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Abstract
Understanding the safety of medication use during pregnancy relies on observational studies:

However, confounding in observational studies poses a threat to the validity of estimates

obtained from observational data. Newer methods, such as marginal structural models and

propensity calibration, have emerged to deal with complex confounding problems, but these

methods have seen limited uptake in the pregnancy medication literature. In this article, we

provide an overview of newer advanced methods for confounding control and show how these

methods are relevant for pregnancy medication safety studies.
1 | INTRODUCTION

More than half of all pregnant women in Western countries take

medication during pregnancy,1-3 making studies of medication safety

a pressing public health concern. Studying medication safety in

pregnancy presents particular challenges: Effects of medications on

fetal development can be unpredictable, vulnerability to exposure

changes during pregnancy, and outcomes may occur early in fetal

development but be detected later.4 In the general population,

knowledge of medication efficacy and safety is primarily based on
- - - - - - - - - - - - - - - - - - - - - - - - - - -
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randomized controlled trials. However, randomized trials routinely

exclude pregnant women due to uncertainties about the effects of

medications on fetal development, meaning that studies of medication

safety in pregnancy must rely on reproductive toxicity studies in

animals and on observational data in humans. Several landmark cases,

such as the thalidomide disaster, have taught us that animal models for

teratogenicity do not necessarily translate to humans. Observational

studies, using data from cohort studies, registries, and administrative

databases,5 are opportunities for understanding the risks of medication

use in pregnancy, and in 2005, the Food and Drug Administration
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KEY POINTS

• Studies of the safety of medication use during

pregnancy depend mainly on observational studies,

which are subject to confounding bias.

• Novel methods for confounding control have seen

limited uptake in the pregnancy medication safety

literature.

• Application of novel methods is necessary to

appropriately address the complex confounding

scenarios found in pregnancy studies.
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acknowledged that observational studies are the best method for

assessing the maternal and fetal safety of using medication during

pregnancy.6 However, confounding is a major source of bias in obser-

vational studies. Recent years have seen the rapid development of

advanced methods for dealing with confounding, yet uptake of these

methods has been slow in the pregnancy medication literature. This

is unfortunate, because in this field, it is arguably especially important

that researchers use the best methods for confounding control,

because the consequences for getting the wrong answer are so

profound: Failing to detect true effects of medication exposure can

have enormous effects in the population, and falsely raising the alarm

for a safe drug can result in women forgoing needed therapies and,

in some cases, terminating wanted pregnancies.6

In this paper, we advocate for a greater use of advanced methods

for confounding control in the pregnancy medication safety research

field and provide an overview of these methods under the following

framework:

1. How does this method help us to make fair comparisons between

the exposed and unexposed groups?

2. How has this method been applied in the pregnancy medication

literature?

3. How is the method used in practice?

4. What are the important assumptions for this method?

5. What are the major strengths and limitations of the method?

Table 1 provides an outline of pregnancy medication studies using

advanced methods to deal with confounding. This paper gives a useful

reference for both students and experienced researchers who wish to

gain new skills in advanced methods for confounding control.

2 | CONFOUNDING IN PREGNANCY
MEDICATION STUDIES

Confounding control begins with a review of the literature and consul-

tation with subject‐area experts. Directed acyclic graphs (DAGs)

provide a graphical means to represent the causal structure the

investigator believes is present7 and guide study design, data collection,

and analysis. Figure 1 is an example DAG showing one possible causal

model for prenatal antidepressant exposure and childhood

neurodevelopment, with potential biasing paths, including confounders

(other psychiatric illness, other psychiatric medication use, depression

severity, and genetics), which should be controlled as far as possible,

as well as a mediator (gestational age), and a collider (live birth). Several

nonbiasing paths, including a risk factor for the outcome that is

unrelated to the exposure (child gender) and a predictor of exposure

that is unrelated to the outcome (prepregnancy antidepressant use),

are also shown. Obtaining unbiased effect estimates requires

investigators to identify and control confounding, while avoiding bias

from inappropriate control for colliders and mediators and loss of

precision or confusing interpretation of estimates arising from control

for factors only related to the exposure or outcome but not both.8

The Supporting Information contains a more comprehensive review of

definitions of confounding, counterfactuals, and causal inference.
2.1 | Methods for measured confounders

In Box 1 (Supporting Information), we include a simplified illustration of

confounding by measured factors and the methods to address

confounding.

Confounder summary scores and marginal structural models

(MSMs) work by reducing a large amount of information about an

individual into a single summary score. Two individuals can have

the same summary score but different individual confounder values

(eg, a woman with a propensity score [PS] for antidepressant use

of 0.5 might be an unemployed smoker with anxiety, or a

nonsmoking lawyer with depression), but because their distribution

of confounders is equivalent, any differences in outcome will be

attributable only to exposure to the drug of interest. Fair compari-

sons between exposure groups can then be made because within

each stratum of exposure, the distribution of common causes of

exposure and outcome is the same.
2.1.1 | Propensity scores (and other confounder summary
scores)

The propensity score, which is the probability of exposure given

observed confounders,9 reduces a large set of confounders to a single

summary score. Propensity scores are commonly used in the medical

literature; however, other summary score methods, including disease

risk scores10 (preferred in the case of rare exposures) and polygenic

risk scores11 (useful for cases when genetic confounding) are available.

Propensity scores are typically constructed using multivariable

logistic regression, where exposure is the dependent variable and con-

founders are the independent variables. The PS model should include

variables that are confounders or predictors of the outcome; inclusion

of factors that are only predictors of exposure will increase variance

without decreasing bias.12 High‐dimensional PSs, which include

thousands of variables identified through computational algorithms,

may also be useful for adjusting for unmeasured confounders, if the

measured variables are partial proxies for the unmeasured con-

founders.13 The PS can be used to match, stratify, adjust, or weight

the outcome model. Propensity scores, including high‐dimensional

PS, have seen increased uptake in the pregnancy literature, ie, safety

studies on ondansetron,14 lithium,15 antidepressants,16 and statins17

in pregnancy, but their use is still minimal compared to multivariable
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FIGURE 1 Conceptual model for the effect of prenatal selective
serotonin reuptake inhibitor (SSRI) exposure on attention deficit/
hyperactivity disorder (ADHD), including a set of important
confounders (depression severity, concomitant medication use, and
genetics), a potential mediator (gestational age), a collider (live birth),
and factors related only to the exposure (prepregnancy SSRI use) or
the outcome (child gender)
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regression (Table 1). Box 1, in the Supporting Information, gives a

simplified explanation of PS matching and weighting.

Assumptions

Use of PS requires several assumptions, including exchangeability (no

unmeasured confounding) and positivity (nonzero probability of

treatment). Neither assumption is formally testable. Positivity can be

addressed by ensuring that the women in the sample all have the

indication for the medication (ie, if assessing safety of antidepressants,

all women in the sample should be at risk for treatment) and that no

individuals with clear contraindications are included. Exchangeability

is never assured; however, sensitivity analyses can yield estimates for

how vulnerable an effect estimate may be to unmeasured

confounding.

Strengths and limitations

PS is especially useful when working with a common treatment and

rare outcome. They also separate the design of the study (modeling

confounding) from modeling the outcome.18 However, for rare

exposures, summary scores do not perform particularly well.19 In

addition, use of PS methods may produce the appearance of effect

modification and/or result in residual confounding in case control or

case cohort studies20 or in cohort studies where exposure is

misclassified.21
2.1.2 | Marginal structural models

Marginal structural models address time‐varying exposure and

confounding.22,23 Rules for confounder adjustment state we must

adjust for common causes of the exposure and outcome, but should

not adjust for factors on the causal pathway. In the case of time‐vary-

ing exposure and confounding, we encounter a double bind: Factors

that are confounders in one part of the causal structure are mediators

in another part (Figure S1A). For example, when studying the safety of

antidepressants, we may wish to control for depression severity.

However, antidepressant use in earlier pregnancy predicts depressive
symptoms in later pregnancy, which will also predict subsequent

antidepressant use. Standard adjustments for depression severity will

always be biased in this scenario.

Central to the MSM is the inverse probability of treatment weight.

At each measurement time t, the investigator uses logistic regression

to construct the numerator (probability of exposure) and denominator

(probability of exposure, given baseline predictors and history of

exposure at time t − 1).24 The total weight is the product of the

weights at each time point, and analyses are conducted in the

weighted population, or pseudo‐population, in which individuals who

are likely to be exposed are downweighted, while those who are

unlikely to be exposed are upweighted, producing balance of measured

confounders within strata of exposure.

Use of MSMs for pregnancy medication safety studies remains

rare,25,26 despite examples where timing of exposure is of great

importance, and exposure is conditional on time‐varying confounders,

such as other medication use, or changes in disease severity.

Assumptions

Under assumptions of positivity, exchangeability, and consistency, the

MSM will give an unbiased estimate of the effect of the exposure on

the outcome. These assumptions are not formally testable, although

assessment of the positivity assumption may include evaluation of

the inverse probability of treatment weight for extreme weights and

progressive truncation of the weights to determine whether extreme

weights are highly influential.27 When important confounders are

unmeasured or incompletely measured, MSMmethods will not provide

unbiased effect estimates.

Strengths and limitations

The key strength of the MSM is that it allows consideration of

time‐varying exposure and confounding, which is highly relevant in

pregnancy research due to the changes in fetal vulnerability through

the course of pregnancy and the tendency of women to change their

medication use during pregnancy.28,29 However, when the treat-

ment‐covariate association is very strong, MSMs can produce very

wide confidence intervals, which fail to include the true effect.27
2.2 | Methods for incomplete confounder data

Failure to adjust for unmeasured confounders results in biased effect

estimates (Figure S1B). In some situations, the confounder of

interest was not measured in the original dataset, but was measured

in a similar sample. In this scenario, confounder adjustment is

possible, even if the outcome has not been measured in this sample,

using PS calibration.30-32 Propensity score calibration is a method

based on regression calibration33 that offers an additional advantage

over other methods of calibration,34 by allowing for adjustment for

multiple confounders. For example, in a study of triptan safety, we

used a cross‐sectional study to jointly adjust estimates for migraine

severity and type.35

In this method, 2 PSs must be calculated: the error‐prone PS

(estimated in both the main and validation studies, including only the

confounders available in the main study) and the gold‐standard PS

(estimated in the validation study, including all confounders). The
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outcome model is fitted using the difference between the error‐prone

and gold‐standard PSs to calibrate effect estimates.

Assumptions

In addition to the assumptions of PS models, outlined previously, PS

calibration also assumes that the validation sample is a reasonable

stand‐in for the main sample and that the measurement error model

is correctly specified.30,31 Propensity score calibration also assumes

surrogacy, meaning that the error‐prone PS is an adequate surrogate

for the gold‐standard PS.36 If the outcome is not measured in the val-

idation study, the surrogacy assumption is not testable. Violations of

surrogacy occur when the direction of confounding differs between

the main and validation studies,30 and bias arising from violations of

surrogacy can be predicted.36

Other methods exist for unmeasured confounding, including

weighting by the inverse probability of missingness, as well as standard

imputation techniques, and a comparison of these methods with PS

calibration showed little material difference in bias reduction.37

Strengths and limitations

The main strength of PS calibration allows for adjustment for multiple

unmeasured confounders. However, calibration methods fail when

unmeasured confounding is strong, and violations of the surrogacy

assumption may result in increased bias.
2.3 | Methods for unmeasured confounding

Information on confounders may be too difficult to measure (eg,

family environment or parenting style) or too costly (eg, deep

sequencing genetic data). The methods discussed below exploit

aspects of observational data to control for measured and unmea-

sured confounders.
2.3.1 | Sibling comparison designs

If the unmeasured confounders are shared between siblings (see

Figure S1C for illustration), then studies examining with discordant

exposure allows researchers to remove bias from shared

confounders.38-40 If, for example, we believe that any differences in

autism risk between children with and without prenatal exposure to

antidepressants is due to inherited genetic risk, then comparing the

autism diagnosis between pairs of siblings with different prenatal

exposure should be less biased than comparing autism risk between

unrelated exposed and unexposed groups.

There has been substantial uptake of sibling study designs in

the pregnancy medication safety literature in recent years, partic-

ularly in studies examining the safety of antidepressants, where

the main concern is separating the underlying genetic and familial

components of depression from exposure to antidepressant

medications.41,42

Assumptions

Use of sibling designs is most appropriate when confounders that are

shared between siblings are more important than unshared,39 and

there are no carryover effects between siblings.43
Strengths and limitations

Sibling designs control measured and unmeasured confounding that is

shared between siblings. However, failing to control for unshared con-

founders increases bias; sibling studies are also more vulnerable to bias

from measurement error than nonsibling studies.39
2.3.2 | Instrumental variables

Instrumental variable (IV) methods44,45 require identifying a variable

whose effect on the outcome occurs only through the exposure: An

example of a perfect instrument is a coin toss assigning an individual

to exposure or nonexposure, while commonly used instruments

include provider prescription preference and calendar time. One

example is a study of antidepressant efficacy during pregnancy

using provider preference, calendar time as a function of Food

and Drug Administration recommendations, and geographic differ-

ences in antidepressant use as instruments; however, these instru-

ments were only weakly associated with the treatment, which may

have contributed to the equivocal findings.46 Instrumental variable

studies are often conducted using a 2‐stage least squares methods,

where in the first stage, the instruments are used as explanatory

variables in a model predicting the exposure, and the predicted

values from this first stage are used as predictors in the outcome

model. Identifying a strong instrument that meets all assumptions

is challenging, which has contributed to the slower adoption of this

method. Mendelian randomization, which uses a genetic marker as

an instrument, is a subtype of IV analysis47; while Mendelian ran-

domization has not yet been used in pregnancy medication studies,

studies estimating the effect of alcohol use during pregnancy on

later neurocognitive outcomes have used the genetic variants

encoding alcohol dehydrogenase, an enzyme that metabolizes alco-

hol, with some success.48
Assumptions

Instrumental variable analyses allow for unbiased effect estimation

under strict assumptions: (1) The instrument has a causal effect on

the exposure of interest, (2) the instrument effects the outcome only

through the exposure, not through any other pathways, and (3) there

are no common causes or confounders of the instrument‐outcome

pathway (Figure S1D).
Strengths and limitations

Instrumental variable analyses control measured and unmeasured

confounding, and so instruments that meet all the assumptions will

mimic the results from a randomized trial. However, estimates are

highly sensitive to violations of untestable assumptions, and violations

may produce bias amplification.44

Figure 2 guides readers through selecting a method or methods,

based on characteristics of confounder data. The most important first

step is to draw a DAG or DAGs that represent the proposed causal

mechanism, without regard to availability of data on confounders: If

a confounder is important, it should be included in the DAG, even if

the study did not collect data on it. Next, determine which
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confounders are available in your study and whether the data support

the analytic method. For example, if your DAG shows that medication

use and confounders vary over time, but your data shows no such

variation, an MSM approach should not be used; if the data cannot

identify siblings, this method cannot be used. Most importantly, we

urge researchers to consider potential sources of confounding regard-

less of whether they were measured in the data and to choose the

methods most suited to the data they have available: Figure 2 suggests

a systematic way of approaching this process.

A reference to selected software for the methods discussed in this

paper is included as part of the Supporting Information.
3 | DISCUSSION

Studies of medication use during pregnancy use observational data to

answer critical questions of safety and efficacy. More traditional

methods for confounding control, such as stratification, restriction,

matching, and adjustment have been described in great detail elsewhere,

and because of this, we have not discussed them here. These older

methods have their place in observational research, but as our under-

standing of the complexities of bias has progressed, so has our under-

standing of the limitations of these methods. The methods described

in this paper were developed to address specific

confounding problems and are necessary to reduce bias and,

ultimately, to produce the best information possible to health care pro-

viders and pregnant women. Using these methods can produce substan-

tially different results from traditional methods, such as when we

compare the cohort and sibling studies of antidepressant safety,41,42,49

the regression‐adjusted estimates to the MSM estimates. Using multiple

methods can also help to researchers triangulate, and it is reassuring
when multiple methods, e.g. standard regression, PS methods, sibling

controls, and negative paternal controls all produce similar estimates.50

With few exceptions, these methods have seen slow uptake in the

pregnancy medication literature. This may be due to a sense of caution

about methods that can seem opaque upon first encounter with the

methods paper describing the technique. Caution is necessary when

applying novel methods. However, it is also true that the standard

regression methods require similar assumptions to the methods

discussed in this paper. If readers find that their research question fits

well with one of the scenarios described in this paper, we suggest

approaching the problem by tackling the citations given for the

technique. The techniques we describe in this paper have their roots

in standard regression techniques and can be implemented with

standard software.

While this paper focuses on bias due to confounding, other

sources of bias such as exposure and/or outcome misclassification51

and selection bias,52 as well as seasonal effects,53 can also distort

associations. This paper is not intended to be an exhaustive discussion

of all possible methods for confounding control. New techniques are

being developed all the time, and many of these, such as

g‐estimation54,55 and targeted maximum likelihood estimation,56 have

not yet been implemented in the pregnancy medication literature.

Quantitative bias analysis can help researchers account for bias from

systematic errors in their data.57Further, the methods discussed herein

are not mutually exclusive and can be used in combination with each

other: Combining PSs with IVs46 or MSMs with quantitative bias

analysis25 gives more information about the probable range of effect

estimates than any single method.

Observational studies are vital to our understanding of medication

safety in pregnancy, but great care must be taken in the analysis and

interpretation of data to minimize confounding and bias. In all
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pharmacoepidemiological studies, sources of bias should be

acknowledged and discussed and preferably quantified by performing

sensitivity analysis of estimates under an array of assumptions about

possible bias directions and magnitudes.
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