Skip to main content
. 2019 Jul 16;10:1637. doi: 10.3389/fpsyg.2019.01637

Table 2.

Summary of goodness-of-fit statistics for the CCFA, CT-C(M-1), and LD models.

Model χ2Wlsmv df p CFI TLI RMSEA pRmsea Δχ2 Δdf p
(1) CCFA models
(1a) PIQ-S 78.44 51 0.008 0.988 0.985 0.040 0.809
(1b) PIQ-T 85.75 51 0.002 0.997 0.997 0.046 >0.999
(2) CT-C(M–1) models
(2a) Baseline model 304.23 228 <0.001 0.992 0.991 0.032 >0.999
(2b) Model with NWF 299.33 226 <0.001 0.993 0.991 0.031 >0.999 9.34 2 0.009
(3) LD models
(3a) Configural invariance 304.23 228 <0.001 0.992 0.991 0.032 >0.999
(3b) Weak invariance 314.22 237 <0.001 0.992 0.991 0.031 >0.999 16.44 9 0.058
(3c) Strong invariance 339.94 258 <0.001 0.992 0.991 0.031 >0.999 39.32 21 0.009
(3d) Model with explanatory variables 384.82 314 0.004 0.993 0.992 0.026 >0.999

CT-C(M–1), correlated trait-correlated method minus one; LD, latent difference; CFI, comparative fit index; TLI, Tucker–Lewis index; RMSEA, root mean square error of approximation. Δχ2, Chi-square difference tests (with reference to the previous model).