Skip to main content
. 2019 Jul 16;6:162. doi: 10.3389/fmed.2019.00162

Table 1.

Architecture of the mitosis detection model.

Feature extractor and mitosis classifier Domain classifier
Layer Size Filter Rec. F. Layer Output Filter Rec. F.
F Input 64 × 64 × 3 1 × 1
Conv 60 × 60 × 16 5 × 5 5 × 5
Max pool 30 × 30 × 16 2 × 2 6 × 6
Conv 28 × 28 × 16 3 × 3 10 × 10
Max pool 14 × 14 × 16 2 × 2 12 × 12 Bifurcation 14 × 14 × 16 12 × 12
C Conv 12 × 12 × 16 3 × 3 20 × 20 Conv 12 × 12 × 32 3 × 3 20 × 20 D
Max pool 6 × 6 × 16 2 × 2 24 × 24 Conv 10 × 10 × 64 3 × 3 24 × 24
Conv 4 × 4 × 16 3 × 3 40 × 40 Softmax 10 × 10 × 8 1 × 1 24 × 24
Max pool 2 × 2 × 16 2 × 2 48 × 48
Conv 1 × 1 × 64 2 × 2 64 × 64
Sigmoid 1 × 1 × 1 1 × 1 64 × 64

The feature extractor F and mitosis classifier C form a 10-layer CNN with a single class-probability output. The domain classifier D is a 3-layer network bifurcated at the second max-pooling layer of F and outputs a 8-domain probability vector.