]. Compared to VAERS reports, clinical notes cover 

comprehensive information not limited to VAE. Therefore, it is more difficult to identify 

VAE from clinical notes compared to VAERS.

Only one prior study used NLP to identify VAE from clinical notes [31]. The authors 

achieved PPVs of 64% and 74% for VAE and gastrointestinal-related VAE, respectively. 

However, they were not able to examine NPV. The NLP algorithm identified only 29.5% as 

many cases of gastrointestinal-related VAE as compared to the code-based approach. 

Therefore, manual chart review was still needed for both NLP and code identified cases. In 

addition, the study was performed at a single institution.

4.1. Overcoming the limitation of diagnosis codes

“False negatives” of diagnosis codes are not commonly investigated in vaccine safety 

studies. This is one type of outcome misclassification; if this occurred in a differential 

manner between vaccinated and comparison groups, this could lead to significantly biased 

results. The NLP algorithm identified more positive cases (n = 2644) from the broad search 
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of patients without ICD-9-CM codes than the code-based approach (n = 1581). Thus, NLP 

was able to identify what might be missed when outcomes of interest are identified through 

codes alone.

“False positives” of diagnosis codes were also identified in this study. The confirmed 

positive rate of codes was 28.2% by chart review (Table 4) and 31.0% (2267 of 7315 from 

Table 6) by NLP. To confirm the thousands of potential cases identified by diagnosis codes, 

manual chart review is infeasible. This study further demonstrates the limitation of diagnosis 

codes and the value of NLP for identifying vaccine-related local reactions.

Telephone encounters were often not coded by ICD-9-CM but they were an important data 

source in past vaccine safety studies [31,32]. However, the information documented in these 

notes was often not as complete as other types of clinical notes such as progress notes. This 

led to some false positive cases in the broad search due to the lack of a “possible” category 

in the reference standard. Among the false positive cases, 37% were confirmed as vaccine-

related local reactions but lacked evidence to attribute the reaction to Tdap (15 of 41 cases 

from Appendix I).

NLP had the lowest PPV for lymphadenopathy and lowest NPV for complications of 

medical care. Diagnosis codes also had different PPV (0–73%) based on chart review. Future 

studies may utilize these findings to exclude false positive cases or strategically allocate 

chart review resources.

4.2. Incidence rate estimation

The solicited local reaction rates in the clinical trials were about 70% for pain, 22% for 

erythema, and 20% for swelling for the two approved Tdap vaccines [33,34]. Most local 

reaction cases had minor symptoms where no medical attention was needed. In this study, 

the estimated incidence rate for local reactions (41.2 per 10,000 Tdap vaccinees ≈ 0.4%) 

provides a measure of medical attention associated with the vaccination, albeit an 

underestimate of the true incidence of local reactions. By moderating patients’ perceptions 

of the risk of vaccination, it may help to reduce vaccine hesitancy [35]. It is worth noting 

that patients with different dosing intervals of toxoid vaccines may have different rates of 

medically-attended local reactions, although we did not examine that in this study. In 

comparison, other studies of Tdap-related local reactions have found that the code-based rate 

for pregnant women was 15.4/10,000 [10], and the rate for patients aged ≥ 65 years was 

51.2/10,000 [8]. The chart-based rate for patients 9–25 years of age was 2.6/10,000 [16].

4.3. Identifying rare events and temporality

We demonstrated the potential for NLP to tease out the temporal relationship for Day 0 

events. For most Day 0 visits with local reaction codes, the adverse event had occurred 

before the administration of vaccine [22]. Because of this, in most vaccine safety studies, 

Day 0 cases are only included for rare and acute adverse events that are treated in emergency 

department or inpatient settings [22,36]. In this study, the estimated Day 0 event rate was 

0.0004% for all Tdap vaccinees. For such a rare event, it is difficult to create a validation 

dataset to measure sensitivity. Therefore, our reported result must be interpreted with 
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caution. Despite this, based on the validated performance of NLP, the number of false 

negative cases should be small.

4.4. Performance variation among study sites

Variation among the study sites affected NLP performance. For example, some chart notes 

from one site were missing sentence-ending punctuation, such as a period between 

consecutive sentences. It is likely that the reduced performance at non-KPSC sites was the 

result of the lack of training data from these sites. A training dataset that represents all sites 

would help to reduce performance variation [37].

We allocated half of the validation cases among four participating sites based on their 

population size (Table 6). The small number of cases from Non-KP site 2 resulted in wider 

confidence intervals for the NLP performance measurements. For future NLP work, 

oversampling from smaller sites may help to narrow the confidence intervals for accuracy 

measurements.

As shown in Table 6, there was site variation in the prevalence of diagnosis codes and the 

availability of chart notes. Non-KPSC sites, especially the two non-KP sites, had lower 

NLP-based incidence rates than KPSC. Some of the contributing factors may be related to 

the differences in health care systems, utilization and clinical documentation patterns, and 

clinical visits to external facilities not documented in the EHR. Some of the false negative 

cases at the two non-KP sites were due to scanned images of external visits that were not 

available to NLP.

4.5. Beyond free text chart notes and NLP

In this study, the NLP process was mainly limited to chart notes, while chart abstractors 

reviewed all the information in the EHR. Potentially all structured and semi-structured data 

could be utilized in the algorithm. In this study, vaccine injection site and date were obtained 

from the structured data in the EHR. This information helped to rule out a vaccine-related 

cause if the reaction site did not match that of the injection site, or if the S/S began prior to 

vaccination. In addition, machine learning could be used together with NLP to improve 

accuracy by including structured (e.g. codes, care settings) and unstructured data (e.g. type 

and number of symptoms) [38].

4.6. Potential applications

Although this study demonstrated the higher accuracy of NLP on identifying one VAE 

compared to the diagnosis codes, NLP is not 100% accurate. Therefore, case confirmation of 

NLP results may still be needed for certain studies. It is worth noting that manual review 

(even with independent double review) may not be 100% accurate. Many published studies 

solely relied on the diagnosis codes which are often not accurate. Therefore, the usage of 

NLP in vaccine safety studies must consider the pros and cons of NLP and the specific 

requirements of the study. For studies that require manual chart review, NLP can be used to 

replace or facilitate manual chart review by narrowing down cases if the diagnosis codes 

lack specificity. Currently, we often proceed with studies assuming the coding of diagnoses 
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is complete. NLP could be applied to a population without ICD codes to increase the 

sensitivity of detecting conditions.

NLP is fast and can be automatically executed, therefore it may be well-suited for vaccine 

safety surveillance [39,40], and possibly identifying safety signals from clinical data, in a 

manner complementary to VAERS [41,42]. NLP can handle large amounts of data, 

permitting long-term follow-up of millions of vaccinees [41] and identification of rare 

outcomes [43,44]. NLP can be applied to identify attributions of adverse events [41,44], 

assess outcomes or confounders [43], determine temporality [44–46], and identify reasons 

for vaccine hesitancy [35,43].

4.7. Limitations

There are limitations to this study worth consideration. First, due to limitation of resources, 

we were not able to perform double chart abstraction for all the cases. Second, the small 

sample sizes for non-KPSC sites resulted in wide confidence intervals. Third, NLP has lower 

PPV when applied for Day 0 and without diagnosis codes.

Based on the error analyses of NLP and chart review (Appendix F and J), one common 

challenge was to correctly attribute the causes of identified S/S. Local reaction-related S/S 

are also associated with many possible causes. Causes are not always clearly known or 

documented in the clinical notes. Based on the analysis of the validation data, vaccine 

reaction was only stated in 31% of the positive cases (Table 2). The frequent co-

administrations of other vaccines at the same time added another level of difficulty for cause 

attribution.

5. Conclusion

With more EHRs becoming available in different health care systems, new methods may be 

needed for conducting vaccine safety studies that have traditionally relied upon structured 

data and manual chart review. In this study, we demonstrated the uses of an NLP algorithm 

to identify VAE from the clinical notes at five VSD sites. These results suggest that NLP has 

the potential to reduce the efforts of manual chart review in vaccine safety studies.
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Summary table

What was already known on this topic:

• The Vaccine Safety Datalink (VSD) plays a critical role in monitoring adverse 

events after vaccinations by utilizing the electronic health records.

• Most studies performed in the VSD rely on diagnosis codes and manual chart 

review for outcome identification and confirmation.

What this study added to our knowledge:

• A natural language processing (NLP) system that was developed at one 

institution and deployed and executed at multiple institutions achieved 

reasonable accuracy in identifying a specific vaccine-related adverse event.

• This study demonstrates the feasibility of using NLP to reduce the potential 

burden of conducting manual chart review in future vaccine safety studies.

• “False negatives” of diagnosis codes are not commonly investigated in 

vaccine safety studies. NLP can identify cases missed by diagnosis codes.

• NLP has many potential applications in future vaccine safety studies based on 

the considerations of the pros and cons of NLP and the specific requirements 

of the study.
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Table 1

International Classification of Disease 9th Revision, Clinical Modification (ICD-9-CM) codes used to identify 

presumptive cases of local reaction.

ICD-9-CM codes and descriptions

 289.3 Lymphadenitis

 682.3 Cellulitis and abscess, upper arm and forearm

 682.9 Cellulitis and abscess, unspecified site

 683 Acute lymphadenitis

 709.8 Other unspecified disorder of skin

 709.9 Other unspecified disorder of skin and subcutaneous tissue

 729.5 Pain in limb

 729.81 Swelling of limb

 785.6 Lymphadenopathy

 995.2 Other and unspecified adverse effect of drug, medicinal and biological substance

 995.3 Allergy, unspecified

 999.3 Other infection after infusion, injection, transfusion, or vaccination

 999.5 Serum reaction

 999.9 Complications of medical care, not elsewhere classified
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Table 3

Levels of output from the NLP system for combination of evidence types.

Combination of evidence types* Output level Percentage %** FP rate %***

A and B and C and D and (E or F or G or H) 1 33.6 0

A and B and C and (E or F or G or H) 2 18.9 11.5

A and B and D and (E or F or G or H) 3 19.6 10.7

A and B and (E or F or G or H) 4 11.2 6.3

(A and C and D and (E or F or G or H)) or (A and H and I) 5 3.5 0

A and C and (E or F or G or H) 6 5.6 37.5

A and D and H 7 0.7 100

A and H and (not J) 8 7.7 81.9

*
The algorithm checks the combination of evidence types from top to bottom, produces an output level, and stops once it finds a match. The 

combination of evidence types and output levels were manually created based on the performance on the training data until the NLP algorithm 
achieved 100% sensitivity and specificity.

**
Percentages in NLP positive cases among the validation data.

***
False positive rate in the validation data by NLP output level.
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