Skip to main content
. 2019 Feb 12;32(4):605–617. doi: 10.1007/s10278-019-00182-7

Table 4.

Breast cancer classification results and comparison for binary classification (benign vs. malignant tumor) with data augmentation and without data augmentation techniques on the BreakHis dataset

Method Year Classification rate at magnification factor
×40 ×100 ×200 ×400
Image level CNN + fusion(sum, product, max) [15] 2016 85.6 ± 4.8 83.5 ± 3.9 83.6 ± 1.9 80.8 ± 3.0
AlexNet + Aug. [18] 2017 85.6 ± 4.8 83.5 ± 3.9 83.1 ± 1.9 80.8 ± 3.0
ASSVM [19] 94.97 93.62 94.54 94.42
CSDCNN + Aug [18] 2017 95.80 ± 3.1 96.9 ± 1.9 96.7 ± 2.0 94.90 ± 2.8
IRRCNN +without Aug. 2018 97.16 ± 1.37 96.84 ± 1.34 96.61 ± 1.31 95.78 ± 1.44
IRRCNN + Aug. 2018 97.95 ± 1.07 97.57 ± 1.05 97.32 ± 1.22 97.36 ± 1.02
Patient level CNN + fusion (sum, product, max) [15] 2016 90.0 ± 6.7 88.4 ± 4.8 84.6 ± 4.2 86.10 ± 6.2
Bayramoglu et al. [14] 2016 83.08 ± 2.08 83.17 ± 3.51 84.63 ± 2.72 82.10 ± 4.42
Multi-classifier by Gupta et al. [13] 2017 87.2 ± 3.74 88.22 ± 3.23 88.89 ± 2.51 85.82 ± 3.81
CSDCNN + Aug. [18] 2017 92.8 ± 2.1 93.9 ± 1.9 93.7 ± 2.2 92.90 ± 2.7
IRRCNN +without Aug. 2018 96.69 ± 1.18 96.37 ± 1.29 96.27 ± 1 .57 96.15 ± 1.61
IRRCNN + Aug. 2018 97.60 ± 1.17 97.65 ± 1.20 97.56 ± 1.07 97.62 ± 1.13

The italic entries in Tables 3 and 4 represent the highest accuracy achived with the proposed IRRCNN approach