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Abstract
The Deep Convolutional Neural Network (DCNN) is one of the most powerful and successful deep learning approaches. DCNNs
have already provided superior performance in different modalities of medical imaging including breast cancer classification,
segmentation, and detection. Breast cancer is one of the most common and dangerous cancers impacting women worldwide. In
this paper, we have proposed a method for breast cancer classification with the Inception Recurrent Residual Convolutional
Neural Network (IRRCNN) model. The IRRCNN is a powerful DCNN model that combines the strength of the Inception
Network (Inception-v4), the Residual Network (ResNet), and the Recurrent Convolutional Neural Network (RCNN). The
IRRCNN shows superior performance against equivalent Inception Networks, Residual Networks, and RCNNs for object
recognition tasks. In this paper, the IRRCNN approach is applied for breast cancer classification on two publicly available
datasets including BreakHis and Breast Cancer (BC) classification challenge 2015. The experimental results are compared
against the existing machine learning and deep learning–based approaches with respect to image-based, patch-based, image-
level, and patient-level classification. The IRRCNN model provides superior classification performance in terms of sensitivity,
area under the curve (AUC), the ROC curve, and global accuracy compared to existing approaches for both datasets.
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Introduction

Nowadays, cancer is one of the leading causes of morbidity and
mortality around the world. Approximately 14.5 million people
havediedduetocancer,and it isestimated that thisnumberwillbe
above 28million by 2030.According to a study by theAmerican
Cancer Society (ACS), in the USA, the estimated deaths due to

breast cancer account for approximately 14%of all cancer deaths
(a total of 41,000 in2017)which is in the second-leading causeof
cancer death in women after lung and bronchus cancer.
Additionally, breast cancer accounts for 30%of all newlydiscov-
ered cancer cases. Breast cancer is themost frequently diagnosed
cancer inwomen in theUSA.Abiopsy followed bymicroscopic
image analysis is commonwhen diagnosing breast cancer [1]. A
breast tissuebiopsyallows thepathologist tohistologicallyaccess
the microscopic-level structures and components of the breast
tissue. These histological images allow the pathologist to distin-
guish between the normal tissue, non-malignant (benign) tissue,
and malignant lesions. The resulting information is then used to
perform a prognostic evaluation [2].

Benign lesions refer to changes in normal tissue of breast
parenchyma and are not related to the progression of malignan-
cy. There are two different carcinoma tissue types including in
situ and invasive. The in situ tissue type refers to tissue
contained inside the mammary ductal-lobular. On the other
hand, the invasive carcinoma cells spread beyond themammary
ductal-lobular structure. The tissue samples that are collected
during biopsy are commonly stained with hematoxylin and
eosin (H&E) prior to the visual analysis performed by the
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specialist. During the diagnosis process, the affected region is
determined by whole-slide tissue scans [3]. In addition, the
pathologist analyzes microscopic images of the tissue samples
from the biopsy with different magnification factors.
Nowadays, to produce the correct diagnosis, the pathologist
considers different characteristics within the images including
patterns, textures, and different morphological properties [4].
Analyzing images with different magnification factors requires
panning, zooming, focusing, and scanning of each image in its
entirety. This process is very time-consuming and tiresome; as a
result, this manual process sometimes leads to inaccurate diag-
nosis for breast cancer identification. Due to the advancement
of digital imaging techniques in the last decade, different com-
puter vision andmachine learning techniques have been applied
for analyzing the pathological images at a microscopic resolu-
tion [4, 5]. These approaches could help to automate some of
the tasks related to the pathological workflow in the diagnosis
system. However, an efficient and robust image processing al-
gorithm is necessary for use in clinical practices. Unfortunately,
traditional approaches are unable to fulfill the expectation. As a
result, we are still far from the practical application of automatic
breast cancer detection based on histological images [5].

However, recent developments in deep learning (DL) have
already shown vast potential with state-of-the-art performance
on different recognition tasks in the field of computer vision and
image processing, speech recognition, and natural language un-
derstanding [6]. These approaches have been applied in different
modalities of medical imaging including pathological imaging
with superior performance in classification, segmentation, and
detection [7]. In some cases, theDL-based systems have become
part of the workflow for clinical practices with pathologists and
doctors. Some examples include a dermatologist-level perfor-
mance for skincancerdetection,diabetic retinopathy,neuroimag-
ing for analysis of brain tumors andAlzheimer disease, lung can-
cer detection, and breast cancer detection and classification [7].
Although these approaches have shown tremendous success in
medical imaging, they require a very large amount of label data,
which is still not available in this domain of applications for sev-
eral reasons. Most significantly, it requires a lot of expertise to
annotate a dataset which is very expensive. In this paper, we
propose a DL-based approach for breast cancer recognition sys-
tem using the IRRCNN model which is evaluated using the
BreakHis and Breast Cancer Classification Challenge 2015
datasets. The contributions of this paper are summarized as
follows:

1. Successful magnification factor invariant binary and multi-
class breast cancer classification using the IRRCNNmodel.

2. Experiments have been conducted on recently released
publicly available datasets for breast cancer histopatholo-
gy (such as the BreakHis dataset) where we evaluated
image- and patient-level data with different magnifying
factors (including ×40, ×100, ×200, and ×400).

3. The image-based and patch-based evaluation was per-
formed for both the BreakHis and Breast Cancer
Classification Challenge 2015 datasets.

4. The experimental results are compared against recently
proposed deep learning and machine learning approaches,
and our proposed model provides superior performance
when compared to the existing algorithms for breast can-
cer classification.

This paper is organized as follows: the BRelated Works^
section discusses related works. The architecture of the
IRRCNN model is discussed in BIRRCNN Model for Breast
Cancer Recognition.^ BExperimental Results and Discussion^
explains the datasets, experimental setup, and results. Finally,
the conclusion and future direction are presented in
BConclusion.^

Related Works

Significant effort has been put forth for breast cancer (BC)
recognition from histological images in the last decade, where
most efforts are made to classify the two fundamental types of
breast cancer (benign and malignant) using computer-aided
diagnosis (CAD). Before the deep learning revolution, ma-
chine learning approaches including the support vector ma-
chine (SVM), principle component analysis (PCA), and ran-
dom forest (RF) were used to study data whose features were
extracted with scale invariant feature extraction (SIFT), local
binary patterning (LBP), local phase quantization (LPQ), the
gray-level co-occurrence matrix (GLCM), threshold adjacen-
cy statistics (TAS), and parameter free TAS (PFTAS). In 2016,
one of the very popular databases for BC classification prob-
lem was released, and one research group reported approxi-
mately 85.1% accuracy utilizing SVM and PFTAS features for
patient-level analysis [8], which was the highest recognition
accuracy at the time. Another work was published in 2013
where different algorithms (including K-means, fuzzy C-
means, competitive learning neural networks, and Gaussian
mixture models) were used for nuclei classification on a
dataset with 500 samples from 50 patients. The accuracies
were reported for binary classes (benign versus malignant).
This work produced accuracies ranging from 96 to 100% [9].

A machine learning system for breast cancer recognition
based on neural networks (NN) and SVM was published in
2013 that reported 94% recognition accuracy on a dataset
consisting of 92 samples [10]. Another method was proposed
based on cascading with a rejection option that was tested on a
dataset with 361 samples from the Israel Institute of
Technology, and it reported around 97% classification accuracy
[11]. For the most part, research in this area has been conducted
using a very small number of samples from primarily private
datasets. Recently, a survey was published on histological
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image analysis for breast cancer detection and classification that
clearly describes the dualities and limitations of different pub-
licly available annotated datasets [12]. An effective framework
has been proposed with color texture features and multiple clas-
sifiers utilizing a voting technique that reported approximately
87.53% average recognition rate for patient-level BC classifi-
cation. In this implementation, the SVM, the decision tree (DT),
a nearest neighbor classifier (NNC), discriminant analysis
(DA), and ensemble classifiers were used. Before 2017, this
system achieved the best recognition accuracy of all machine
learning–based approaches [13].

Furthermore, manyworks have already been published that
discuss breast cancer recognition using DL approaches, where
CNN variants are applied for classification. A few of these
experiments are conducted with the BreakHis dataset. In
2016, a magnification independent breast cancer classification
was proposed based on a CNN where different sized convo-
lution kernels (7 × 7, 5 × 5, and 3 × 3) were used. They per-
formed patient-level classification of breast cancer with CNN
and multi-task CNN (MTCNN) models and reported an
83.25% recognition rate [14]. In the same year, another work
was published based on a model similar to AlexNet with dif-
ferent fusion techniques (including sum, product, and max)
for image and patient-level classification of breast cancer.
This paper reports 90% and 85.6% average recognition accu-
racy with the max fusion method for images and patient-level
classification respectively [15]. Another deep learning–based
method was published in 2017. In this work, a pre-trained
CNN was used to extract the feature vectors, and eventually,
the feature vectors were used as the input to a classifier. This
method was called DeCAF and achieved a recognition accu-
racy of 86.3% and 84.2% at the patient level and image level
respectively [16].

The CNN model was used for the classification of H&E-
stained breast biopsy images from another challenging dataset
in 2017 [17]. The images were classified according to four
different classes: normal tissue, benign lesion, in situ carcino-
ma, and invasive carcinoma. Images were also classified in
terms of binary classes; carcinoma (which includes normal
and benign tissue) and non-carcinoma (which includes the in
situ and invasive carcinoma classes) are considered. Work in
[17] provides results for both image-based and patch-based
evaluation. The CNN-based approach achieved approximate-
ly 77.8% recognition accuracy when performing the four-
class experiment, and 83.3% recognition accuracy for the bi-
nary class experiment when tested with the BC Classification
Challenge 2015 dataset. Recently, multi-classification of
breast cancer from histopathological images was presented
using a structured deep learning model called CSDCNN.
This new DL architecture shows superior performance when
compared to different machine learning– and deep learning–
based approaches on the BreakHis dataset. This model shows
state-of-the-art performance for both image-level and patient-

level classification. An average of 93.2% accuracy for patient-
level breast cancer classification has been reported [18]. In
2017, different SMV-based techniques were applied for breast
cancer recognition; an accuracy of 94.97% for data with a ×40
magnification factor was achieved using an Adaptive Sparse
SVM (ASSVM) [19]. However, our work presents an appli-
cation of a new deep learning model called the Inception
Recurrent Residual Convolutional Neural Network
(IRRCNN) for BC classification on both the BreakHis and
2015 Breast Cancer Classification Challenge datasets.

IRRCNN Model for Breast Cancer Recognition

DL approaches show tremendous success in cases where suf-
ficient labeled data is available, and several advanced deep
learning approaches have been proposed that have shown
state-of-the-art performance in different modalities of comput-
er vision and medical imaging in the last few years [6, 7]. The
IRRCNN [20, 21] is one out of many which are an improved
hybrid DCNN architecture based on inception [22], residual
networks [23], and the RCNN architecture [24]. The main
advantage of this model is that it provides better recognition
performance using the same number or fewer network param-
eters when compared to alternative equivalent deep learning
approaches including inception, the RCNN, and the residual
network. In this model, the inception-residual units are uti-
lized with respect to the Inception-v4 model [2]. The
IRRCNN has been compared against equivalent inception-
residual networks, and it shows better performances [20].
The IRRCNN model is comprised of stacks that include both
inception recurrent residual units (IRRU) and transition units.
The entire model is shown in Fig. 1. The overall model con-
sists of several convolution layers, IRRUs, transition blocks,
and a softmax at the output layer. A pictorial view of the IRRU
is shown in Fig. 2.

The most important unit in the IRRCNN architecture is the
IRRU, which includes recurrent convolutional layers (RCLs),
inception units, and a residual layer. The inputs are fed into the
input layer, then passed through inception units where RCLs
are applied, and finally, the outputs of the inception units are
added to the inputs of the IRRU. The recurrent convolution
operations are performed with respect to the differently sized
kernels in the inception unit. Due to the recurrent structure
within the convolution layer, the outputs at the present time
step are added to the outputs of the previous time step. The
outputs at the present time step are then used as inputs for the
next time step. The same operations are performed with re-
spect to the time steps that are considered. For example, here,
t = 2 (0~2) means that one feed forward convolution along
with 2 RCLs are included in IRRU. The operation of the
RCLs with respect to the different time steps (t = 2 (0~2) and
t = 3 (0~3)) is shown in Fig. 2. Due to the residual connectivity
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in the IRRU, the input and output dimensions do not change.
The IRRU simply performs an accumulation of feature maps
with respect to the time steps. Thus, better feature representa-
tion is ensured, and this system achieves superior recognition
accuracy with the same number of network parameters.

The operations of the RCL are performed with respect to
discrete time steps that are expressed according to the IRRCN
N in [20]. Let us consider the xl input sample in the lth layer of
the IRRCNN block, and the unit (i, j) from an input sample in
the kth feature map in the RCL. Additionally, let us assume the
output of the network Ol

ijk tð Þ is at time step t. Given this
information, the output can be expressed as in Eq. (1).

Ol
ijk tð Þ ¼ wf

k

� �T
*x f i; jð Þ

l wr
k

� �T*xr i; jð Þ
l t−1ð Þbk ð1Þ

Here, x f i; jð Þ
l tð Þ and xr i; jð Þ

l t−1ð Þ are the inputs for the stan-
dard convolution layers and for the lth RCL respectively. The

wf
k and wr

k values are the weights for the standard
convolutional layer and the RCL of the kth feature map re-
spectively, and bk is the bias.

y ¼ f Ol
ijk tð Þ

� �
¼ max 0;Ol

ijk tð Þ
� �

ð2Þ

In Eq. (2), f is the standard rectified linear unit (ReLU)
activation function. We have also explored the performance
of this model with the exponential linear unit (ELU) activation
function in the following experiments. The outputs y of the
inception units for the different size kernels and average

Fig. 1 Implementation diagram for breast cancer recognition using the
IRRCNN model. The upper part of this figure shows the steps that are
used for training the system, and the lower part of this figure displays the

testing phase where the trained model is used. These results are evaluated
with a number of different performance metrics

Fig. 2 Diagrams displaying the
inception recurrent residual unit
(IRRU) consisting of the incep-
tion unit and recurrent
convolutional layers that are
merged by concatenation, and the
residual units (summation of the
input features with the outputs of
the inception unit can be seen just
before the output block)
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pooling layer are defined as y1x1(x), y3x3(x), and yp1x1 xð Þ re-
spectively. The final outputs of Inception Recurrent
Convolutional Neural Network (IRCNN) unit are defined as
F xl;wlð Þ which can be expressed as in Eq. (3).

F xl;wlð Þ ¼ y1x1 xð Þ⨀y xð Þ⨀yp1x1 xð Þ ð3Þ

Here,⨀represents the concatenation operation with respect
to the channel or feature map axis. The outputs of the IRCNN
unit are then added with the inputs of the IRRCNN block. The
residual operation of the IRRCNN block can be expressed as
in Eq. (4).

xlþ1 ¼ xl þ F xl;wlð Þ ð4Þ

In Eq. (4), xl + 1 refers to the inputs for the immediate next
transition block, xl represents the input samples of the IRRCN
N block, wl represents the kernel weights of the lth IRRCNN
block, and F xl;wlð Þ represents the outputs from of lth layer of
the IRCNN unit. However, the number of feature maps and
the dimensions of the feature maps for the residual units are
the same as in the IRRCNN unit shown in Fig. 2. Batch nor-
malization is applied to the outputs of the IRRU [25].
Eventually, the outputs of this IRRU are fed to the inputs of
the immediate next transition unit.

In the transition unit, different operations including convo-
lution, pooling, and dropout are performed depending upon
the placement of the transition unit in the model. The incep-
tion units are included in the transition unit. The down-
sampling operations are performed in the transition units,
where we perform max-pooling operations with a 3 × 3 patch
and a 2 × 2 stride. The non-overlapping max-pooling opera-
tion has a negative impact on model regularization; therefore,
we used overlapped max-pooling for regularizing the network
which is very important when training a deep network archi-
tecture [22]. The late use of a pooling layer helps to increase
the non-linearity of the features in the network, as this results
in higher dimensional feature maps being passed through the
convolution layers in the network. We used two special
pooling layers in the model with three IRRCNN units and
one transition unit for this implementation.

We used only 1 × 1 and 3 × 3 convolution filters in this
implementation, as inspired by the NiN [26] and Squeeze
Net [27] models. This also helps to keep the number of net-
work parameters at a minimum. The benefit of adding a 1 × 1
filter is that it helps to increase the non-linearity of the decision
function without having any impact on the convolution layer.
Since the size of the input and output features does not change
in the IRRCNN units, the result is just a linear projection on
the same dimension, and non-linearity is added to the RELU
and ELU activation functions. We used a 0.5 dropout after
each convolution layer in the transition block. Finally, we used
a softmax or normalized exponential function layer at the end

of the architecture. For an input sample x, a weight vector W,
and K distinct linear functions, the softmax operation can be
defined for the ithclass as in Eq. (5).

P y ¼ ijxð Þ ¼ ex
Twi

∑K
k¼1ex

Twk
: ð5Þ

The proposed IRRCNN model has been investigated
through a set of experiments on different benchmark datasets,
and the results have been compared across several different
models.

The IRRCNNmodel is evaluated with different numbers of
convolutional layers in the convolution blocks, and the num-
ber of layers is determined with respect to time step t. In these
implementations, t = 2 refers to an RCL block that contains
one forward convolution followed by two RCTs [20]. For both
breast cancer recognition datasets, we used a model with two
convolutional layers at the beginning, four IRCNN blocks
followed by transition blocks, a fully connected layer, and a
softmax layer at the end of the model. For this model, we
considered 32 and 64 feature maps for the first three
convolutional layers, and we used 128, 256, 512, and 1024
feature maps in the first, second, third, and fourth IRRCNN
blocks respectively. Batch normalization (BN) is used in each
IRCNN block [25]. This model contains approximately 9.3
million network parameters.

Experimental Results and Discussion

Experimental Setup

To demonstrate the performance of the IRRCNN models, we
have tested them on two different BC datasets: the BreakHis
dataset and the Breast Cancer Classification Challenge 2015
dataset for both binary and multi-class BC classification. The
following paragraph discusses both datasets in detail. For this
implementation, the Keras (https://github.com/keras-team/
keras.git), and Tensor Flow [28] frameworks were used on a
single GPU machine with 56G of RAM and an NVIDIA
GEFORCE GTX-980 Ti. We considered different criterion
for pathological image analysis in this implementation. In
most cases, the dimensions of the whole slide images (WSI)
are larger than typical digital images. In addition, the patho-
logical images are acquired with different magnification fac-
tors. In some cases, the image size is larger than 2000 × 2000
pixels. However, in this case, the images are typically fed to
the model as several patches. There are two common process-
es used for patch selection, one of which is a random crop
method where the patches are cropped from a random location
within an input sample. The alternative is to use sequential and
non-overlapping patches. We have considered both methods
in this implementation.
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Datasets

BreakHis

The BreakHis dataset is publicly available and is commonly
used to study the breast cancer classification problem. This
dataset contains 7909 samples each falling within two main
classes: benign or malignant. The benign subset contains 2440
samples and the malignant subset contains 5429 samples. The
samples are collected from 82 patients with different magnifi-
cation factors including ×40, ×100, ×200, and ×400. Some of
the example images with a ×400 magnification factor are
shown in Fig. 3. Each class has four subclasses; the four types
of benign cancer are adenosis (A), fibroadenoma (F), tubular
adenoma (TA), and phyllodes tumor (PT). The four subclasses
of malignant cancer are ductal carcinoma (DC), lobular carci-
noma (LC), mucinous carcinoma (MC), and papillary carci-
noma (PC). The statistics for this dataset are given in Table 1.
In this experiment, we used 70% of the samples for training

and 30% of the samples for testing, per the work in [8, 12, 18].
To generalize the classification task to perform successfully
when testing new patients, we ensure that the patients selected
for training are not used during testing. Per the experimental
design in [12, 18], we reported the average accuracy after
successfully completing five trials.

For data augmentation, we generated 21 samples from
each single input sample with different augmentation
techniques including rotation, flipping, shearing, and
translation. Therefore, the total number of samples was
increased by 21 times. For example, the total number of
images available at a ×40 magnification is now 41,895.
We generated 43,701; 42,273; and 38,220 samples from
the original samples for the ×100, ×200, and ×400 mag-
nification factors respectively. Thus, a total number of
augmented samples for all magnification factors is
166,068. We evaluated the image-level and patient-
level performance for both binary and multi-class breast
cancer recognition.

Adenosis (A)                                  Fibroadenoma (F)                        Tubular adenoma (TA)                 Phyllodes tumor (PT)    

Ductal carcinoma (DC)              Lobular carcinoma (LC)                   Mucinous carcinoma (MC)             Papillary carcinoma (PC)

Fig. 3 The first row shows the four types of benign tumors, and the second row shows the malignant tumors. The magnification factor of these images is
×400

Table 1 Statistics for the main
and subclass samples and number
of patients for the BreakHis
dataset

Classes Subclasses Number of
Patients

Magnification factors Total

×40 ×100 ×200 ×400

Benign A 4 114 113 111 106 444

F 10 253 260 264 237 1014

TA 3 109 121 108 115 453

PT 7 149 150 140 130 569

Malignant DC 38 864 903 896 788 3451

LC 5 156 170 163 137 626

MC 9 205 222 196 169 792

PC 6 145 142 135 138 560

Total 82 1995 2081 2013 1820 7909
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BC Classification Challenge 2015

This dataset consists of very high resolution (2040 × 1536) dig-
ital pathology images, which are annotated H&E-stained im-
ages for breast cancer classification released in 2015 [17, 29].
This dataset contains a total of 249 samples, from which 229
samples are separated for training, and the remaining samples
are considered for testing, per the work in [17]. The images
were labeled by two pathologists, and the overall context has
been considered without specifying the area of interest. Each
image is assigned one of the following four categories: (a)
normal tissue, (b) benign (c), in situ, and (d) invasive carcino-
ma. Sample images displaying the four different types of BC
are shown in Fig. 4. Each class has about 60 samples, which
resolves the class imbalance problem for classification tasks.

In this implementation, the model is evaluated for binary
and multi-class BC classification. In case of the binary classi-
fication problem, the normal tissue and benign subsets are
considered class one, and the in situ and invasive carcinoma
subsets are considered to be a part of class two. According to a
visual analysis of the dataset, it is observed that the nuclei
radius ranges from 3 to 11 pixels (or 1.26 to 4.62 μm).
Therefore, patches with size 128 × 128 pixels are able to cover
enough of the tissue structure (in accordance with the exper-
iment conducted in [17]). We have conducted experiments
using both image-wise and patch-wise evaluation. For
image-wise classification, we used three different approaches:
first, we resized the input samples to 128 × 128 pixels which
significantly degrades the information contained in the sam-
ples. Second, different data augmentation techniques were
applied to the resized images where 20 different augmented
samples were generated for each sample. Third, 200 random
patches were cropped to create a patch database for training

and testing the model. AWinner Take All (WTA) method was
used to produce the results where the final class was deter-
mined based on the class where the maximum number of
patches was nominated. The labels of the patches are consid-
ered to have same class label as the original images. On the
other hand, using a patch-wise approach, first, 128 × 128
pixels center patches were cropped from an original input
sample. Second, the augmentation techniques were applied
to the image (20 augmented samples were generated per sam-
ples) and center patches are cropped from augmented samples.
Third, we evaluated the model with 200 randomly selected
patches with a size of 128 × 128 pixels from a single image.
The statistics for the image-wise and patch-wise approach are
given in Table 2.

Data Augmentation

In each dataset, we applied different data augmentation tech-
niques including sequential rotation by 40 degrees, width shift
with a factor of 0.2, height shift with a factor of 0.2, shear with
a factor of 0.2, zooming with a range 0.2, horizontal flipping,
and vertical flipping. Figure 5 shows some example images
along with different augmented samples for the four different
data classes. From Fig. 5, it can be observed that noise has
been added to some of the parts of the images. Therefore, we
have also evaluated our method using only the center patch of
the augmented samples. The downsampled and center patches
are shown for two different input samples in Fig. 6.

Training Methodology

In the first experiment, we trained with the IRRCNN architec-
ture using the stochastic gradient descent (SGD) optimization
function for 150 epochs in total. After 50 epochs, the learning
rate is decreased by the factor of 10. We set the momentum to
0.9, and decay is calculated based on the initial learning rate
and number of epochs which is 50.

Results and Discussion

In this work, we introduced automated breast cancer classifi-
cation for both the binary and multi-class problems on two
different datasets. In the case of the multi-class BC

Normal                        Benign          In-situ Carcinoma       Invasive Carcinoma

Fig. 4 Sample images of four types of breast cancer (normal, benign, in situ carcinoma, and invasive carcinoma) from the 2015 BC Classification
Challenge dataset

Table 2 Statistics for the 2015 BC Classification Challenge dataset

Methods Non-carcinoma Carcinoma Total

Normal Benign In situ Invasive

Image-wise 55 69 63 62 249

Augmented samples 1155 1449 1323 1302 5229

Random patches 9716 12,057 11,059 10,875 43,707
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classification problem, four and eight classes were considered
in this implementation. We achieved state-of-the-art testing
accuracy for both datasets.

Results for BreakHis

According to the work in [12, 18], we considered two criteria
on which to evaluate the performance of the IRRCNN model.
We considered (1) image-level and (2) patient-level perfor-
mance for multi-class classification for eight types of breast
cancer that fall within the two main types (either benign or
malignant). In addition, we have also evaluated the perfor-
mance of a binary class system for benign and malignant
types. For image-level classification, we did not consider

images with respect to the patient. For this experiment, the
images are organized into eight classes, and the images con-
tain a magnification factor of either ×40, ×100, ×200, or ×400.
Performance is measured by different evaluation metrics in
this case. Two different performance criteria are considered
to evaluate the performance of the IRRCNN deep learning
approach as in [18]. First, we considered a patient-level per-
formance analysis where the total number of patients is de-
fined as Nnp; the number of BC images of the associated pa-
tient (P) is defined as Nncp. The number of correctly classified
images for a patient is denoted Nntp. Equation (6) defines the
patient score (Ps).

Ps ¼ Nncp

Nntp
ð6Þ

Input samples                                                 Augmented samples

Fig. 5 Four example images with corresponding augmented images. The actual images are shown on the left, and four augmented samples (of the 20
created for each image) are shown on the right

Fig. 6 Center patch and resized
images from an original sample
(left) and from an augmented
sample (right)
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The global patient recognition rate (Prt) is defined in
Eq. (7).

Prt ¼ ∑ps
Nnp

: ð7Þ

We also calculated the performance of the IRRCNN ap-
proach for image-level classification. We define the total num-
ber of samples available for testing as NT. The correctly clas-
sified number of histopathological samples is defined asNCCT.
The image-level recognition rate (Irt) is expressed in Eq. (8).

I rt ¼ NCCT

NT
: ð8Þ

The training and validation accuracy of the IRRCNNmod-
el for breast cancer classification is shown in Fig. 7. From this
figure, it can be observed that the magnification factors of the
samples have an impact on training and testing accuracy. We

achieved the best training accuracy with a magnification fac-
tor of ×100, and the training accuracy achieved for data with a
magnification factor of ×200 is a very close second.

The testing accuracy for multi-class and binary BC classi-
fication is shown in Table 3 and Table 4 respectively. These
tables demonstrate testing accuracies for image-level and
patient-level analysis with and without data augmentation on
the BreakHis dataset.

In the image-level evaluation, we have generated 41,895;
43,701; 42,273; and 38,220 augmented samples for ×40,
×100, ×200, and ×400magnification factors respectively which
have been collected from 82 patients. For each case, we have
used 70% randomly selected samples for training and the re-
maining 30% samples for validation and testing according to
the experimental setup discussed in [8, 18]. For multi-class (8
classes) BC classification, the highest accuracy is achieved for
the magnification factor ×100 which is 3.67% higher average
testing accuracy of five trials compared to recently published

Fig. 7 Training and validation accuracy for BC classification with 8 classes for the IRRCNN model at different magnification factors

Table 3 Breast cancer classification results and comparison for multi-class (8 classes) with data augmentation and without data augmentation
techniques on the BreakHis dataset

Methods Year Classification rate (100%) at magnification factor

×40 ×100 ×200 ×400

Image level CNN + patches [15] 2016 85.6 ± 4.8 83.5 ± 3.9 83.1 ± 1.9 80.8 ± 3.0

LeNet + Aug. [18] 2017 40.1 ± 7.1 37.5 ± 6.7 40.1 ± 3.4 38.2 ± 5.9

AlexNet + Aug. [18] 2017 70.1 ± 7.4 75.8 ± 5.4 73.6 ± 4.8 84.6 ± 1.8

CSDCNN + Aug. [18] 2017 92.8 ± 2.1 93.9 ± 1.9 93.7 ± 2.2 92.9 ± 2.7

IRRCNN +without Aug. 2018 95.69 ± 1.18 95.37 ± 1.29 95.61 ± 1.37 95.15 ± 1.24

IRRCNN + Aug. 2018 97.09 ± 1.06 97.57 ± 0.89 97.29 ± 1.09 97.22 ± 1.22

Patient level LeNet + Aug. [18] 2017 48.2 ± 4.5 47.6 ± 7.5 45.5 ± 3.2 45.2 ± 8.2

AlexNet + Aug. [18] 2017 74.6 ± 7.1 73.8 ± 4.5 76.4 ± 7.4 79.2 ± 7.6

CSDCNN + Aug [18] 2017 94.1 ± 2.1 93.2 ± 1.4 94.7 ± 3.6 93.5 ± 2.7

IRRCNN +without Aug. 2018 95.81 ± 1.81 94.44 ± 1.3 95.61 ± 2.9 94.32 ± 2.1

IRRCNN + Aug. 2018 96.76 ± 1.11 96.84 ± 1.13 96.67 ± 1.27 96.27 ± 0.87

The italic entries in Tables 3 and 4 represent the highest accuracy achived with the proposed IRRCNN approach
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result in [20]. The model shows 97.95% average testing accu-
racy for ×40 that is 2.15% better compared to the highest accu-
racy stated of the existing method in [18]. For the patient-level
performance analysis, we have considered 21 patients for test-
ing out of total 82 patients according to the experimental meth-
od considered in [18]. We have achieved 96.84% and 97.65%
average highest testing accuracy for eight classes and binary
class BC classification respectively which is around 2.14%
and 3.75% higher testing accuracy compared to the highest
mean accuracy stated in [18].

In addition, the performance of BC recognition is analyzed
with different fusion techniques including sum, product, and
max in [15]. Thus, we have compared the performance of our
proposed method against the highest accuracy reported in
[15]. In both cases, the IRRCNN-based approach shows the
higher performance compared to existing DL-based methods
in [8, 15, 18]. The area under the ROC curve of the proposed
method for different magnification factors is shown in Fig. 8.

Results for BC Classification Challenge 2015

For the 2015 BC Classification Challenge dataset, the training
and validation accuracy for different methods are shown in
Fig. 9 a and b respectively. The experimental results when
using resized and augmented samples show the highest train-
ing and validation accuracy according to Fig. 9.

Patch-Wise Classification Results The experimental results for
different patch-based methods are shown in Tables 5 and 6.
From the tables, for both binary and multi-class cases, the
experiments with augmented center patches show the highest
testing accuracy which is 97.51% and 97.11% respectively.

Similar performance is observed with random patches, but
the experiments with single center patches show the lowest
accuracies which are 88.7% and 88.12% for the binary and
multi-class cases respectively.

Image-Wise Classification Results The experimental results of
image-level performance for the binary and multi-class cases
are given in Tables 7 and 8 respectively. From the tables, it can
be observed that the resize samples with data argumentation
show better performance compared to only resize samples.
The experiments with augmented resized samples show
99.05% and 98.59% testing accuracy for the binary and
multi-class cases respectively. The lowest testing accuracy
was observed for resized samples.

Table 4 Breast cancer classification results and comparison for binary classification (benign vs. malignant tumor) with data augmentation and without
data augmentation techniques on the BreakHis dataset

Method Year Classification rate at magnification factor

×40 ×100 ×200 ×400

Image level CNN + fusion(sum, product, max) [15] 2016 85.6 ± 4.8 83.5 ± 3.9 83.6 ± 1.9 80.8 ± 3.0

AlexNet + Aug. [18] 2017 85.6 ± 4.8 83.5 ± 3.9 83.1 ± 1.9 80.8 ± 3.0

ASSVM [19] 94.97 93.62 94.54 94.42

CSDCNN + Aug [18] 2017 95.80 ± 3.1 96.9 ± 1.9 96.7 ± 2.0 94.90 ± 2.8

IRRCNN +without Aug. 2018 97.16 ± 1.37 96.84 ± 1.34 96.61 ± 1.31 95.78 ± 1.44

IRRCNN + Aug. 2018 97.95 ± 1.07 97.57 ± 1.05 97.32 ± 1.22 97.36 ± 1.02

Patient level CNN + fusion (sum, product, max) [15] 2016 90.0 ± 6.7 88.4 ± 4.8 84.6 ± 4.2 86.10 ± 6.2

Bayramoglu et al. [14] 2016 83.08 ± 2.08 83.17 ± 3.51 84.63 ± 2.72 82.10 ± 4.42

Multi-classifier by Gupta et al. [13] 2017 87.2 ± 3.74 88.22 ± 3.23 88.89 ± 2.51 85.82 ± 3.81

CSDCNN + Aug. [18] 2017 92.8 ± 2.1 93.9 ± 1.9 93.7 ± 2.2 92.90 ± 2.7

IRRCNN +without Aug. 2018 96.69 ± 1.18 96.37 ± 1.29 96.27 ± 1 .57 96.15 ± 1.61

IRRCNN + Aug. 2018 97.60 ± 1.17 97.65 ± 1.20 97.56 ± 1.07 97.62 ± 1.13

The italic entries in Tables 3 and 4 represent the highest accuracy achived with the proposed IRRCNN approach

Fig. 8 ROC curve with AUC for different magnification factors for eight
class BC classification

614 J Digit Imaging (2019) 32:605–617



In addition, we have evaluated image-based performance
where 20 random samples were separated from four different
classes (5 samples per class). We have trained the model with
randomly selected patches from 229 samples (200 patches per
sample) and have validated and tested on randomly selected
patches from 20 samples (200 patches per sample). Eventually,
we have appliedWTA technique on the results produce from the
model where the final class was determined based on the class
where the maximum number of patches was nominated. We
have achieved 100% testing accuracy for this evaluation using
the WTA for both binary and multi-class BC recognition.

Analysis and Comparison of Results

BreakHis Dataset

Most previous studies have reported classification results for
benign and malignant cases [8, 15, 18]. However, some

studies have shown results for the multi-class problem for
breast cancer classification [15, 18]. These experiments have
been conducted for both binary and multi-class problems on
samples with magnification factors of ×40, ×100, ×200, and
×400. Based on the BreakHis dataset, different feature-based
approaches including PFTAS, GLCM, QDA, SVM, 1-NN,
and RP were applied, and an accuracy of approximately
85% for patient-level analysis was reported [8]. In addition,
AlexNet was used for binary breast cancer recognition at dif-
ferent magnification factors, and the highest recognition accu-
racy achieved was 95.6 ± 4.8% for image-level analysis and
90.0 ± 6.7% for patient-level analysis [15]. Furthermore, the
highest accuracies reported for classifying benign and malig-
nant BCwere 96.9 ± 1.9% for the image level and 97.1 ± 2.8%
for the patient level [18]. For multi-class breast cancer classi-
fication, the best testing accuracies achieved were 93.9 ± 1.9%
and 94.7 ± 3.9% for image-level and patient-level analysis re-
spectively [18].

Fig. 9 Training and validation accuracy for the multi-class case using the 2015 BC Classification Challenge dataset. Sample sets are resized and
augmented (RZ +AUG), center patch cropped and augmented (CRP +AUG), random patches (RP), sample resized (RZ), or center patch cropped (CRP)

Table 5 Testing performance for
a patch-based approach for binary
class BC classification: center
patches (CRP), CRP from aug-
mented samples, and random
patches (RP)

CNN model Methods Year Sensitivity Specificity Accuracy AUC

CNN [17] – – 0.776 –

CNN + SVM [17] – – 0.769 –

IRRCNN CRP 2018 0.8732 0.8812 0.887 0.9239

IRRCNN CRP + Aug. 2018 0.9452 0.9829 0.9751 0.9925

IRRCNN RP 2018 0.9307 0.9797 0.9676 0.9882

Table 6 Testing performance for
a patch-based approach for multi-
class BC classification: center
patches (CRP), augmented CRP,
and random patches (RP)

CNN model Criterions Year Sensitivity Specificity Accuracy AUC

CNN [17] – – 0.667 –

CNN + SVM[17] 0.810 – 0.650 –

IRRCNN CRP 2018 0.868 0.8733 0.8812 0.9169

IRRCNN CRP + Aug 2018 0.9371 0.9809 0.9711 0.9905

IRRCNN RP 2018 0.9290 0.9752 0.9634 0.9824
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Alternatively, in this work, we achieved 97.95 ± 1.07% and
97.65 ± 1.20% testing accuracy for benign and malignant BC
classification for image- and patient-level analysis. Therefore,
we have achieved a 1.05% and 0.55% improvement in average
performance against the highest accuracies reported for image-
and patient-level analysis in [18]. Furthermore, our proposed
IRRCNN model produced testing accuracies of 97.57 ± 0.89%
and 96.84 ± 1.13% for multi-class BC classification at the im-
age level and patient level respectively. These results are a
3.67% and 2.14% improvement of average recognition accura-
cy compared to the latest reported performance [18].

BC Classification Challenge Dataset 2015

In 2014, Crus-Roa et al. proposed a CNN-based method for
classification with a patch-based input, and they reported a
sensitivity of 79.6% [30]. The highest accuracy was reported
in 2017 for four different types of breast cancers in the same
dataset, and the experiments were conducted for both binary
and multi-class breast cancer classification problems. As the
data dimensionality is high (2040 × 1536 pixels), both image-
level and patch-level analyses have been conducted for binary
and multi-class breast cancer classification. A CNN approach
was used, and the best results were reported for image-level
classification which was 77.8% and 83.3% testing accuracy
for four and two classes respectively [17]. On the contrary, we
have conducted an experiment based on the IRRCNN model

considering of different criteria including resizing, cropping,
random patches, and different data augmentation techniques.
For resized and augmented samples, we achieved 99.05% and
98.59% testing accuracy for binary and multi-class breast can-
cer recognition respectively. In addition, we achieved 100%
testing performance for the experiment where the classifica-
tion model is applied to random patches, followed by a
Winner Take All method to produce the final results.
Therefore, our method shows significant improvement in the
state-of-the-art performance for both binary and multi-class
breast cancer recognition on the 2015 BC Classification
Challenge dataset. The computation times for these experi-
ments are given in Table 9.

Conclusion

In this paper, we have proposed binary and multi-class breast
cancer recognition methods using the Inception Recurrent
Residual Convolutional Neural Network (IRRCNN) model.
The experiments were conducted using the IRRCNN model
on two different benchmark datasets including BreakHis and
the 2015 Breast Cancer Classification Challenge, and perfor-
mance was evaluated using different performance metrics.
The performance of the proposed method was evaluated via
image-level, patient-level, image-based, and patch-based anal-
ysis. We have considered different criteria such as the magni-

Table 7 Performance for image-
base BC classification for the bi-
nary case

CNN model Criterion Year Sensitivity Specificity Accuracy AUC

CNN [17] 2017 – – 0.806 –

CNN + SVM [17] 2017 – – 0.833 –

IRRCNN RZ samples 2018 0.878 0.926 0.884 0.912

IRRCNN RZ + Aug. 2018 0.9831 0.9912 0.9905 0.9932

IRRCNN RP + WTA 2018 1.00 1.00 1.00 1.00

Table 8 Testing performance for
image-base BC classification for
the multi-class case

CNN model Criterion Year Sensitivity Specificity Accuracy AUC

CNN [17] 2017 – – 0.778 –

CNN + SVM [17] 2017 – – 0.778 –

IRRCNN RZ samples 2018 0.889 0.916 0.9204 0.917

IRRCNN RZ + Aug. 2018 0.9771 0.9889 0.9859 0.9905

IRRCNN RP + WTA 2018 1.00 1.00 1.00 1.00

Table 9 Computational time per
sample for the BC classification
experiments

Dataset Method Total time (s) Number of samples Time per sample (s)

BreakHis Augmented image based 72.06 8732 0.08

BCC dataset 2015 Image based 45.72 50 0.9144

Patch based 75.97 8742 0.008

616 J Digit Imaging (2019) 32:605–617



fication factor, resized sample inputs, augmented patches and
samples, and patch-based classification in this implementa-
tion. The proposed approach shows approximately 3.67%
and 2.14% improvement of average recognition accuracy on
the BreakHis dataset against all results published in scientific
reports as of 2016. In addition, this method shows 99.05% and
98.59% testing accuracy for binary and multi-class breast can-
cer recognition on the 2015 Breast Cancer Classification
Challenge dataset, which is significantly higher than that of
any other CNN-based approach for image-based and patch-
based recognition performance respectively. We have also
evaluated the performance of the proposed method with ran-
dom patches and Winner Take All (WTA) approaches for
image-based recognition and achieved 100% testing accuracy.
Thus, the experimental results show state-of-the-art testing
accuracy for breast cancer recognition compared with existing
methods for both datasets.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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