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Abstract In the present study, we report the draft genome

sequence of an obligate thermophile Geobacillus ther-

moleovorans strain RL isolated from Manikaran hot water

spring located atop the Himalayan ranges, India. Strain RL

grew optimally at 70 �C but not below 45 �C. The draft

genome (3.39 Mb) obtained by Illumina sequencing con-

tains 138 contigs with an average G ? C content of

52.30%. RAST annotation showed that amino acid meta-

bolism pathways were most dominant followed by carbo-

hydrate metabolism. Genome-wide analysis using NCBI’s

Prokaryotic Genome Annotation Pipeline revealed that

strain RL encodes for a cocktail of industrially important

hydrolytic enzymes glycoside hydrolase, a-and b-glucosi-

dase, xylanase, amylase, neopullulanase, pullulanase and

lipases required for white biotechnology. In addition, the

presence of genes encoding green biocatalyst multicopper

polyphenol oxidase (laccase) and an anticancer enzyme L-

glutaminase reflects the significance of strain RL in gray

and red biotechnology, respectively. Strain RL is a

thermophilic multi-enzyme encoding bacterium which

could be the source for the recombinant production of

biotechnologically significant enzymes. In, addition whole

cells of strain RL may be used in bioremediation studies.
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Introduction

The thermophilic microorganisms possess several proper-

ties which have made them suitable for commercial

applications [1]. The natural habitat for thermophiles ran-

ges from deep volcanoes to hydrothermal systems and hot

water springs. The human-created environments including

compost, different industrial processes and water heaters

are some other important habitat of thermophiles [1, 2]. As

a consequence of their unique physiological adaptations,

thermophilic microorganisms have enzymes which with-

stand high temperature. Thermostable enzymes are indus-

trially important due to their stability under different

processing conditions. The great stability of thermozymes

under high temperatures, acidic and alkaline pH, solvents

and detergents has raised the demand for bio-prospection

of enzymes from thermophilic microorganisms [3, 4].

In recent years, thermophilic Geobacillus species have

emerged as sources of various thermostable enzymes

[5–11]. Geobacillus stearothermophilus has been exten-

sively studied for xylanase production [6, 12, 13]. In

addition, Geobacillus sp. HTA426 has been used for the

production of thermophilic cellulase [14]. Moreover,

Geobacillus species are known for the production of bac-

teriocins, exopolysaccharides, and biofuel, and also
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involved in bioremediation, adding new applications to the

continually evolving group [5]. Our group has studied the

culturable and unculturable bacterial and viral diversity of

Manikaran hot springs located atop the Himalayan ranges

in India [15–22]. The major objective of the present study

was isolation and characterization of thermophilic

Geobacillus species which could be used as a source for the

production of cocktails of thermostable enzymes required

in different sector of biotechnology.

Materials and Methods

Isolation, Identification and Genome Sequencing

In order to isolate obligate thermophiles, water samples

were collected from Manikaran hot water spring

(31�2002500 to 32�250000 north latitude and 76�5603000 to

77�5202000 east longitude) located atop the Himalayan

ranges, Himachal Pradesh, India. Serially diluted water

sample was spread on Thermus agar (0.8% polypeptone,

0.4% yeast extract, 0.2% NaCl and 0.1% glucose, pH 7.2)

plates. The plates were incubated at 70 �C for 48 h. To

replace water loss during incubation a flask containing

500 mL distilled water was kept inside the incubator [20].

The isolate optimally growing at 70 �C was identified

based on 16S rRNA gene sequence [23] and average

nucleotide identity (ANI) [24, 25]. The genomic DNA was

extracted using the Qiagen genomic DNA extraction kit

(Cat No. 51304) as per the manufacturer’s protocol. After

the quality check, library preparation was carried out at

Bionivid Technology Pvt. Ltd (Bangalore) India. The

paired-end sequencing was performed using the Illumina

HiSeq 2500 sequencing platform.

Genome Assembly and Annotation

The high-quality reads obtained after trimming of adaptor

sequences were assembled at different k-mers (k = 31 to

k = 99) using AbySS 2.1.5 [26]. The optimized assembly

was validated by mapping raw reads against assembled

contigs using Burrows–Wheeler aligner [27]. The final

assembly was annotated using Rapid Annotations using

Subsystems Technology (RAST) and NCBI’s Prokaryotic

Genome Annotation Pipeline (PGAP) version 4.0 [28, 29].

Accession Number

The draft genome sequence of Geobacillus thermoleovo-

rans strain RL is available in GenBank/DDBJ/EMBL

under accession number SZVQ00000000.

Results and Discussion

Description of the Draft Genome

Based on 16S rRNA gene sequence, the isolate optimally

growing at 70 �C showed 100% identity with Geobacillus

thermoleovorans KCTC3570 (Accession: CP014335.1).

Strain described in this study was designated as Geobacillus

thermoleovorans strain RL which showed 98.59% ANI

value with strain KCTC3570. Genome sequencing resulted

in a total of 37,642,234 filtered paired-end raw reads. The

raw reads, assembled using AbySS 2.1.5 generated a con-

sensus assembly at k = 95 (N50 = 58,563 bp; L50 = 17).

The draft genome consists of 138 contigs with a total size of

3,392,277 bp. The average chromosome G ? C content was

52.30%. Using PGAP a total of 3575 genes were predicted,

including 3249 protein-coding genes (PCGs), 16 rRNA

subunits (8 genes for 5S and 4 genes each for 16S, and 23S

subunits), 79 tRNAs, 5 noncoding RNAs, and 226 pseudo-

genes. Genome annotation revealed the presence of genes

encoding different biotechnologically important enzymes

that are described in the next section. Enzymes derived from

thermophilic microorganisms are highly stable than similar

enzymes obtained from mesophilic microorganisms. At

higher operational temperature thermostable enzyme catal-

ysed reactions have a higher reaction rate as compared to

mesophilic counterparts [30].

Biotechnological Potential of G. thermoleovorans

Strain RL

Bio-conversion of lignocellulosic material to biofuels is a

feasible approach which efficiently reduces environment

polluting greenhouse gases [31]. Strain RL has different

enzymes required for the saccharification of lignocellulosic

biomass that cannot be easily degraded due to the recalcitrant

nature of their structural components viz cellulose and

hemicelluloses. Enzymatic cleavage of cellulose and hemi-

celluloses yields fermentable sugars required in different

industrial processes [32]. In general, Geobacillus species

does not exhibit factual cellulolytic activity (hydrolysis of

crystalline cellulose) but glycoside hydrolases that degrade

non-crystalline polymers into short oligomers which are

easily transported inside the cell are secreted. These short

chain oligomers are further hydrolysed to monomers by

glycosidases and non-secreted glycoside hydrolase present

inside the cell. In this study, strain RL harbours multiple

glycoside hydrolases (FDK15_12275, FDK15_16585;

FDK15_00760; FDK15_00825; FDK15_01245; FDK15_

01335) and hydrolases (FDK15_14865; FDK15_01440;

FDK15_01480; FDK15_02225; FDK15_02465) which

catalyses the hydrolysis of glycosidic linkages present in
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complex polymers. Moreover, the presence of xylanolytic

enzyme system reflects the hemicellulose degrading activity

of strain RL. Hemicelluloses are heteropolysaccharide pri-

marily composed of xylan, galactan, mannan, and arabinan.

Xylan is the most common hemicellulosic polysaccharide

composed of D-xylose subunits linked with b-1,4-glycosidic

linkages [33]. Due to the heterogeneous and complex

chemical nature of xylan, its hydrolysis requires the coop-

erative action of different hydrolytic enzymes [33]. The

xylan degradation potential of strain RL was reflected by an

arsenal of xylanolytic enzymes including b-1,4-endoxy-

lanase (FDK15_01205; FDK15_02325) b-xylosidase

(FDK15_00720), a-L-arabinofuranosidase (FDK15_00785;

FDK15_00795) and acetyl xylan esterase (FDK15_08785)

which act synergistically for the conversion of xylan into its

constituent sugars. Besides strain RL possessed multiple

copies of genes encoding a-amylase (FDK15-05125) sug-

gesting starch hydrolysing potential. Further, gene encoding

pullulanase (FDK15_14705) reflected the wide ability of

strain RL towards hydrolysis of a-1,6 glycosidic bonds

present in starch, amylopectin and pullulan [34]. Multiple

copies of neopullulanase (FDK15_01830; FDK15_01850)

involved in the cleavage of both 1–4 and 1–6 linkages

reflected the cyclodextrin hydrolysing abilities of strain RL

[35–37]. In addition, strain RL possess lipases (FDK15_

01215; FDK15_09115; FDK15_10720; FDK15_13240;

FDK15_14380) that catalyses the transesterification reaction

resulting in the production of biodiesel (alkyl esters) [38].

In addition, strain RL harbours genes encoding multi-

copper polyphenol oxidase (Laccase) (FDK15_03000) and

multicopper oxidase (FDK15_04830) which have several

applications in the area of grey biotechnology viz, lignifi-

cation, delignification, detoxification of recalcitrant pollu-

tants and decolorization of wastewater [2, 39–43]. The

diversity of laccases in bacteria isolated from hot sulphur

springs located in Leh, India has been reported and bio-

prospection of thermostable laccases is a continuous pro-

cess [2]. Interestingly, the presence of genes encoding L-

glutaminase (FDK15_12655) indicates the utility of strain

RL in the pharma industry. L-glutaminase used in the

treatment of lymphocytic leukemia hydrolyzes L-glutamine

to L-glutamate and ammonia [44, 45]. The anticancer effect

is due to depletion of L-glutamine in cancerous cells which

cannot synthesize L-glutamine but utilizes it more effi-

ciently than normal cells [44, 46, 47].

Conclusion

We report the draft genome sequence of an obligate ther-

mophilic bacterium Geobacillus thermoleovorans strain

RL. Strain RL genome encodes for multiple enzymes of

biotechnological significance which include glycoside

hydrolase, a-and b-glucosidase, xylanase, amylase, neop-

ullulanase, pullulanase, and lipases. In addition, strain RL

encodes for green biocatalyst multicopper polyphenol

oxidase (laccase) and an anticancer enzyme L-glutaminase.

This study reflects the implications of strain RL in white,

grey and red biotechnology.
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