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Abstract

Machine learning has several potential uses in medical imaging for semantic labeling of images to improve radiologist workflow
and to triage studies for review. The purpose of this study was to (1) develop deep convolutional neural networks (DCNNSs) for
automated classification of 2D mammography views, determination of breast laterality, and assessment and of breast tissue
density; and (2) compare the performance of DCNNs on these tasks of varying complexity to each other. We obtained 3034 2D-
mammographic images from the Digital Database for Screening Mammography, annotated with mammographic view, image
laterality, and breast tissue density. These images were used to train a DCNN to classify images for these three tasks. The DCNN
trained to classify mammographic view achieved receiver-operating-characteristic (ROC) area under the curve (AUC) of 1. The
DCNN trained to classify breast image laterality initially misclassified right and left breasts (AUC 0.75); however, after
discontinuing horizontal flips during data augmentation, AUC improved to 0.93 (p <0.0001). Breast density classification
proved more difficult, with the DCNN achieving 68% accuracy. Automated semantic labeling of 2D mammography is feasible
using DCNNs and can be performed with small datasets. However, automated classification of differences in breast density is
more difficult, likely requiring larger datasets.
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Introduction

A radiologist’s workflow depends on semantic labeling of
digital images for tasks ranging from picture archiving and
communication system (PACS) hanging protocols (how im-
ages are displayed on a monitor) to report generation. For
example, semantic labeling of radiographic view facilitates
the automated arrangement of images and comparison studies
according to a designated hanging protocol, which provides
time savings for a radiologist in every study he or she inter-
prets. Further complexity is added to the workflow, however,
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when studies performed at outside hospitals are presented for
second-opinion review with variable semantic labels for items
such as study type and radiographic view. Although the
Digital Imaging and Communications in Medicine
(DICOM) imaging format stores metadata for semantic labels,
its inclusion is inconsistent, can vary between equipment man-
ufacturers, is frequently not in query-able format, and can be
inaccurate [1]. As general labeling errors have been reported
to be as high as 2.4% in plain radiographs [2], there is a need
for quality assurance tools for accurate semantic labeling of
medical imaging. Accordingly, an automated method for se-
mantic labeling of medical imaging could help improve pa-
tient care and radiologist workflow, as well as facilitate
curation of large imaging datasets for machine learning pur-
poses [1]. This would be especially true for work which uses
images from multiple different sites, which may have variable
and/or inaccurate DICOM metadata labeling.

Deep learning has shown great promise in the automatic
semantic labeling of medical images, such as classifying chest
radiographs as frontal vs. lateral view [1] and laterality of
ocular fundus photographs [3] with accuracies approaching
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100%. These two studies [1, 3] utilized datasets of 150,000
chest radiographs (using standard data augmentation tech-
niques) and 25,911 ocular fundus images, respectively; how-
ever, curating datasets with tens or hundreds of thousands of
images may not be logistically feasible for many machine
learning projects. Additionally, early work in pneumonia de-
tection on chest radiographs [4] and accurate classification of
chest vs. abdominal radiographs [5] suggests that for certain
tasks, modest size image datasets on the scale of hundreds to
thousands could result in deep learning systems (DLS) with
high performance. Depending on the task, the accuracy of the
DLS trained using moderate size datasets may be similar to
those trained using large datasets with tens of thousands of
images. At this time, it remains unclear how many images
might be needed for medical imaging classification tasks of
varying complexity.

Mammography is performed for the purpose of early breast
cancer detection. One use of mammography is to screen
asymptomatic women for breast cancer, which is recommend-
ed annually for all women of average risk over the age of 40
by the American College of Radiology [6]. Due to strict na-
tional regulations for DICOM labeling by the Mammography
Quality Standards Act (MQSA) [7] and the resulting robust
quality control, mammography serves as a potential model to
explore the nuances of developing semantic labeling algo-
rithms. A screening 2D mammographic examination consists
of one craniocaudal (CC) view of the left and right breasts and
a mediolateral oblique (MLO) view of each breast; all images
have strict labeling requirements. Lessons learned from train-
ing mammography semantic labeling DLS with regard to the
number of images needed for high-performing systems could
be applied towards other modalities and more complex, but
analogous, problems. Additionally, as mammographic seman-
tic labeling tasks range from relatively simple tasks with fairly
obvious differences between classes, such as mammographic
view, to more complex ones with more subtle differences,
such as breast density, challenges unique to these different
tasks could also provide guidance for future DLS
development.

The purpose of this study was to (1) develop deep
convolutional neural networks (DCNNs) for automated clas-
sification of 2D mammography views, image laterality, and
breast tissue density; and (2) compare the performance of
DCNN s for each of these variably complex tasks to each oth-
er. We hypothesized that DCNNs would perform better for
simpler classification tasks, such as 2D mammography views,
than for more complex tasks, such as breast tissue density.

Materials and Methods

All data used in this study were publicly available and de-
identified, as described below. Our institutional review board
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(IRB) classified this study as non-human subjects research;
accordingly, formal IRB review was not required per our in-
stitutional policies.

Dataset

We utilized the Digital Database for Screening
Mammography [8], which consists of 3034 2D de-identified
digitized film mammographic images obtained in 2620 pa-
tients from 4 hospitals (Massachusetts General Hospital,
Wake Forest, Sacred Heart, and Washington University in
St. Louis). The images contain cases consisting of normal or
benign examinations (i.e., with at least one mass proven to be
benign by pathology, ultrasound, or imaging follow-up), as
well as malignant (cancerous) findings on the examinations
(with at least one pathology-proven cancerous mass); there are
1704 normal or benign examinations (56%) and 1130 malig-
nant examinations (44%). Each image in this database was
labeled with the following metadata, which were utilized for
the 3 experiments in this study (described below): mammo-
graphic view (craniocaudal [CC] or mediolateral oblique
[MLO]), breast laterality (right vs. left), and Breast Imaging
Reporting and Data System (BI-RADS) breast density (4 cat-
egories: almost entirely fatty, scattered area of fibroglandular
density, heterogeneously dense, and extremely dense). The
distribution of these labels was spread relatively evenly, with
the exception of breast density, which had a relative paucity of
almost entirely fatty and extremely dense breasts (Table 1);
this skewed distribution was expected, based on the average
distribution of breast density in the female population [9].

Image Processing and Computer Specifications

We saved all mammography images into portable network
graphics (PNG) format and resized all images into a 256
256 matrix. Additionally, for the breast laterality dataset, we
cropped out any laterality markers to prevent the DCNN from
potentially learning to identify laterality markers or text, as
opposed to the actual breast orientation.

For image processing, we utilized a computer running
Linux with a Core i5 central processing unit (CPU)
(Intel, Santa Clara, CA), 8 GB RAM, and a GeForce
GTX 1050 graphics processing unit (GPU) (Nvidia
Corporation, Santa Clara, CA). All programming was
performed using the PyTorch deep learning framework
(Version 0.3.1, https://pytorch.org). All DCNN
development work was performed on remote computing
servers with CPU and GPU nodes comprised of a dual
socket 14-core 2.6 GHz CPU (Intel, Santa Clara, CA)
with 128 GB RAM, and 2 Tesla K80 GPUs (Nvidia,
Corporation, Santa Clara, CA), respectively.
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Table 1 Mammography image
labels and dataset distributions

Total label nos. (3034)  Training (70%)  Validation (10%)  Testing (20%)
Mammographic view CC: 1429 (47%) CC: 1000 CC: 143 CC: 288

MLO: 1605 (53%) MLO: 1123 MLO: 161 MLO: 323
Laterality Left: 1560 (51%) Left: 1092 Left: 156 Left: 314

Right: 1474 (49%) Right: 1032 Right: 148 Right: 296
Breast density (BI-RADS)  A: 416 (14%) A: 291 A: 42 A: 85

B: 1182 (39%) B: 827 B: 119 B: 238

C: 928 (31%) C:649 C:93 C: 188

D: 508 (16%) D: 355 D: 51 D: 104

CC craniocaudal, MLO mediolateral oblique, BI-RADS Breast Imaging Reporting and Data System, A fatty, B
scattered fibroglandular, C heterogeneously dense, D dense

DCNN Development and Testing

We developed DCNN models for classification tasks of
increasing complexity: 2D-mammographic view, image
laterality, and breast tissue density. All tasks had 2 cate-
gories, except for breast density, which had 4 (Table 1).
For each classification task, we created 3 datasets divid-
ed into training, validation, and testing sets, comprised of
70%, 10%, and 20% of images, respectively (Table 1),
per standard DLS development methodology, whereby
the majority of available images is used to train a
DCNN (training phase), a smaller proportion is used to
select the best-performing algorithm(s) (validation
phase), and a separate holdout set of data to which the
DCNN has never been exposed is used to test the per-
formance of the best-performing DCNN(s) [5].

To develop our DCNNs, we applied transfer learning
[1, 10] by utilizing the ResNet-50 [11] DCNN pretrained
on ImageNet (http://www.image-net.org/). We redefined
the last linear layer of the ResNet-50 DCNN to have 2
or 4 outputs instead of the default 1000 for the 3 FFMD
image classification tasks (2 for 2D FFMD view and
laterality; 4 for breast density). During training and val-
idation of our DCNNSs, all model parameters (initially
configured to the pretrained ImageNet weights) were
fine-tuned on the mammography images. The solver pa-
rameters we utilized for DCNN training were as follows:
49 epochs, stochastic gradient descent with a learning
rate of 0.001, momentum of 0.9, and weight decay of
1 x10°. During each training epoch, images were aug-
mented on-the-fly via random rotations, cropping, and
horizontal flipping.

We produced heatmaps for each DCNN using class
activation mapping (CAM) [12] to visualize the parts
of each image that were weighted most heavily by the
DCNNs in making their classification decisions. In these
heatmaps, red colors signify increasing importance of an
image feature in the decision made by a DCNN.

Statistical Analysis

We measured DCNN testing performance for binary clas-
sification tasks using receiver-operating characteristic
(ROC) curves with area under the curve (AUC) generat-
ed. Optimal diagnostic thresholds were determined with
the aid of the F1 score to calculate test sensitivity and
specificity. For the 4-class breast density classification
task, we calculated accuracy, sensitivity, and specificity
of correctly classifying the density class. The DeLong
non-parametric method [13] was used to compare
AUCs between DCNNs [5, 10]. P values of <0.05 were
considered statistically significant.

Results

The best-performing DCNN trained to classify CC vs
MLO mammographic views (the simplest task) achieved
an AUC of 1 with optimal sensitivity and specificity of
98% and 100%, respectively. CAM heatmaps demon-
strated emphasis on the superior aspect of the imaged
breast in classification of mammographic view, which
corresponds to the pectoralis muscle and breast tissue
for the MLO view (Fig. 1) and breast tissue alone for
the CC view.

For the second, slightly more complex task of identi-
fying breast laterality, the best-performing DCNN initial-
ly achieved AUC of 0.74 with optimal sensitivity and
specificity of 83% and 51%, respectively. However, after
discontinuing horizontal flips during data augmentation,
the AUC improved significantly to 0.93 (p <0.0001),
with optimal sensitivity and specificity of 91% and
78%, respectively. CAM heatmaps demonstrated empha-
sis on the rightward or leftward-pointing breast convex-
ities (Fig. 2).

The more complex task of classifying breast density into
one of the 4 BI-RADS categories was not as successful, with
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Fig. 1 Heatmap of DCNN’s correct classification of MLO view shows
emphasis of the superior interface between the pectoralis major muscle
and breast tissue, consistent with features that a radiologist would utilize

accuracy of 68% and sensitivity and specificity of 90% and
53%, respectively. CAM heatmaps demonstrated consistent
emphasis of the breast glandular tissue (Fig. 3) regardless of
true breast density class or whether or not the DCNN correctly
classified the breast density.

Fig. 2 Heatmap of DCNN’s correct classification of left breast shows
emphasis of the leftward-pointing breast convexity, consistent with fea-
tures that a radiologist would utilize in classification

@ Springer

Fig. 3 Heatmap of DCNN’s correct classification of dense breast tissue
shows emphasis of the dense breast parenchyma, consistent with features
that a radiologist would utilize in classification

Discussion

Deep learning has shown potential for automated semantic
labeling of medical imaging [1, 3, 5, 14] for the purposes of
improving patient care and radiologist workflow, and curating
large datasets for machine learning purposes. In the present
study, we developed 3 DCNNs for mammography image se-
mantic labeling tasks of variable complexity using a moderate
size dataset of 3034 images. We demonstrated higher perfor-
mance in simpler tasks. Interestingly, we demonstrated higher
performance for breast laterality classification when omitting
horizontal flips during data augmentation, contrary to general
machine learning principles.

The DCNNS trained in our study achieved AUC of 1 for
distinguishing the CC and MLO mammographic views and
0.93 for breast laterality, despite the modest dataset size of
3034 images. Our findings are consistent with those reported
previously by Rajkomar et al., who trained a DCNN to clas-
sify chest radiographs into frontal vs. lateral views, using
150,000 images, and achieved an AUC of 1 [1]. Similarly,
Lakhani previously trained a DCNN to classify chest vs. ab-
dominal radiographs (a similar task to determining radio-
graphic view) with an AUC of 1, albeit with a smaller number
of images for training and validation (90 images) [5]. As
breast laterality proved more difficult for the DCNN to clas-
sify, increasing dataset size would likely improve perfor-
mance; recent work in classification of ocular fundus image
laterality achieved 99% DCNN accuracy when using 25,911
images [3]. Nevertheless, our findings suggest that high levels
of performance can be achieved for relatively simple tasks
with a modest training sample size.
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The DCNNS in our study were less successful at the more
difficult task of classifying breast tissue density, achieving
68% accuracy for classification into one of four categories.
This decreased performance for tasks with increased subtleties
between categories is consistent with human radiologist expe-
rience; generally speaking, mammographic view and laterality
are more obvious to determine than breast density. Our find-
ings are consistent with those demonstrated by Lakhani, who
showed decreasing performance for tasks of increasing com-
plexity (e.g., endotracheal tube presence vs. endotracheal tube
positioning) [5]. Our findings suggest that datasets to train
high-performing DCNNs for specific organ characteristics,
such as breast tissue density, likely need to be larger than those
used for pure semantic labeling. Indeed, recent studies have
utilized larger datasets ranging from 22,000 to 41,479 images
to train DCNNs for breast tissue density classification on
mammography with performance as high as AUC of 0.94
[15, 16].

An interesting finding was that in the development of
the breast laterality DCNNs, there was significantly
higher performance when omitting horizontal flips during
data augmentation. This finding may seem intuitive, as
determination of breast laterality depends on horizontal
orientation of the breast concavity (i.e., does it point to-
wards the right or the left?). Unlike in imaging of other
anatomic areas, right and left breasts are tremendously
symmetric, which makes horizontal flips problematic. In
contrast, other anatomic areas will have asymmetries,
which makes such flipping less troublesome for appropri-
ate image classification and laterality identification. For
example, in the abdomen, the liver is a right-sided organ
and the spleen is a left-sided organ, and so even in the
presence of a horizontal flip, determining the right and
left sides would be considerably easier than for a breast.
Canonical machine learning theory holds that the more
data augmentation performed, the better, ostensibly to in-
crease the training image diversity and reduce the chances
of overfitting. In contrast, our findings suggest that more
data augmentation is not necessarily better; data augmen-
tation should, therefore, be performed in a thoughtful
manner, tailored to the task at hand. We emphasize, how-
ever, that our findings do not explain why omitting hori-
zontal flipping improved DCNN performance. While it is
logical that the horizontal flips would confuse the DCNN
for laterality classification (as it would a human), it is
unclear if this is definitely true for the DCNN. Future
work could thus be directed to better understand the im-
pact of these standard data augmentation techniques on
network behavior.

As discussed above, we have demonstrated that
DCNNs for simpler semantic labeling tasks achieve
higher levels of performance than for more difficult tasks
when given the same amount of data. However, we did

not explore what is the lowest number adequate for train-
ing DCNNs for simpler semantic labeling tasks (i.e., how
low can we go?). Prior work has shown that for relatively
easy tasks, such as classifying radiographs into anatomic
regions, DCNNs can be trained with high accuracy with
as few as 90 training/validation images [5], but the opti-
mum number is unclear for other tasks, such as imaging
view or laterality. Future study in this area could facilitate
the most efficient efforts to curate datasets for DLS train-
ing. Such information could help researchers in optimum
allocation of resources for DCNN development; for exam-
ple, if only 200 images are sufficient to classify radio-
graphic view, then curating a dataset of 2000 would be
unnecessary and inefficient.

Our study had several limitations. First, our dataset was
small, consisting of 3034 images, which limits the ability
of DCNNs’ diagnostic performance. Importantly related
to this limitation, one of our goals was to explore differ-
ential performance ability given a modest dataset in order
to hypothesize about the size of the dataset for certain
classification tasks for DLS development. Second, seman-
tic labeling of mammography is generally not a prominent
clinical problem in the USA, due to federally regulated
MQSA guidelines and the resultant stringent quality con-
trol (which includes mandates to include such informa-
tion). In fact, we used this mandate and the labels as a
way to ensure an accurately annotated dataset for our ex-
periments, as one goal was to gain insight into image
dataset size for DCNN training. Nevertheless, semantic
labeling DCNNs for mammography could be useful in
settings outside of the USA, where mandates such as the
MQSA guidelines do not exist; particularly, if one wanted
to pool data from multiple sites and countries for DLS
development, such semantic labeling tools could be use-
ful. Third, we utilized only one DCNN architecture in our
study and did not test the performance or utility of multi-
ple DCNNS, either in isolation or in combination, as has
been done in prior studies [5, 10]; a different DCNN ar-
chitecture or combinations could possibly improve
performance.

In conclusion, automated semantic labeling of 2D mam-
mography is feasible using DCNNs and small image datasets.
However, automated classification of more subtle differences
such as breast density is a more difficult task, likely requiring
larger datasets, although optimal data size is indeterminate.
While previously, data augmentation has been shown to in-
crease DCNN performance, certain augmentation techniques
may actually be detrimental depending on the DCNN’s goal
task and careful consideration of how and when to use these
techniques is an important finding in our work. Practically, in
our team’s development of laterality-classifying DCNNs, we
no longer implement horizontal flipping, as this results in
worse classification ability.
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