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Abstract

Objective: Osteoarthritis (OA) is a multifactorial disease with etiological heterogeneity. The 

objective of this study was to classify OA subgroups by generating metabolomic phenotypes from 

human synovial fluid.

Design: Post mortem synovial fluids (n=75) were analyzed by high performance-liquid 

chromatography mass spectrometry (LC-MS) to measure changes in the global metabolome. 

Comparisons of healthy (grade 0), early OA (grades I-II), and late OA (grades III-IV) donor 

populations were considered to reveal phenotypes throughout disease progression.

Results: Global metabolomic profiles in synovial fluid were distinct between healthy, early OA, 

and late OA donors. Pathways differentially activated among these groups included structural 

deterioration, glycerophospholipid metabolism, inflammation, central energy metabolism, 

oxidative stress, and vitamin metabolism. Within disease states (early and late OA), subgroups of 

donors revealed distinct phenotypes. Synovial fluid metabolomic phenotypes exhibited increased 

inflammation (early and late OA), oxidative stress (late OA), or structural deterioration (early and 

late OA) in the synovial fluid.
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Conclusion: These results revealed distinct metabolic phenotypes in human synovial fluid, 

provide insight into pathogenesis, represent novel biomarkers, and can move toward developing 

personalized interventions for subgroups of OA patients.
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Introduction

Osteoarthritis (OA) affects over 250 million individuals worldwide and is associated with an 

annual economic burden of at least $89.1 billion [1]. OA is the most common joint disease 

characterized by pain and loss of function resulting from the breakdown of the articular 

cartilage [2]. Pathologically, OA joints exhibit cartilage damage, osteophyte formation, 

subchondral bone sclerosis, and varying degrees of synovitis [3]. Altered joint metabolism, 

inflammation, increased joint loading, joint injury, and other factors contribute to the 

development of OA [4-8].

This multifactorial nature of OA contributes to a broad variation in presentation of 

symptoms, progression of disease, and response to treatments. In addition to the multiple 

contributing factors, the trajectory of OA prognosis is highly variable. Some patients rapidly 

progress into severe stages of disease, whereas others remain relatively stable for decades 

[9-12]. Similarly, the perception of pain is also variable, with some patients experiencing 

minimal pain despite obvious joint space narrowing and others experiencing extreme pain 

with minimal joint space narrowing. OA was recently described as having multiple 

phenotypes in which subsets of disease characteristics drive differences between subgroups 

of patients with distinct OA outcomes [8]. However, more data are needed to define these 

phenotypes. In this study, we find metabolomic phenotypes of synovial fluid from patients 

with cartilage morphological changes associated with OA.

OA heterogeneity poses many challenges for understanding pathogenesis, facilitating 

diagnosis and therapeutic interventions [13-15]. Defining phenotypes of OA is important for 

many reasons. First, this would provide insight into factors that contribute to the 

development of these distinct phenotypes [8]. Secondly, it would allow for development of 

targeted treatments for specific subgroups of OA [8]. Finally, given the heterogeneity of OA, 

defining phenotypes is crucial for identifying biomarkers for early diagnosis across all 

phenotypes or within specific subgroups once identified.

Metabolomics is a promising method for distinguishing phenotypes. Metabolomics analyzes 

large numbers of small-molecule intermediates [16]. Changes in the metabolome occur 

rapidly and reflect the overall biological response from changes in the genome, 

transcriptome, and proteome [17]. Metabolomic profiling generates a phenotype that 

characterizes functional cellular biochemistry [16, 17]. Global metabolomics is promising 

because it produces a global view of the metabolome with minimal bias. By focusing on all 

metabolite features in the sample, this analysis develops a network of pathways that 

illustrate metabolic perturbations with disease. Therefore, global metabolomic profiling is 

not only beneficial for identifying specific metabolites as potential biomarkers as 
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demonstrated previously [18], but also providing insight into the underlying mechanism of 

disease.

The SF is an ultrafiltrate of the plasma containing additional molecules produced by the cells 

in joint tissue. SF provides lubrication between the articular cartilage surfaces and eliminates 

metabolic waste. The SF is in direct contact with other OA-affected tissues (i.e. articular 

cartilage, synovium, etc.) and will reflect local changes with disease [19]. This makes the SF 

a promising biofluid for phenotype identification given the heterogenous pathology of OA in 

the joint.

The objective of this study is to apply our established LC-MS-based global metabolomic 

profiling method to generate metabolic phenotypes of SF from post mortem knee joints from 

patients across all stages of OA (grades 0-IV) graded using the Outerbridge scale for 

cartilage damage. By characterizing global metabolomic profiles of early and late OA, this 

study seeks to (1) identify differences in metabolic pathways throughout disease progression 

from healthy to late stage disease, and (2) classify patients within early and late OA into 

subgroups representative of potential synovial fluid phenotypes. To our knowledge, this is 

the first study to perform global metabolomic profiling of SF from donors with early and 

late stage OA to investigate metabolic perturbations throughout disease progression.

Methods

Human Synovial Fluid

Post mortem SF samples (n=75) from knee joints were used for this study under an IRB 

exemption with synovial fluids from the right or left knee joint chosen at random from each 

subject. Joints were graded based on severity of changes in the knee cartilage surfaces using 

the Outerbridge scoring system which grades joints from 0-IV based on macroscopic 

cartilage pathology [20]. The distribution of OA knees was as follows: grade 0 (n=7), grade I 

(n=28), grade II (n=27), grade III (n=13), and grade IV (n=4). SF samples were grouped in 

three cohorts: healthy controls (grade 0; n=7), early OA (grades I-II; n=55), and late OA 

(grades III-IV; n=17). These samples include both sexes and a variety of ages (Table 1). SF 

was frozen at −80°C until analysis. All samples were de-identified and blinded prior to mass 

spectrometry and data analysis.

Donor Demographic Information

Age, sex, and OA grade were included for all donors (Table 1). Additional clinical data 

available for some but not all donors included donor height and weight, cause of death, pre-

existing medical conditions, and history of OA.

Global Metabolomic Profiling

Metabolites were extracted and analyzed by LC-MS analysis as previously described with 

slight modifications [18, 21]. SF samples were thawed on ice and centrifuged at 4°C at 

500xg for 5 minutes to eliminate cells and debris. The supernatant was resuspended in 50:50 

water:acetonitrile at −20°C for 30 minutes. The sample was vortexed for 3 minutes and 

centrifuged at 16100xg for 5 minutes at 4°C. The supernatant was completely evaporated in 
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a vacuum concentrator for ~2 hours, and the dried pellet was resuspended in 500 μL of 

acetone to precipitate proteins at 4°C for 30 minutes. The sample was then centrifuged at 

16100xg for 5 minutes. The supernatant was completely evaporated by speedvac, and the 

pellet was resuspended in mass spectrometry grade 50:50 water:acetonitrile. Metabolite 

extracts were analyzed in positive mode using an Agilent 1290 UPLC system connected to 

an Agilent 6538 Q-TOF mass spectrometer (Agilent Santa Clara, CA). Metabolites were 

chromatographically separated on a Cogent Diamond Hydride HILIC 150×2.1 mm column 

(MicroSolv, Eatontown, NJ) using an optimized normal phase gradient elution method, and 

spectra were processed as previously described [18].

Statistical Methods and Analysis

Global metabolomic profiling generates a large multivariate dataset of thousands of mass-to-

charge ratios (m/z) and their corresponding peak intensities [17]. The dataset was reduced by 

removing metabolite features (m/z values) with median intensity values of zero across all 

experimental groups. All data analysis steps were completed using MetaboAnalyst unless 

otherwise noted [22]. Data were log transformed using the base-2 logarithm (log2) to correct 

for non-normal distributions and standardized (mean centered divided by standard 

deviation). Standardized data were used for all analyses unless indicated otherwise.

All statistical tests used an a priori significance level of 0.05, and false discovery rate (FDR) 

corrections were applied when performing multiple comparisons per metabolite between 

groups [23]. The Kolomogorov-Smirnov test (KS-test) was used in MATLAB (MathWorks, 

Inc. Natick, MA) to compare cumulative median metabolite distributions between cohorts. 

This nonparametric test does not require assumptions about the underlying distributions and 

therefore is useful for metabolomics datasets that typically contain non-normal distributions. 

Specific differences between multiple groups were determined using analysis of variance 

(ANOVA) F-tests. Two-tailed Student’s t-tests examined specific pairwise differences.. 

Differentially regulated metabolites between two groups were visualized by volcano plot to 

assess both significance and magnitude of change simultaneously. Metabolite features with a 

p-value (FDR corrected) less than 0.05 and greater than twofold change were considered 

both statistically significant and biologically important in these analyses.

Multivariate methods assessed variations in the metabolomic datasets. Unsupervised 

hierarchical clustering analysis (HCA) based on Euclidean distance and average linkage 

separated samples into groups of similar abundance patterns [24]. HCA assessed subgroups 

of donors exhibiting distinct metabolomic phenotypes. HCA is visualized using heatmaps, 

known as a clustergrams, to analyze the overall metabolomic profiles. Clustergrams reveal 

both clusters of co-regulated metabolite features and the relative similarity between 

experimental groups [24]. Principal component analysis (PCA) is another unsupervised 

method used to analyze metabolomics data. PCA orthogonally transforms a set of 

observations into principal components that each represent a fraction of the overall variance 

within the dataset. Partial least squares-discriminant analysis (PLS-DA) is a supervised 

classification method that reveals the underlying source of distinction between known 

groups. PLS-DA scores each variable in each component indicating how important that 

variable was in contributing to the separation.
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Metabolite features (m/z values) were matched to known metabolite identities and mapped 

to relevant pathways using the metabolite library and pathway enrichment tool, mummichog 
[25]. Mummichog predicts a network of functional activity based on the projection of 

detected metabolite features onto local pathways. Pathway libraries MFN and Biocyc were 

used for compound identification and pathway enrichment (mass tolerance: 0.1 ppm; 

positive mode). Pathways reported were significant by pathway overrepresentation analysis 

with an FDR-adjusted p-value less than 0.05.

To determine if cohorts or phenotypes were associated with any confounding variables, 

Student’s t-tests, logistic regression, and post hoc Chi Squared tests were employed to assess 

differences between groups based on the available clinical data including age, sex, and BMI 

were assessed between both groups and phenotypes.

Results

Differences in Global Metabolomes between Healthy Donors, Early and Late OA

A total of 9903 metabolite features were detected in SF from donors with grade 0-IV OA. 

This dataset was refined to 1362 detected features by removing features with a median 

intensity of zero. ANOVA identified 39 differentially expressed metabolite features between 

healthy, early OA, and late OA SF (FDR-corrected p<0.05).

We first explored whether the global metabolomes were distinct between healthy, early, and 

late OA cohorts. To examine differences between cohorts, three pairwise comparisons were 

made: healthy vs. early OA; healthy vs. late OA; and early vs. late OA. Between-group 

differences in global metabolomes were assessed using KS-tests, and this revealed 

significant differences between all pairwise comparisons (pks<0.01; Fig. 1). Taken together, 

these results indicate that the global metabolomes are significantly different between 

healthy, early, and late OA.

To visualize differences in metabolomic profiles and identify specific metabolite features 

with the greatest discriminative capabilities for separating cohorts, supervised PLS-DA was 

used. PLS-DA shows clear separation of healthy donors from disease donors, and minimal 

overlap between early and late OA donors (Fig. 1). By examining VIP scores, we found 

metabolite features that contribute the most to distinguishing between cohorts and are strong 

candidates for potential metabolite biomarkers (Supplemental Table 1).

Volcano plot analysis examined pairwise differences using both significance and fold 

changes (Fig. 1). 188 metabolite features were significantly different between healthy and 

early OA SF with 162 lower and 26 higher in early OA. 64 metabolite features were 

significantly different between healthy and late OA SF, with 39 decreased and 25 increased 

in OA. Within OA, 191 metabolite features were significantly different between early and 

late stage disease, with 9 lower and 182 higher in late stage disease. To infer metabolic 

activity, significantly different metabolite features were enriched using mummichog’s 
pathway analysis (Supplemental Table 2) presented below.
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Co-Regulated Metabolites Map to Differentially Regulated Metabolic Pathways with 
Disease

Early and late OA profiles were distinct from healthy SF (Fig. 2). Unsupervised HCA of 

healthy and diseased SF showed that the early and late OA profiles were more similar to one 

another than healthy SF (Supplemental Fig. 1). From the clustering, six groups of co-

regulated metabolites were identified based on consistency of clustered distance and 

assessed for enriched pathways associated with stage of OA. (Supplemental Table 3).

Cluster 1 contained 38 metabolite features that decreased throughout disease progression. 

These mapped to 14 of the previously identified enriched pathways (Supplemental Table 2) 

including amino acid metabolism (glycine, serine, alanine, threonine, lysine, arginine, and 

proline), the urea cycle, phosphatidylinositol phosphate metabolism, the carnitine shuttle, 

vitamin metabolism (B5 and C), and porphyrin metabolism (Supplemental Table 3).

Cluster 2 contained 135 metabolite features that decreased in OA compared to healthy SF. 

These metabolite features mapped to 20 enriched pathways including vitamin metabolism 

(E, C, B3, and B6), phosphatidylinositol phosphate metabolism, glutathione metabolism, 

leukotriene metabolism, butanoate metabolism, amino acid metabolism (similar to cluster 1 

with the addition of tryptophan and histidine metabolism), and the carnitine shuttle 

(Supplemental Table 3).

Cluster 3 contained 188 metabolite features lowest in early OA compared to healthy and late 

OA. These mapped to 14 enriched pathways including porphyrin metabolism, galactose 

metabolism, fructose and mannose metabolism, vitamin metabolism (B5, B3, E), methionine 

and cysteine metabolism, N-glycan degradation, glycerophospholipid metabolism, and 

leukotriene metabolism (Supplemental Table 3).

Clusters 4-6 contained metabolism features higher in abundance in OA cohorts. Cluster 4 

contained 64 metabolite features highest in late OA. These metabolite features mapped to 8 

enriched pathways including keratan sulfate degradation, N-glycan degradation, fructose and 

mannose metabolism, leukotriene metabolism, and butanoate metabolism (Supplemental 

Table 3).

Cluster 5 contained 177 metabolite features with the greatest abundance in early and late OA 

SF. These mapped to 36 enriched pathways including amino acid metabolism (histidine, 

glycine, serine, alanine, threonine, tyrosine, glutamate, aspartate, valine, leucine, isoleucine, 

aspartate, asparagine, lysine, and tryptophan) urea cycle, keratan sulfate degradation, fatty 

acid metabolism, glycerophospholipid and glycosphingolipid metabolism, the TCA cycle, 

N-glycan metabolism, glutathione metabolism, tryptophan metabolism, and vitamin C 

metabolism (Supplemental Table 3).

Cluster 6 contained 60 metabolite features highest in abundance in early OA. These mapped 

to 33 enriched pathways included glycolysis and gluconeogenesis, the pentose phosphate 

pathway, sialic acid metabolism, N-glycan degradation, keratan sulfate degradation, 

tryptophan metabolism, glutathione metabolism, and vitamin B3 metabolism (Supplemental 

Table 3).
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Unsupervised Clustering Suggests Metabolomic Phenotypes within Early and Late OA

To examine synovial fluid phenotypes, early and late OA were further analyzed by 

unsupervised HCA. In early OA, this revealed two clusters of donors, E1 and E2, containing 

33 and 22 donors, respectively (Fig. 3A). There were 379 metabolite features differentially 

expressed between phenotypes E1 and E2 (FDR-corrected p<0.05). HCA of late OA also 

showed two distinct clusters of donors, L1 and L2, that may be representative of distinct 

synovial fluid phenotypes (Fig. 4A). 11 donors clustered in phenotype L1, and 6 donors 

clustered in phenotype L2. There were 187 differentially expressed metabolite features 

between phenotypes L1 and L2 (FDR-corrected p<0.05).

PCA, an unsupervised method, was used to examine the separation between potential 

phenotypes. Plotting the PCA scores of early OA donors shows the separation between 

phenotypes, with PC1 and PC2 accounting for 27.1% of the overall variance (Fig. 3B). 

Separation of late OA donors into two distinct phenotypes is also supported by PCA, with 

PC1 and PC2 associated with 35.8% of the overall variance (Fig. 4B). PLS-DA, a supervised 

method, further supports distinct phenotypes within early and late OA as indicated by 

separation between E1 and E2 donors and L1 and L2 donors (Fig. 3C, 4C). Taken together, 

HCA, PCA, and PLS-DA support four distinct subgroups of donors in early and late stage 

disease that may be representative of metabolomic synovial phenotypes.

Distinct pathways were represented in the various phenotypes as determined by analyzing 

differentially expressed metabolites for enriched pathways. Volcano plot analysis found 254 

metabolite features differentially expressed between the early phenotypes and 158 

metabolite features differentially expressed between late phenotypes (Fig. 3D, 4D). 

Enrichment analysis was then employed to map differentially expressed metabolite features 

to pathways (Tables 2-3).

A subgroup of donors at each stage of OA (E2 and L2) exhibited evidence of 

glycosaminoglycan degradation and structural deterioration. E2 was associated with 25 

significantly enriched pathways, including glycosaminoglycan degradation, sialic acid and 

N-glycan metabolism, tryptophan metabolism, and ascorbate metabolism (Table 2). L2 was 

associated with 4 significantly enriched pathways including keratan sulfate and N-glycan 

degradation, sialic acid metabolism, and galactose metabolism (Table 3).

The remaining phenotypes, E1 and L1, were associated with increased inflammation. 

Phenotype E1 was associated 14 significantly enriched pathways including metabolism of 

butanoate and leukotrienes—both of which play a role in inflammation (Table 2). L1 was 

associated with 30 significantly enriched pathways including arachidonic acid metabolism 

and leukotriene metabolism (Table 3). Phenotype L1 was also associated with glutathione 

metabolism, which may be suggestive of altered levels of oxidative stress (Table 3). Please 

see the Supplemental Data including figures S2-S5 for additional discussion of metabolomic 

phenotypes and associated pathways.

Confounding variables

We evaluated if differences in metabolomic profiles between healthy, early, and late OA 

were associated with age, sex, or BMI as possible covariates (Table 1). The ages and BMI of 
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the healthy, early, and late OA cohorts were calculated and analyzed by Student’s t-test. 

Male:female ratios were analyzed by logistic regression and chi-squared tests. There were 

significant differences in ages between healthy, early, and late OA comparisons with early 

OA younger than late OA (p<0.05). However, there was little to no evidence of differences 

in BMI or male:female ratios (p>0.05). Therefore, any differences noted between cohorts 

besides being due to the presence or absence of OA may be associated with aging.

Discussion

To our knowledge, this is the first study to use LC-MS-based global metabolomic profiling 

of human SF to study phenotypes. While several studies used metabolomics to analyze OA 

in various fluids [26-30], only a single prior study used a targeted approach based on 186 

metabolites for this same goal and found that acylcarnitine and free carnitine levels were 

significantly different between subgroups [9]. In contrast, the global approach used here 

removes bias by not excluding metabolites a priori. By focusing on all detected metabolites, 

this study produced a network of pathways perturbed with OA. These data provide greater 

understanding of disease pathogenesis, therapeutic targets, and insight for biomarker 

discovery.

1362 metabolite features were detected in human SF by LC-MS analysis, and global 

metabolomic profiles were generated for healthy, early OA, and late OA SF. OA was 

associated with altered extracellular matrix component metabolism (glucosamine and 

galactosamine biosynthesis, ascorbate metabolism, keratin sulfate metabolism, and N-glycan 

metabolism), amino acid metabolism, fatty acid and lipid metabolism (glycosphingolipid 

and glycerophospholipid metabolism, the carnitine shuttle), inflammation (leukotriene 

metabolism), central energy metabolism (glycolysis and gluconeogenesis, the TCA cycle), 

oxidative stress (vitamin E, glutathione metabolism), and vitamin metabolism (C, E, B1, B3, 

B6, and B9).

Structural Deterioration

Diseased SF exhibited greater evidence of tissue damage compared to healthy SF. Keratan 

sulfate degradation, N-glycan degradation, sialic acid metabolism, and ascorbate metabolism 

were altered with OA. Keratan sulfate, chondroitin sulfate, and heparin sulfate are 

glycosaminoglycans (GAGs) that function as building blocks of articular cartilage. Their 

presence in the SF typically indicates increased cartilage turnover [31]. In OA, the articular 

cartilage is degraded reducing GAG content [32, 33]. These data are consistent with both 

synthesis and degradation of GAGs in the SF of both early and late stage donors. OA 

cartilage also exhibits collagen damage [34]. We identified hydroxyproline as a metabolite 

with the greatest ability in distinguishing early from late OA. Sialic acids and N-glycans are 

also important components of lubricin, a mucinous glycoprotein that lines the cartilage 

surfaces and acts as a lubricant [35]. These pathways were perturbed in diseased SF 

suggesting that the SF function in lubrication is compromised.
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Vitamin Metabolism and Oxidative Stress

The physiological significance of vitamins E, B5, and C may relate to their roles as 

antioxidants to counteract the increased oxidative stress in the joint during OA [36]. 

Additional results from diseased SF suggest oxidative stress included glutathione 

metabolism. Furthermore, vitamin B3 is also a required cofactor for the production of nitric 

oxide (NO) by NO synthase. NO has been shown to have both catabolic and protective 

effects in OA by modulating a variety of inflammatory and anti-inflammatory mediators 

[37]. Thus, altered vitamin B3 metabolism may drive NO-related changes during OA 

pathogenesis. The altered antioxidant metabolism exhibited in OA SF in this study further 

supports a role for oxidative stress in the development of OA [38].

Metabolomic Phenotypes in Synovial Fluid from Early and Late Stage Disease

OA is a heterogeneous disease with varying presentation. Because of this, we investigated if 

distinct metabolic phenotypes existed within OA SF (i.e. early vs. late or within each). We 

identified two distinct phenotypes in early OA—E1 and E2 and two in late OA—L1 and L2. 

Between E1 and L1, 60.2% of the metabolites were the same, and between E2 and L2, 

55.3% of metabolites were the same (Supplemental Figures 6-7).

Both inflammation and structural degradation are involved in OA. In early OA, a subset of 

donors (E1) was associated with greater inflammation, while the remaining donors (E2) 

exhibited evidence of greater structural deterioration. Similarly, in late OA, phenotype L1 

was associated with inflammation and oxidative stress while L2 was associated with 

structural deterioration products. These data suggest that inflammation and degradation may 

not be as closely correlated as expected. Furthermore, because of the close relationship 

between inflammation and pain [39, 40], the inflammatory phenotypes E1 and L1 may be 

associated with increased pain.

As in late OA phenotype L1, oxidative stress and inflammation have been extensively 

studied for their role in OA pathogenesis, yet both contribute to OA by promoting cartilage 

degradation [41]. Despite this, phenotype L1 exhibited reduced structural deterioration 

products in the SF compared to L2. This suggests a structural damage phenotype at both 

early and late stage disease, an inflammatory phenotype in early OA, and an inflammatory 

and oxidative stress phenotype at late stage disease. Overall, these findings further support 

the heterogeneous nature of OA and suggest stage-dependent phenotypes that may drive 

differences in symptoms (Supplementary Discussion and Figures).

Limitations

This study has limitations and also opens opportunities for future research. First, the sample 

size for this study was relatively small (n=75). Some cohorts, such as healthy (grade=0), 

consisted of only 6 samples, whereas early OA contained 55. With a small sample size, it is 

unlikely that all metabolic phenotypes were represented. Furthermore, this sample did not 

contain complete clinical information. Age and sex were provided for all donors, BMI was 

provided for most, but others lacked cause of death, prior medical history, and/or ethnicity. 

Importantly, age was identified as a potential confounder in this study. Age-matching within 

experimental cohorts would avoid potential confounding by age. This was a cross-sectional 
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study, and future research may improve upon this using a longitudinal study design. Lastly, 

this study analyzed post-mortem SF. However, studies have shown that metabolites in SF 

remain stable post-mortem [42, 43]. Targeting specific inflammatory metabolites or 

degradation products may yield further insight into synovial fluid phenotypes, and expanded 

sample sizes may allow detection of OA biomarkers.

Conclusions

This is the first study to generate global metabolomic profiles of early and late OA SF and 

identify metabolomic phenotypes within early and late OA cohorts. The identified pathways 

in early and late OA provide insight into disease progression and provide several molecular 

pathways to further investigate as biomarkers of OA and as targets for drug discovery. 

Furthermore, the identification of specific metabolomic phenotypes in OA supports the 

heterogeneity of disease. Expansion of this study will identify candidate biomarkers of early 

and late OA in human SF and may elucidate OA phenotypes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Global metabolomes are distinct between cohorts. (A-C) The cumulative distribution of 

metabolites between groups were distinct from one another. KS-tests comparing the median 

metabolite intensity distributions between groups revealed significantly (pks<0.01) different 

metabolomic profiles. Mirrored metabolite distributions display differences between groups. 

(D-F) PLS-DA displayed differences in metabolomic profiles of between groups, revealing 

clear separation between healthy and OA donors and some separation between early and late 

OA donors. The first two components are plotted against one another with their contribution 

to the overall variance. 95% confidence ellipses illustrate class separation. (G-I) Volcano 

plot analysis between groups reveal metabolite features upregulated and downregulated by 

p-value and fold change analysis. Dashed lines indicate the p-value threshold of 0.05 

(horizontal) and fold change threshold of 2 (vertical). The upper right and left quadrants 

contain significant (p<0.05) upregulated and downregulated features with a fold change 

greater than twofold. Metabolite features in the upper right and left quadrants were assessed 

for enriched pathways reported in Supplemental Table 2.
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Figure 2. 
Metabolic changes in SF during early and late stage OA. Clustergram of median global 

metabolomic profiles of early and late OA SF normalized to healthy SF display patterns of 

metabolite expression with disease. Arbitrarily selected clusters of co-regulated metabolite 

features are boxed in black and enriched for relevant pathways in Supplemental Table 3.
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Figure 3. 
Phenotypes in early OA synovial fluid. (A) Unsupervised HCA of all early OA donors. Two 

clusters of donors were identified and labeled as phenotype E1 (red) and phenotype E2 

(blue). E1 contained 33 donors and E2 contained 22. Line length represents Euclidean 

distances between donors and clusters. (B) Unsupervised PCA of all early OA donors 

reveals separation of early OA phenotypes. The first two components are associated with 

27.1% of the variation between phenotypes. (E1=red; E2=blue). (C) Supervised PLS-DA 

further illustrated the separation between phenotypes (E1=red; E2=blue) with PC1 and PC2 

accounting for 24.3% of the variance. (D) Volcano plot visualization of differentially 

regulated metabolite features by Student’s t-test significance and fold change analysis 

(E1:E2). The p-value threshold is represented by the horizontal dashed line (FDR-corrected 

p<0.05), and the vertical lines represent the fold change threshold (greater than twofold 

change). Metabolite features in the upper right and left quadrants (p<0.05 and greater than 

twofold change) were enriched for relevant pathways reported in Table 3, with the full list of 

perturbed pathways in Supplemental Table 2.
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Figure 4. 
Phenotypes in late OA synovial fluid. (A) Unsupervised HCA of all late OA donors. Two 

clusters of donors were identified and labeled as phenotype L1 (red) and phenotype L2 

(blue). L1 contained 11 donors, and L2 contained 6 donors. Line length represents Euclidean 

distances between donors and clusters. (B) Unsupervised PCA of all early OA donors 

reveals separation of early OA phenotypes. The first two PCs are associated with 35.8% of 

the variation between phenotypes. (L1=red; L2=blue). (C) Supervised PLS-DA further 

illustrated the separation between phenotypes (L1=red; L2=blue), with component 1 and 

component 2 accounting for 34% of the overall variance. (D) Volcano plot visualization of 

differentially regulated metabolite features by Student’s t-test significance and fold change 

analysis (L1:L2). The p-value threshold is represented by the horizontal dashed line (FDR-

corrected p<0.05) and the vertical lines represent the fold change threshold (greater than 

twofold change). Metabolite features in the upper right and left quadrants were assessed for 

enriched pathways reported in Supplemental Table 2.
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Figure 5. 
Metabolomic phenotypes of osteoarthritis. Cluster analysis of our data revealed distinct 

metabolic phenotypes (n=75). Within Outerbridge grades I and II (early OA), metabolite 

features clustered into an E1 phenotype associated with inflammatory pathways and an E2 

phenotype associated with structural degradation pathways. Within Outerbridge grades III 

and IV, metabolites clustered into an L1 phenotype associated with oxidative stress and 

inflammation and an L2 phenotype associated with structural degradation. These data 

emphasize the heterogeneity of OA. Sketch of cartilage defects adapted with permission 

from Lasanianos and Kanakaris Traumatic and Orthopaedic Classifications 2014.
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Table 1.

Descriptive statistics for donor population. Descriptive statistics of donor population for each cohort including 

age, sex (as male % population), and BMI. All means are reported as mean +/− standard deviation. BMI was 

unavailable for some donors (BMI=body mass index).

Healthy (n=7) Early OA (n=55) Phenotype E1 (n=33) Phenotype E2 (n=22) Late OA (n=14) Phenotype L1 (n=11) Phenotype L2 (n=6)

Age 35 ± 12.7 55.5 ± 16.0 56.5 ± 16.0 54 ± 16.4 68.5 ± 15.9 66 ± 16.5 78.9 ± 12.3

minimum 13 26 26 27 42 42 61

Q1 24 46 44 41 55.5 52 62

Q3 43 64 64 58.5 83 66 84

maximum 49 94 90 94 90 90 90

Sex (% male) 57.14% 52.73% 54.55% 50% 41.18% 27.27% 66.67%

BMI 24.2 ± 6.7 27.8 ± 7.0 28.0 ± 7.0 27.6 ± 7.0 29.3 ± 11.9 31.9 ± 12.3 25.6 ± 11.7

minimum 15.8 11.3 11.3 14.8 11.3 19.2 11.3

Q1 16.8 23.0 24.4 22.6 19.4 19.5 15.3

Q3 28.7 33.3 33.1 32.7 35.2 35.2 27.4

maximum 32.0 40.8 40.8 40.1 50.0 50.0 42.4
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