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Abstract

Develop a highly accurate deep learning model to reliably classify radiographs by laterality. Digital Imaging and
Communications in Medicine (DICOM) data for nine body parts was extracted retrospectively. Laterality was determined
directly if encoded properly or inferred using other elements. Curation confirmed categorization and identified inaccurate labels
due to human error. Augmentation enriched training data to semi-equilibrate classes. Classification and object detection models
were developed on a dedicated workstation and tested on novel images. Receiver operating characteristic (ROC) curves,
sensitivity, specificity, and accuracy were calculated. Study-level accuracy was determined and both were compared to human
performance. An ensemble model was tested for the rigorous use-case of automatically classifying exams retrospectively. The
final classification model identified novel images with an ROC area under the curve (AUC) of 0.999, improving on previous
work and comparable to human performance. A similar ROC curve was observed for per-study analysis with AUC 0f 0.999. The
object detection model classified images with accuracy of 99% or greater at both image and study level. Confidence scores allow
adjustment of sensitivity and specificity as needed; the ensemble model designed for the highly specific use-case of automatically
classifying exams was comparable and arguably better than human performance demonstrating 99% accuracy with 1% of exams
unchanged and no incorrect classification. Deep learning models can classify radiographs by laterality with high accuracy and
may be applied in a variety of settings that could improve patient safety and radiologist satisfaction. Rigorous use-cases requiring
high specificity are achievable.
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Introduction

Machine learning (ML) and deep learning (DL) are artificial
intelligence (AI) methods with significant potential to aug-
ment both interpretive and non-interpretive radiology
workflows. Although clinical applications remain in early de-
velopment, ML demonstrates capability to influence imaging
interpretation and beyond [1-4]. Ongoing research displays
promise in diverse applications of diagnosis, enhanced imag-
ing and reconstruction, automated decision support, exam pri-
oritization, and risk prediction [1-6].
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ML involves the application of mathematical models to
datasets to generate autonomous predictions using new data.
Exposure to training data allows the model to learn from errors
in processing initial cases with iterative improvement in per-
formance after additional examples. A common ML algorithm
is the artificial neural network (ANN) consisting of three seg-
ments (input, hidden, and output) of which many hidden
layers can exist [1]. DL—an extension of ML—combines
trainable units utilizing many layers that can accomplish com-
plex tasks including image classification and object detection
[2]. In order to train these networks reliably, large accurately
labeled and curated datasets are required [2].

In our practice, we perform approximately 500,000 radio-
graphs per year of which up to half lack properly encoded
laterality in the Digital Imaging and Communications in
Medicine (DICOM) metadata with a small fraction containing
incorrect laterality. When considering laterality-specific body
parts, most commonly extremities, absent or incorrect
laterality information raises the potential for significant down-
stream clinical decision-making errors. In a Veterans Health
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Administration analysis of reported adverse events, 65 out of
210 were wrong-side procedures [7]; such adverse events
could plausibly arise from incorrectly labeled radiology exam-
inations used for planning or decision-making.

Missing laterality data also poses quality and workflow
challenges. Hanging protocols in Picture Archiving and
Communication Systems based on DICOM metadata typical-
ly use laterality tags; if this tag is missing or incorrect, a rele-
vant prior may not be shown, or worse, a prior contralateral
body part may be shown. This creates situations where a ra-
diologist may, at best, render a suboptimal interpretation due
to absent data or, at worst, render an inaccurate interpretation
from inappropriate comparison to a prior of opposite laterality.

Previous work has shown, as a secondary outcome, that
there is promise for DL models to classify radiographs by
laterality [8] and tangentially that laterality markers can be
detected by classification models [9, 10]. However, reported
accuracy rates were lower than desired for actual clinical ap-
plication. We sought to build on this work and improve clas-
sification accuracy to a level comparable to human perfor-
mance such that it could be used clinically for both quality
control and retrospective archive correction.

Materials and Methods

Institutional review board exemption was obtained. Data was
acquired from January through July, 2018, and was handled in
HIPAA-compliant fashion.

Image Dataset Acquisition and Curation

We randomly queried operational databases for a wide
variety of laterality-specific radiographs. Accession
numbers were hashed to ensure anonymity with a secure
lookup table retained for traceability. Pixel data was
extracted, duplicate images were removed, and laterality
information was determined directly from DICOM meta-
data (0020,0060) or inferred based on other study infor-
mation such as study or series description. Distinct
naive datasets were set aside for testing. No images
were excluded. A dedicated workstation with a high-
end graphical processing unit (GPU) was utilized.

All datasets were manually reviewed by a fourth-year med-
ical student [SKF] and again by the supervising attending
radiologist (9 years experience) [RWF] to ensure correct cat-
egorization by consensus. Lead markers within the images
were considered ground truth; when errors were found, im-
ages were moved to the appropriate category. Images with
missing or uninterpretable lead markers were placed in a third
“unknown” category as any model considered for real-world
use must be able to identify such exams. A more detailed

Table 1
models

The nine body parts used for development of the deep learning

Body parts

Ankle
Elbow
Femur
Forearm
Hand
Humerus
Knee
Shoulder
Tibia/fibula

review was performed on 4357 random representative images
to establish baseline technologist error rate.

We ultimately produced a training set of nine distinct
laterality-specific body parts [Table 1]. Through curation,
we generated a third “unknown” category of 237 unique
images. In an attempt to better equilibrate our training data,
we augmented the “unknown” images by 90° rotation and
flipping as lead markers are not infrequently reversed or
rotated. Our final classification dataset included 9437
training images with 3146 validation images and 2822 im-
ages reserved for testing. Images for classification were
rescaled and interpolated to fill a 256 X 256 pixel matrix
to match existing pretrained networks. A peripheral black
border of 26 pixels was introduced based on early anecdot-
al experience suggesting improved performance for
markers found frequently at the edge of images.

In total, 1273 images were randomly selected to develop an
object detection model. Bounding boxes were drawn around
the lead markers by the supervising attending radiologist. The
original images were rescaled and interpolated to a 1200 x
1200 matrix to facilitate more reliable object detection. One
thousand eighteen images were used for training with 255 for
validation and a novel set of 292 images from 50 left and 50
right examinations was reserved for testing.

Model Design and Refinement

We developed classification models using the pretrained
GoogLeNet [11] or AlexNet [12] networks. Multiple variables
were experimented with including solver/optimization algo-
rithm type, number of training epochs, base learning rate,
learning rate decay, batch size, and image mean subtraction.
Optimization of the algorithm was performed based on in-
creasing validation accuracy while avoiding overfitting (i.e.,
training loss substantially less than validation loss). Our object
detection model was developed based on an extension of the
BVLC GoogLeNet [13] network called DetectNet [14] with
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further modification of the clustering layers to allow simulta-
neous detection of two different objects (L and R lead
markers).

Evaluation of Model Performance

Our classification model returned a prediction for each class,
“R,” “L,” or “U,” with a confidence score based on the final
softmax layer probability. The object detection model returned
coordinates for detected objects along with confidence scores.

Study-level classification accuracy was determined using
two methods:

1) We assigned laterality to a study based on majority rule.
For example in a three-view study, if our model proposed
“R” for two images and “L” for one, we assigned “R”
study-level laterality. If there was a tie in two-view or
four-view radiographs, we assigned laterality using the
highest average confidence score from each class.

2) We used confidence scores for “L” laterality and multiplied
— 1 by the confidence scores for “R” laterality. We then took
the mean of all confidence scores with a positive mean cor-
responding to “L” and negative mean to “R.”

An ensemble method was considered in an attempt to im-
prove performance in particular for the rigorous use-case of
automatically classifying historical data. A screening confi-
dence threshold for the classification model was chosen based
on the ROC curve correlating with a true positive fraction of at
least 99%. Any images below this threshold were classified
using the object detection model with confidence scores used
to break ties in the infrequent case of multiple detected ob-
jects. Study-level laterality was then determined using major-
ity rule based on ensemble image classification. If majority
rule could not be determined, the study would be left
unaltered.

Confusion matrices were produced to assess classification
performance. A web-based program based on the JLABROC4
library [15] for continuous data was used to generate receiver
operating characteristic (ROC) curves based on confidence
scores which facilitated adjustment of sensitivity and specific-
ity as appropriate. Assessment of object detection was per-
formed by manual validation with overall sensitivity, specific-
ity, and accuracy determined for individual markers as well as
for each exam.

Results
Data Curation

The 15,405 unique images curated for training, validation, and
testing came from 4619 unique exams, of which 694 (15%)
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were missing DICOM laterality data in all included series and
images. Sixty-seven images from 23 exams had frankly incor-
rect DICOM laterality data compared to the lead marker. Two
hundred thirty-seven images (1.5%) had insufficient image
markers; these then comprised our “unknown” dataset. All
images, regardless of presence or absence of DICOM
laterality tag, were reviewed manually by consensus [SKF,
RWF] to ensure accuracy.

Model Design and Refinement

For the classification model, we found that using the Torch
framework starting with the GoogLeNet pretrained network
performed best with mean image subtraction and Nesterov’s
accelerated gradient for loss optimization with a base learning
rate of 0.01 and polynomial decay using a power of 3.0. Loss
quickly decreased with only 15-20 epochs required to achieve
high accuracy before signs of overfitting were observed.
Based on convolution mapping metadata, our models ap-
peared to successfully, and perhaps not unexpectedly, identify
the lead markers as the critical classification features [Fig. 1].

For object detection, we found the modified DetectNet net-
work performed best using adaptive moment estimation for
loss optimization with a base learning rate of 0.0001 and ex-
ponential decay using a gamma of 0.98. Mean average preci-
sion quickly rose after approximately 15-20 epochs with fur-
ther refinement and improvement seen out to 160—200 epochs
without signs of overfitting.

Evaluation of Model Performance

We then assessed overall performance of our classification
model. Two test images placed initially into our “unknown”
category due to what we believed were partially visible
markers were correctly classified as “R” or “L” with very high
confidence. While unanticipated, this result highlights the
ability of the algorithm to determine laterality with high accu-
racy, even in instances of only partially visible lead markers
[Fig. 2]. The overall confusion matrix for our classification
model demonstrated high accuracy in particular for left and
right images [Table 2].

A multi-class ROC curve for the classification model was
also generated by performing a pairwise comparison of the
confidence scores for the two classes of interest, “R” and
“L,” resulting in an AUC of 0.999 which was comparable to
real-world human performance based on our observation of
labeling errors in our technologist curated dataset revealing
the same AUC of 0.999 [Fig. 3]. Upon review of the few
incorrect predictions by our model, we believe many were
explainable [Fig. 4] and might be addressed by further gener-
alization or incorporating object detection or ensemble
methods. Of note, the eight “unknown” cases that were incor-
rectly categorized had confidence scores below 83%; if this
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Predictions
L
R
Description Statistics Visualization

Data shape: [ 1 224 224]
Mean: -0.06494738
Std deviation: 0.81139815

nn.MulConstant

Activations

T
-2.12

Fig. 1 Correct classification with 99.99% confidence in left hand
radiograph. Image depicts the model’s results of classification task on a
single left hand radiograph, revealing 99.99% confidence in an accurate

were applied in a use-case requiring high specificity such as
our proposed ensemble model, the confidence threshold
would exclude these incorrectly categorized unknowns.
Some classifications for long bone exams had lower confi-
dence scores, though still correct, that we believe may be
related to our interpolation preprocessing step. Finally, our
classification model performed similarly and perhaps slightly
better than humans suggesting automated applicability for
high volume relabeling or curation.

While our model performed well on a per-image basis, we
were also interested in study-level performance. The first an-
alytic method, described above, resulted in the best study-
level performance with an ROC AUC of 0.999 but the second
was comparable with AUC of 0.998. Therefore, study-level
analyses and per-image performance were near equivalent.

For our object detection model test set, 290 of 292 test
images contained valid lead laterality makers. Two images
were considered negative because of missing or marginally
visible markers. Markers were detected simultaneously and
in some cases were both on a single image [Fig. 5]. One
hundred forty-three true positive left markers were identified
with 144 true negatives, 1 false positive, and 0 false negatives
for 100% sensitivity, 99.3% specificity, and 99.7% accuracy.
One hundred forty-six true positive right markers were iden-
tified with 144 true negatives, 0 false positives, and 1 false
negative for 99.3% sensitivity, 100% specificity, and 99.7%
accuracy. On an exam level, all 50 left exams were categorized

T
1.01
Value

left laterality prediction. Convolution metadata appears to correctly
identify the lead marker as the salient classification feature

correctly for 100% sensitivity, specificity, and accuracy.
Forty-six right exams were categorized correctly, 3 were cat-
egorized correctly by majority rule, and 1 was split (1 true
positive, 1 false negative) for 98% sensitivity, 100% specific-
ity, and 99% accuracy [Table 3]. Long bone radiographs did
not appear to be affected as in our classification model, per-
haps because of the larger interpolation matrix.

For the ensemble method, we randomly selected a naive set
of 100 studies of variable laterality-specific bone radiographs
consisting of 312 images. Image-level accuracy was 97.8%
(305/312) alone and 98.4% (307/312) with the addition of
confidence scores from the object detection model to break
ties in cases where multiple objects were detected. Study-level
accuracy was 99% (99/100) with one study left unclassified
because it only contained two images, one of which was clas-
sified correctly and the other classified as indeterminate by
both models. Importantly, none of these studies would have
been retrospectively classified incorrectly but rather the single
indeterminate study would have been left alone resulting in
substantial improvement in historical radiograph laterality
classification without error.

This not only improves on previous work [8] but is also
comparable to human-level error; our technologist curated
dataset above demonstrated 69/4357 mislabeled or unclear im-
ages for image-level accuracy of 98.4% and 3 left and 4 right
exams out of 1483 were incorrectly labeled by technologists
using majority rule for study-level accuracy of 99.5%. While
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Predictions

Description Statistics
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nn.MulConstant Mean: 0.34941366
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Activations
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0.900 3.36
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1.29%

Visualization

-1.48

Fig. 2 Correct classification of “unknown” partially visible markers.
Manual curation established “unknown” ground truth for missing or
partially visible markers that were thought to be non-interpretable.

technologist study-level accuracy is slightly higher overall, the
incorrect exams were explicitly wrong whereas our ensemble
methodology is highly specific and would not alter data
incorrectly.

@ Springer

T
1.07 3.62
Value

Unexpectedly, the model correctly classified some right (top) and left
(bottom) “unknowns” due to presence of just enough of the lead marker
to make a determination

Discussion

We developed two robust and highly accurate deep learning
models that accurately categorize radiographs by laterality
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Table 2 Confusion matrix for final classification model including per-
class accuracy

Ground truth class
Predicted class L R U Per-class accuracy
L 1383 14 22 97.46%
R o6 1341 10 98.82%
u 3 5 38 82.61%

L, left; R, right; U, unknown

including explicitly identifying images with missing or insuf-
ficient lead markers. Confidence scores are generated which
can be used to adjust sensitivity and specificity for a variety of
real-world use-cases. When combined in ensemble fashion,
we believe these methods are highly reliable to use both for

automated retrospective data population and for quality assur-
ance at the time of exam.

When compared to human performance, our model perfor-
mance proved at least equivalent if not better in that errors are
not introduced when used in ensemble fashion. We believe
this demonstrates that they could be used to retrospectively
encode the large number of exams without DICOM encoded
laterality at our institution automatically. For this task, our
highly specific ensemble methodology would be utilized to
ensure acceptable specificity while maintaining adequate sen-
sitivity to result in few inaccurately labeled or unlabeled
exams, particularly if all images in a study are considered in
context. Overall, we believe such performance would be pref-
erable to the current state with substantial numbers of radio-
graph images lacking proper programmatic DICOM encoded
laterality. Hanging protocols, in particular inaccurate relevant

Classification Model Compared to Technologist Performance

09

0.8

Classification Model Compared to Technologist Performance

——Model

------- Technologist

0.7

0.6

True Positive Fraction (TPF)
°
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False Positive Fraction (FPF)
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False Positive Fraction (FPF)

Fig. 3 Classification model compared to technologist performance.
Classification model and human performance AUC was the same at
0.999 but at the upper left of the AUC, it appears that while humans

slightly outperform the model at the lowest false-positive fraction, the
model reaches a higher true positive fraction sooner and more
consistently
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Fig. 4 Incorrect classifications. The top image depicts a case when
technologist initials were on the lead marker. We propose that initials of
“R” or “L” may confound the model. The bottom image depicts an

prior selection which we find to be a frequent complaint,
would be improved.

Since we can process individual images in a few seconds,
these models could be deployed to process images on or even
prior to archive ingestion and before interpretation by the

@ Springer

Value

incorrect right classification likely due to extensive amounts of
hardware with similar density to lead markers which confounds the model

radiologist with notifications to the technologist in cases of
possible labeling error or unlabeled data. In this case, sensi-
tivity could be increased at the expense of specificity while
still maintaining high accuracy, as one would likely be willing
to tolerate a few false-positive notifications to ensure accurate
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Fig. 5 Simultaneous detection of right and left laterality lead markers.
The object detection model reliably and simultaneously detects both right
and left lead laterality markers with comparable performance to the
classification model and offers additional assurance in an ensemble model

placement of lead markers and prospective encoding of
DICOM laterality metadata. It has been well demonstrated
in similar cases such as flagging report errors or providing
feedback on exam duration that analogous continuous quality
assurance feedback results in consistent error correction and
lower baseline error rates. Immediate and consistent feedback
applications hold the potential to improve awareness and base-
line functioning and are essential in a field where error must be
minimized [16, 17].

Limitations and Future Directions

We have discussed errors above where it appears that technol-
ogist initials or extensive amounts of hardware may confound
our models. Improved performance may be achieved by train-
ing our model with still more generalized data including a
heterogeneous set of similar confounding examples, but this

Table 3  Object detection model performance assessed by sensitivity,
specificity, and performance on an image and study level

Object detection performance

Sensitivity Specificity Accuracy
L (image) 100% 99.3% 99.7%
R (image) 99.3% 100% 99.7%
L (study) 100% 100% 100%
R (study) 98% 100% 99%
L, left; R, right

would require additional time-consuming manual effort. This
process could perhaps be expedited with the assistance of
natural language processing or other semi-intelligent text min-
ing techniques.

We also found that our preprocessing transformation steps
of interpolation may not work as well with original pixel ma-
trices that are not near-square such as long bone exams,
though performance was still excellent for both models in this
study. Different preprocessing steps without interpolation may
help our models or further iterations perform even better.
Additional generalization could increase the robustness of
both models; this might include rare body parts or parts with-
out laterality that still contain lead laterality markers (i.e., chest
and abdomen radiographs). Additionally, developing and test-
ing our model and its future iterations across multiple institu-
tions could further demonstrate generalizability. Other deep
learning networks or approaches such as segmentation could
be explored to improve performance and see if other useful
information can be extracted.

While we believe we have improved on previous perfor-
mance and have achieved accuracy comparable to human per-
formance, it could be useful to develop a public dataset for
different research groups to compare to or compete against.
An interesting future direction would be either publishing our
internal dataset or labeling a currently available public radio-
graph dataset for this purpose to allow such comparison.

Conclusions

Deep learning models can be used to classify radiographs by
laterality, including an unknown category where markers are
missing or uninterpretable, with very high accuracy. Because
confidence scores are generated, these models can be de-
ployed in a number of settings with parameters adjusted for
desired sensitivity and specificity that could improve both
historical and prospective incoming data to improve patient
safety and radiologist satisfaction. Future research could target
enhanced generalizability across a wide variety of studies and
institutions, explore other methods of preprocessing data, and
evaluate other deep learning methodologies for potential per-
formance improvements and other important feature
extraction.
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