
Resting Tremor Detection in Parkinson’s Disease with Machine 
Learning and Kalman Filtering

Lin Yao1, Peter Brown2,3, Mahsa Shoaran1

Lin Yao: lin.yao@cornell.edu; Peter Brown: peter.brown@ndcn.ox.ac.uk; Mahsa Shoaran: shoaran@cornell.edu
1School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA

2Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK

3Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, UK

Abstract

Adaptive deep brain stimulation (aDBS) is an emerging method to alleviate the side effects and 

improve the efficacy of conventional open-loop stimulation for movement disorders. However, 

current adaptive DBS techniques are primarily based on single-feature thresholding, precluding an 

optimized delivery of stimulation for precise control of motor symptoms. Here, we propose to use 

a machine learning approach for resting-state tremor detection from local field potentials (LFPs) 

recorded from subthalamic nucleus (STN) in 12 Parkinson’s patients. We compare the 

performance of state-of-the-art classifiers and LFP-based biomarkers for tremor detection, 

showing that the high-frequency oscillations and Hjorth parameters achieve a high discriminative 

performance. In addition, using Kalman filtering in the feature space, we show that the tremor 

detection performance significantly improves (F(1,15)=32.16, p<0.0001). The proposed method 

holds great promise for efficient on-demand delivery of stimulation in Parkinson’s disease.

Index Terms

Parkinson’s disease (PD); deep brain stimulation (DBS); tremor; adaptive DBS; machine learning; 
Kalman filtering

I Introduction

Parkinson’s disease (PD) is one of the most prevalent neurodegenerative diseases, affecting 

over 6 million patients worldwide. PD is characterized by both motor and non-motor 

symptoms [1], with the former mainly consisting of resting tremor, muscle rigidity, and 

akinesia. Such disabling symptoms in advanced Parkinson’s disease can be partially 

alleviated by the use of deep brain stimulation technology [2], through delivering a constant 

high-frequency stimulation (~130Hz) to either subthalamic nucleus (STN) or internal globus 

pallidus (GPi) [3].

However, due to the continuous and open-loop delivery of stimulation, PD patients treated 

by the conventional DBS exhibit side effects such as speech impairment and psychiatric 

symptoms [3]. Furthermore, constant stimulation increases the energy consumption of the 

battery-powered DBS device, which may require a surgical replacement when running out of 
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power. To overcome these limitations, the concept of adaptive DBS (aDBS) promises an 

effective alternative, by transforming the open-loop DBS to a closed-loop approach [3], [4]. 

In the adaptive DBS system, stimulation is dynamically controlled by the state of a patient’s 

motor symptoms, such as bradykinesia or tremor. Through the measurement of relevant 

biomarkers, adaptive DBS can deliver the stimuli only when needed, thus reducing the 

duration of stimulation, alleviating the side effects, and saving power. One of the pioneering 

studies on aDBS in humans [4] has reported promising results such as reduction of 

stimulation time and energy consumption by 56%, improving the UPDRS (Unified 

Parkinson’s Disease Rating Scale) motor score by 27%, and a better speech intelligibility 

compared to conventional DBS [4], [5].

Despite the promising advantages of aDBS, it is still facing many challenges on its way to 

clinical therapy [3]. Particularly, the lack of chronic trials and sufficient data for 

performance evaluation, the need for optimal feedback signals and efficient control 

algorithms, and the hardware integration of recording and control circuits into DBS system 

are among the major bottlenecks. For instance, the majority of feedback signals used for 

aDBS control so far have been overly simplistic and unidimensional [3], such as beta power 

(13–30 Hz) in local field potentials, or the tremor severity measured by accelerometer 

sensors. For tremor detection in Parkinson’s disease, however, the beta power in STN may 

not be sufficient or optimal, as it does not correlate with tremor but well correlates with 

bradykinesia and rigidity [3]. The potential usage of tremor acceleration or EMG as 

alternative feedback signals would lead to excessive energy consumption, due to the wireless 

communication between the implanted DBS and wearable motion or EMG sensors. 

Therefore, to implement aDBS for Parkinson’s disease, additional correlating biomarkers 

directly extracted from the brain activity (i.e., LFPs in STN, or alternatively, from motor 

cortex [6]) should be explored to better predict the tremor state.

In this work, we investigate the state-of-the-art machine learning algorithms previously 

applied to neural data [7], combined with multiple time and frequency-domain features, to 

detect the Parkinson’s tremor periods. Specifically, Kalman filtering in the feature space is 

proposed to enhance the tremor detection performance. Our results suggest that a multi-

feature classification approach combined with Kalman filtering would potentially provide a 

more effective control of DBS.

II Materials and Methods

All the data analysis and classification process in this work has been done offline, with the 

goal of translation to an online setting for closed-loop suppression of Parkinson’s tremor.

A Subjects and Data

We studied 12 patients with Parkinson’s disease recruited by the University of Oxford. All 

patients gave their informed consent to take part in this study, which was approved by the 

local research ethics committee of the University of Oxford. The data includes 16 LFPs, as 

patients who experienced bilateral symptoms were recorded from both sides (the individual 

recordings are named as s1 to s16). The LFPs were recorded from STN when the stimulation 

was off, and the acceleration of the contralateral limb was simultaneously measured. The 
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LFPs vary from 1.5 to 10 minutes in duration, recorded at a sampling rate of 2048 Hz using 

four channels at different depths. A notch filter at 50 Hz and its harmonics was applied to 

remove the powerline noise. To measure the bipolar LFPs, we use the difference between 

adjacent contacts. In total, seven channels are included in our analysis, i.e., four monopolar 

and three bipolar. The prevalence of tremor in the LFP recordings is shown in Fig. 1. On 

average, 56.3±24.4% of the total recording time is accompanied by tremor.

B Tremor Labeling

The peak frequency of tremor was determined by computing the Fast Fourier Transform of 

the measured acceleration and finding the frequency with maximum amplitude in (1–10 Hz) 

range. A second-order Butterworth band-pass filter was used to filter the acceleration data, 

with the determined tremor frequency as the center and a bandwidth of 2 Hz. Then, the 

envelope of the filtered signal was extracted using Hilbert transform, and was subsequently 

used for labeling the tremors. A threshold method was utilized to differentiate the tremor 

from non-tremor state. The threshold was determined by finding the resting non-tremor 

period first (the amplitude of the measured acceleration signal and the corresponding 

envelope was small when there was no tremor). Then, the mean value of the non-tremor 

period plus five standard deviation of that period was used as the threshold. The amplitude 

above the threshold was labeled as tremor, otherwise as non-tremor.

The labeling process is illustrated in Fig. 2(a). The threshold method can reasonably 

distinguish the tremor from non-tremor state, while very small tremor is considered as non-

tremor. Moreover, it is impossible to differentiate the two states simply by eye, as shown in 

the corresponding LFP signal in Fig. 2(b).

C Feature Computation

In order to extract the electrophysiological biomarkers of tremor, the LFP recordings are 

continuously segmented into 2-second epochs without overlapping. Then, twelve features 

are extracted from each epoch in seven channels as summarized in Table I. These features 

are carefully selected from previous studies on Parkinson’s disease and other widely 

explored neurological disorders such as epilepsy [7]–[14], and include: Beta power (13–30 

Hz) [4]; Phase–amplitude coupling (PAC) between the phase of beta and the amplitude of 

high-frequency oscillations (150–400 Hz) [9]; High-frequency oscillation (HFO) power ratio 

between (200–300 Hz) and (300–400 Hz) [10]; HFO power (200–350 Hz); Tremor power 

(3–7 Hz); Maximum peak power in (3–18 Hz); Hjorth activity, mobility, and complexity [8]; 

Wavelet entropy [14]; Low gamma power (31–45 Hz) [11], and Gamma power (60–90 Hz).

The time-frequency transforms of both LFP and acceleration measure for a sample patient 

are shown in Fig. 3. The peripheral acceleration exhibits a strong energy within the tremor 

frequency band of (3–7 Hz). Correspondingly, we also observe a power increase within the 

tremor band in LFP, indicating that the spectral power of tremor band in local field potentials 

would be a good candidate for tremor prediction.

We use a biserial correlation coefficient [15] to assess the discriminative power of each 

feature in tremor detection. It is defined as the difference of the mean value between the 

tremor and non-tremor features, divided by the pooled standard deviation of the two groups:
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d =
N1 × N2

N1 + N2

mean X1 − mean X2
std X1 ∪ X2

where N1 and N2 represent the number of samples in the X1 and X2 classes, respectively. For 

the on-chip integration of closed-loop DBS in our future work, we will select a feature set 

with high discriminative accuracy and low hardware cost from the current pool of features.

D Kalman Filtering in Feature Space

The noisy fluctuations in the LFP time series, and consequently, in the extracted features, 

degrade the tremor detection accuracy. Kalman filtering has been shown to be very effective 

in smoothing the undesired fluctuations of the data [12], [16] by minimizing the variance of 

the estimation error. In this paper, we utilize a second-order Kalman filter as described 

below. A detailed description of Kalman filtering process can be found in [16].

Let [ f k ḟ k]′ represent the state vector sk, where ḟ k denotes the rate of change in fk (first-

order derivative). The extracted feature zk can be represented by the following state-space 

model:

sk + 1 =
1 T p

0 1
× sk + wk

zk = 1 0 × sk + vk

(2)

where Tp is the prediction interval and wk is the process disturbance assumed as a zero-mean 

white noise with a covariance of:

Q =
σw

2 T p
3

3 σw
2 T p

2

2

σw
2 T p

2

2 σw
2 T p

(3)

A Kalman filter can be applied to the second-order state-space model in (2) in order to 

recursively provide a filtered estimate f k of fk. The resulting smoother variable f k is then 

used in place of zk in the classification process. The standard deviations σw of wk and σv of 

vk are the only design parameters of Kalman filter, and the Kalman gain depends on the ratio 

of σ = σw/σv, which is set to 5 × 10−5 according to [12], [16]. It should be noted that the 

hardware complexity of a second-order Kalman filter is negligible, compared to the feature 

computation and classification tasks.

E Classification and Performance Evaluation

We study the performance of various classifiers for tremor detection, using the scikit-learn 

package in Python. A hyperparameter tuning of classifier parameters was performed to find 
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optimum settings for each patient. These classifiers include: Linear Discriminant Analysis 

(LDA); Logistic Regression (LR); k-Nearest Neighbor (k-NN); Support Vector Machines 

with Linear (SVM-L) and Radial Basis kernels (SVM-R); Multilayer Perceptron Neural 

Network (MLP); Random Forest (RF); and Extreme Gradient-Boosted Decision Trees 

(XGB).

Ensembles of decision trees such as gradient boosting and random forests have been among 

the most useful and highly competitive methods in machine learning recently [7], 

particularly in the regime of limited training data, little training time, and little need for 

parameter tuning. In particular, the XGBoost implementation has been a winning solution in 

many machine learning competitions such as the intracranial EEG-based seizure prediction 

contest on Kaggle, and has been included in our analysis.

Dealing with a time series classification problem, we opted for a block-wise data 

partitioning method to fairly assess the performance of classifiers and avoid data leakage [7]. 

For each recording, we first divide the continuous LFP data into 20 equal-sized blocks. We 

then apply a 5-fold cross validation to the blocks of LFP data, by using 20% of blocks (i.e., 

four) for testing the model, and the remaining for training. This process is then repeated for 

5 times and the results are averaged to produce a single estimation. As the tremor and non-

tremor in the current dataset are highly unbalanced across subjects, the classifier 

performance is measured by AUC rather than accuracy. The AUC represents the area under 

the ROC curve (the true positive rate vs. false positive rate).

III Tremor Detection Performance

The biserial correlation coefficients of the examined features are averaged across channels 

and depicted in Fig. 4(a), indicating how informative each feature is in discriminating the 

two classes of tremor and non-tremor. We can see that the HFO and Hjorth complexity 

perform the best. Moreover, the overall classification performance of each feature using 

XGB and seven input channels is shown in Fig. 4(b). It is evident that the Hjorth complexity 

and HFO achieve the highest performance.

Figure 5 shows the performance of classifiers using the feature set in Table I, with and 

without Kalman filtering. For AUC measure, the two-way ANOVA with repeated measures 

shows a significant main effect on Kalman filtering (F(1,15)=32.16, p<0.0001), and on 

classifiers (F(7,105)=4.59, p<0.0001), with no significant interaction. The post-hoc 

comparison shows that Kalman filtering results in 11.42% superior performance compared 

to the case with no filtering. The performance of XGB, RF and MLP classifiers is 

significantly higher than that of k-NN. No significant difference is shown among MLP, RF, 

and XGB, while XGB is computationally less expensive. LR performs 3.3% better than 

LDA, while no significant difference is shown among LR, MLP, RF, SVM-L, SVM-R and 

XGB, on this dataset. Using only beta power, the performance significantly degrades (AUC: 

53.79%±33.22% for LDA).

Our results suggest a careful selection of features with high detection performance for on-

chip integration of aDBS, while choosing a classifier with low hardware complexity (e.g., 
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XGB or LR), to maintain low power and small form factor of the implantable system. For 

XGB or RF, we can use an architecture similar to [7]. Our analysis shows that an ensemble 

of 10 trees with a maximum depth of 2 is sufficient to achieve an average AUC of above 

70% with XGB. Moreover, RF with 10 trees and a maximum depth of 3, and MLP with one 

hidden layer and 20 neurons, similarly achieve AUCs of above 70%. A detailed discussion 

on hardware complexity of different classifiers can be found in [7]. The tremor detection 

results for a sample patient is shown in Fig. 6. We can see that the proposed Kalman filtering 

combined with XGB classifier can reasonably track the measured tremor during resting 

state.

IV Conclusion

In this work, machine learning combined with Kalman filtering is systematically studied for 

resting tremor detection in Parkinson’s disease. We find that Kalman filtering in feature 

space can significantly improve the classification performance. Furthermore, hardware-

friendly machine learning models such as gradient-boosting decision trees and logistic 

regression, combined with HFO and Hjorth complexity features, achieve a high performance 

in tremor detection. This study has the potential to transform the conventional adaptive DBS 

to a more efficient machine learning-based closed-loop control.
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Fig. 1. 
The tremor prevalence distribution across LFP recordings.
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Fig. 2. 
(a) Threshold method for tremor labeling. The left figure represents the time-domain 

acceleration, its envelope after band-pass filtering, and applied threshold, while the figure on 

the right shows the power spectrum of acceleration. (b) One channel of the raw LFP signal 

(left), and its power spectrum (right).
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Fig. 3. 
The time-frequency distribution of power in (a) the acceleration measure of tremor, and (b) 

in the corresponding LFP recording.
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Fig. 4. 
(a) Boxplot of biserial correlation coefficient for the studied features, (b) feature importance 

measured by AUC for XGB classifier.
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Fig. 5. 
Comparison of average predictive ability of all classifiers measured by AUC, with and 

without Kalman filter.
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Fig. 6. 
Example of tremor detection using the XGB classifier and selected feature set for an 

arbitrary patient.
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Table I
Extracted Features

Feature Description

1. Beta Power Spectral power in (13–30 Hz) [4]

2. PAC Phase-amplitude coupling between the phase of beta and the amplitude of high-frequency oscillations (150–400 Hz) 
[9]

3. HFO Ratio Power ratio of the HFO in (200–300 Hz) and (300–400 Hz) [10]

4. HFO Power Spectral power in (200–350 Hz)

5. Tremor Power Spectral power in (3–7 Hz)

6. Max Power Peak power in (3–18 Hz)

7. Wavelet Entropy Wavelet entropy [14]

8. Hjo Act Hjorth activity [8]

9. Hjo Mob Hjorth mobility [8]

10. Hjo Com Hjorth complexity [8]

11. Low Gamma Power Spectral power in (31–45 Hz) [11]

12. Gamma Power Spectral power in (60–90 Hz)
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