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Abstract
Lesion-symptom mapping has become a cornerstone of neuroscience research seeking to local-

ize cognitive function in the brain by examining the sequelae of brain lesions. Recently, multivar-

iate lesion-symptom mapping methods have emerged, such as support vector regression, which

simultaneously consider many voxels at once when determining whether damaged regions con-

tribute to behavioral deficits (Zhang, Kimberg, Coslett, Schwartz, & Wang, 2014). Such multivari-

ate approaches are capable of identifying complex dependences that traditional mass-univariate

approach cannot. Here, we provide a new toolbox for support vector regression lesion-symptom

mapping (SVR-LSM) that provides a graphical interface and enhances the flexibility and rigor of

analyses that can be conducted using this method. Specifically, the toolbox provides cluster-

level family-wise error correction via permutation testing, the capacity to incorporate arbitrary

nuisance models for behavioral data and lesion data and makes available a range of lesion vol-

ume correction methods including a new approach that regresses lesion volume out of each

voxel in the lesion maps. We demonstrate these new tools in a cohort of chronic left-

hemisphere stroke survivors and examine the difference between results achieved with various

lesion volume control methods. A strong bias was found toward brain wide lesion-deficit associ-

ations in both SVR-LSM and traditional mass-univariate voxel-based lesion symptom mapping

when lesion volume was not adequately controlled. This bias was corrected using three different

regression approaches; among these, regressing lesion volume out of both the behavioral score

and the lesion maps provided the greatest sensitivity in analyses.
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1 | INTRODUCTION

A central goal of cognitive neuroscience is to understand the relation-

ship between structure and function in the brain. Early insights into

this relationship came from linking behavioral deficits exhibited by

individuals while they were alive with the general location of a brain

lesion discovered on autopsy. Using this logic, 19th century aphasiolo-

gists established the foundation of our modern understanding of lan-

guage in the brain, localizing language function to the left hemisphere,

with frontal regions supporting speech production faculties (Broca,

1866) and posterior regions supporting auditory language comprehen-

sion (Wernicke, 1874).

The introduction of computed tomography (CT) in the 1970s and

the spread of magnetic resonance imaging (MRI) in the 1980s allowed

lesions to be considered in vivo with greater spatial resolution, enabling

approximately congruous slices to be compared across patients.

Through the 1990s, researchers used this logic to study groups of indi-

viduals categorized by behavioral syndrome, lesion characteristics, or

specific behavioral deficit. This approach is limited because it requires

categorization of individuals using arbitrary cutoffs based on behavioral

symptoms or lesion distribution. Within the domain of language, this

work both supported traditional views of the lesion-deficit relationship

in aphasia (Mazzocchi & Vignolo, 1979; Naeser & Hayward, 1978;

Yarnell, Monroe, & Sobel, 1976) and highlighted important exceptions
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that suggested the traditional views were incomplete (Basso, Lecours,

Moraschini, & Vanier, 1985). This work also suggested that critical brain

regions extended beyond classical language areas (Alexander, Naeser, &

Palumbo, 1990), and indeed that the role of classical language regions

like Broca’s area must be revisited (Mohr et al., 1978).

Today, lesion-deficit correlation studies are conducted with

millimeter-scale precision by relying on high-resolution structural MRI

scans. This voxel-based lesion-symptom mapping (VLSM) technique

produces a statistical map showing the strength of the relationship

between damage at any given voxel and performance on a behavioral

measure of interest across a group of individuals with brain lesions

(Bates et al., 2003). Analyses are performed on lesion maps delineated

by hand (Ashton et al., 2003) or through automated methods (Pustina

et al., 2016) on anatomical scans which are then warped to a standard

space. Statistical analysis conceptually involves conducting a between-

group comparison at each voxel in the sample of spatially normalized

lesion maps, with behavioral score binned by lesion status at that voxel.

Hot regions in the resulting statistical map correspond to voxels where

lesioned status predicts the measured behavior over and above chance

alone. These regions are inferred to relate to the cognitive functions

relied on by the behavior under investigation. A similar technique,

voxel-based morphometry, uses the same logic except tissue values are

continuous rather than binary lesion maps (Ashburner & Friston, 2000;

Geva, Baron, Jones, Price, & Warburton, 2012). These procedures not

only exploit the full spatial resolution of modern medical imaging but

alleviate the need to categorize patients with arbitrary cutoffs, as they

model behavioral measures on continuous scales (Bates et al., 2003).

In addition to demonstrating proof of concept, the initial VLSM

publication challenged traditional notions of Broca’s and Wernicke’s

areas, finding anterior insula important for fluency and middle tempo-

ral gyrus important for auditory comprehension over and above Wer-

nicke’s area (Bates et al., 2003). In a relatively short period of time as

their introduction, univariate voxelwise lesion-symptom mapping

techniques have become widely used, resulting in important findings

on crucial brain structures for language (Mirman et al., 2015), written

language processing (Rapcsak et al., 2009), visual attention (Karnath,

Fruhmann Berger, Küker, & Rorden, 2004), and cognitive control

(Gläscher et al., 2012), among many other functions.

One limitation of traditional VLSM is its reliance on a mass-

univariate analytical approach, where the relationship between lesion

status and behavioral performance is considered one voxel at a time.

A consequence of this approach is that information concerning the

spatial relationship between a specific voxel and neighboring voxels is

not incorporated into the analysis. This constraint equates to an

assumption of statistical independence across voxels, but such an

assumption is unwarranted given both the spatial autocorrelation

across voxels inherent to neuroimaging data and the nonrandom dis-

tribution of lesions throughout the brain (Husain & Nachev, 2007;

Mah, Husain, Rees, & Nachev, 2014). The consequences of assuming

voxelwise independence in VLSM includes not only a loss of statistical

power but also a potential bias in regional localization of the lesion-

deficit relationship, in particular when a behavior of interest relies on

multiple distinct brain regions (Herbet, Lafargue, & Duffau, 2015;

Kimberg, Coslett, & Schwartz, 2007; Mah et al., 2014). Indeed, large-

scale simulations have demonstrated that the assumption of statistical

independence across voxels can lead traditional mass-univariate

VLSM analyses to produce biased lesion-symptom maps. The same

work has highlighted the potential for multivariate inference methods

to reduce or remove this source of error (Mah et al., 2014). By consid-

ering the contribution of many voxels simultaneously, these methods

enable the detection of multivariate relationships between lesion loca-

tion and behavioral deficit.

Recently, Zhang et al. (2014) proposed and validated an approach

to lesion-symptom mapping using support vector regression (SVR), an

application of support vector machines (SVMs) that permits regression

involving continuous variables such as behavioral scores (Cortes &

Vapnik, 1995). This new approach, called support vector regression-

based lesion-symptom mapping (SVR-LSM), provides a multivariate

method that addresses these important limitations of the traditional

mass-univariate approach. In their study, the authors demonstrated

that SVR-LSM has higher sensitivity and specificity compared to

VLSM when applied to simulated data, and higher sensitivity to

lesion-behavior relationships in real data.

Zhang et al. have made their implementation of SVR-LSM publicly

available online as a free download. Here we describe a new MATLAB

toolbox for SVR-LSM that provides several upgrades over this prior

implementation, including a graphical interface to improve usability

and new options that allow more flexible and rigorous analysis

designs. First, we implement a permutation-based cluster-level correc-

tion for multiple comparisons correction. This method addresses limi-

tations of the voxelwise FDR approach implemented previously in

SVR-LSM, which treated each voxel as an independent comparison,

resulting in potentially flawed corrections. Permutation-based

multiple-comparisons correction methods are considered the gold

standard for lesion symptom mapping because they account for the

lesion autocorrelation structure inherent to the data sets (Kimberg

et al., 2007; Mirman et al., 2018; Nichols & Holmes, 2002; Wilson,

2017). Second, we provide the ability to control for multiple covari-

ates in the analysis design and provide more flexibility in how the cov-

ariates are handled via nuisance models. Although permutation-based

multiple comparisons correction and support for multiple covariates

has been available in mass-univariate lesion-symptom mapping tools

like vlsm2 (Bates et al., 2003) and npm (Rorden, Karnath, & Bonilha,

2007), these techniques have not yet to our knowledge been imple-

mented in a multivariate environment. Third, we provide new options

for lesion volume correction in multivariate lesion-symptom mapping,

including a method to control for lesion volume that removes bias

from all voxels in the data.

Lesion volume is an important confounding variable in lesion-

symptom mapping analyses because larger lesions tend to cause more

severe deficits regardless of location (Price, Hope, & Seghier, 2017).

Further, at any given voxel, the patients with a lesion occupying that

voxel are likely to have larger strokes than those without a lesion at

that voxel. This imbalance is likely to lead to a bias toward identifying

lesion-behavior associations throughout the brain, even in regions with

no role in the behavior under investigation. One approach to control

for lesion volume has been to regress it out of behavioral scores, which

transforms behavioral scores to remove their relationship with lesion

volume prior to lesion-symptom mapping. These transformed behav-

ioral scores are then used in a subsequent lesion-symptom mapping
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analysis (Karnath et al., 2004; Schwartz, Faseyitan, Kim, & Coslett,

2012). This approach is analogous to a semi-partial correlation, which is

an atypical method of covariate handling in general statistical analyses

but is advantageous in that any between-group statistical test can be

used for the lesion-symptom mapping analysis (e.g., t-test, Brunner-

Munzel test). Software packages that model the lesion-deficit relation-

ship using multiple regression (e.g., vlsm2) can simply include lesion

volume as second predictor along with the behavioral score, thus con-

trolling for the lesion volume confound in both the voxel data and the

behavior. This approach limits the statistical test used for lesion-

symptom mapping to voxelwise regressions. Because translation of this

approach to SVR-LSM is not straightforward, Zhang et al. (2014) intro-

duced “direct total lesion volume control” (dTLVC) which places greater

weight on the contribution of smaller lesions to control for lesion vol-

ume in the lesion map data. Prior to SVR analysis, the voxel values in

each lesion map are divided by the square root of the lesion volume for

that patient. Although the method addresses bias in lesioned voxels,

unlesioned voxels remain uncorrected because zero values are unaf-

fected by the transform. Here, we introduce an additional approach in

which lesion volume is regressed out of each voxel in the lesion maps

prior to SVR analysis, thus correcting both voxels with and without

lesions. In the new SVR-LSM toolbox, we provide several options for

lesion volume correction: dTLVC, regression of lesion volume out of

behavioral scores, regression of lesion volume out of lesion maps, and

regression of lesion volume out of both behavioral scores and lesion

maps. This last approach is conceptually appealing because it is mathe-

matically nearly equivalent to the way in which covariates are typically

treated in between-group statistical comparisons (e.g., ANCOVA), and

also the way covariates including lesion volume are handled in

regression-based mass-univariate lesion-symptom mapping software

(e.g., vlsm2). Below, in addition to describing the features of the new

SVR-LSM toolbox, we test the impact of each of the available correc-

tion methods on the results of analyses on a cohort of left hemisphere

stroke survivors. Finally, we examine two cases of how controlling for

lesion volume affects the results and interpretation of multivariate

lesion-symptom mapping analyses. To demonstrate the generality of

our findings about lesion volume correction beyond multivariate lesion-

symptom mapping, we also replicate some analyses using a mass-

univariate VLSM approach (see Supporting Information Figures).

2 | METHODS

2.1 | Preexisting implementation

The SVM classifier is a type of supervised machine learning model that

has become popular for multivariate data analysis. SVMs take labeled

training data as input, nonlinearly transform the data into a high-

dimensional feature space, and then in this feature space estimate a

linear decision boundary, or hyperplane, based on the input features

according to a loss-function that seeks to correctly categorize as many

training points as possible. The subset of training data points that con-

strain and straddle the estimated hyperplane are referred to as sup-

port vectors. A trained SVM model can then be used to classify novel,

unobserved data points. Complicated patterns in the data can be

learned by applying the so-called “kernel trick” in which a kernel func-

tion assists with an otherwise potentially intractable mapping of the

data to feature space. SVR extends the technique to regression

(Cortes & Vapnik, 1995) which can operate on continuous variables

such as the behavioral measures associated with a lesion-symptom

mapping study. When applied to lesion-symptom mapping, the voxel-

wise lesion statuses in a predefined mask region are collapsed into a

column vector for each subject and combined so that rows corre-

spond to unique spatial locations across the sample of lesion maps.

These data are used as input to train an SVR model to predict the

behavioral data under investigation. To recover the relevant anatomi-

cal locations, the trained model’s predictive hyperplane is back pro-

jected into the input data space, which can then be overlaid onto a

standard brain image for interpretation. The behavior of the SVR algo-

rithm utilized here (ε-SVM; epsilon-insensitive SVM) is determined by

two hyperparameters. The first is epsilon, which defines a range

around the hyperplane margins within which the model is not penal-

ized for misclassified data points. The second is cost, which specifies

the penalty for misclassified data points, where a higher penalty

encourages more support vector points and a more complex fit to the

data. In addition to these two hyperparameters, the use of a nonlinear

radial basis function (Gaussian) kernel introduces a third hyperpara-

meter, kernel scale (also referred to as sigma or gamma) corresponding

to the width of the Gaussian kernel function. Hyperparameters are

chosen prior to running the SVR, and choices are often optimized

based on properties of the data at hand. The mathematical equations

underlying the core SVR-LSM functionality were described by Zhang

et al. (2014) and will not be described again here. The original imple-

mentation of SVR-LSM by Zhang et al. (2014) is available for free from

the SPM website (www.fil.ion.ucl.ac.uk/spm/ext/#SVRLSMtbx) and

the author’s github website (github.com/yongsheng-zhang/SVR-LSM).

Procedures are implemented in MATLAB scripts and rely on both

SPM (Wellcome Institute of Imaging Neuroscience, London, UK) func-

tions for basic image manipulation and LibSVM (Chang & Lin, 2011), a

third-party package, for SVR functionality. Analyses are configured by

editing a MATLAB script file such that relevant variable values reflect

a user’s analysis choices. The software allows up to one behavioral

covariate, and correction for lesion volume may be incorporated into

an analysis via dTLVC (Zhang et al., 2014). The software generates a

map of SVR-β values which are then converted to p values via permu-

tation testing at the voxel level, and optionally applies a FDR correc-

tion threshold to the permutation analysis results. Although this

existing implementation of SVR-LSM supports a minimum cluster size

threshold, this arbitrary value is provided by the user.

The original SVR-LSM software used fixed hyperparameter

values, with a cost of 30 and a gamma of 5. These parameters are

recommended by the authors of the initial SVR-LSM publication

(Zhang et al., 2014), in which a metric of prediction accuracy and an

index of reproducibility were derived from their large data set to

determine optimal parameters for performing lesion-symptom map-

ping using SVR. Specifically, they state “...there is no golden standard

for choosing the optimal [gamma and cost] values, they were chosen

to have a compromised high reproducibility and prediction accuracy. ...

while the optimal values were determined using the 106 patients’

data, similar values should work for other data too as we empirically
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tested (data not shown).” Based on this recommendation, the analyses

in this manuscript also utilize these recommended hyperparameter

values. The default epsilon value in LibSVM (0.1) was used.

2.2 | New implementation

We have adapted the preexisting implementation of SVR-LSM and

provide several upgrades to the original software to improve usability

and to allow for more flexible analysis designs, as detailed below. The

free software may be downloaded at its github repository (github.

com/atdemarco/svrlsmgui).

2.2.1 | Handling of lesion volume

Although it is recognized that correction for lesion volume is important

in lesion-symptom mapping, it is not agreed on how best to perform

the correction. We introduce a method of removing correlations

between lesion volume and lesion status at each voxel that affects both

the one- and zero-valued voxels in the raw lesion data. Specifically,

prior to SVR analysis, we perform a linear regression between the lesion

status values at each voxel and the lesion volume values, residualizing

the voxel values with respect to their independent relationship with

lesion volumes. This has the desirable effect of correcting lesion volume

biases in both in the lesioned voxels and in unlesioned voxels, whose

values are zero, which make up much of each data set. As noted above,

transforming either the behavioral data or the lesion data prior to

lesion-symptom mapping analysis is common in current analysis pack-

ages. The general approach is analogous to a nuisance model commonly

used in resting state fMRI analysis (e.g., Poldrack, Mumford, & Nichols,

2011, p. 133), and also to hierarchical regression, in which one builds

an initial model using a set of baseline predictors, and then subse-

quently adds predictors of interest to determine if they predict the

dependent variable above and beyond the variables specified in the

original model.

As our primary goal is to make a variety of tools available to inves-

tigators and not restrict methodological choice, in the new software we

make available this novel method, in addition to previously used

methods available for correcting for lesion volume. The five options

include: (a) no correction for lesion volume, (b) dTLVC correction

(Zhang et al., 2014), (c) regressing lesion volume out of the behavior of

interest (Karnath et al., 2004; Schwartz et al., 2012), (d) regressing

lesion volume out of the lesion voxel data, and finally (e) regressing

lesion volume out of both the behavioral data and lesion data. This last

approach is nearly equivalent to a regular partial correlation, ANCOVA

model, or including lesion volume as an additional predictor in a multi-

ple regression, such as is utilized in vlsm2 (Bates et al., 2003).

To explore the effect that each of the five approaches to lesion

volume correction has on the stringency of results of lesion-symptom

maps, we calculated number of suprathreshold voxels for twenty

behaviors in a cohort of individuals with chronic left-hemisphere

stroke (N = 49) using each method. Behaviors investigated included

oral and written naming performance on the Philadelphia Naming Test

(Roach, Schwartz, Martin, Grewal, & Brecher, 1996), category and let-

ter fluency scores, subtests from the Western Aphasia Battery

(Kertesz, 1982) including Spontaneous Speech Content, Spontaneous

Speech Fluency, Repetition, Auditory Verbal Word Recognition,

Auditory Verbal Yes No, and Sequential Commands, Pseudoword

Repetition (in-house), imageability effect (concrete minus abstract

word reading, in-house), regularity effect (regular minus exception

word reading, in-house), lexicality effect (word minus pseudoword

reading, in-house), Pyramids and Palm Trees (Howard & Patterson,

1992), Digit Span Backward, Picture Pointing, score on Complex Idea-

tional Material from the Boston Diagnostic Aphasia Examination

(Goodglass & Kaplan, 2001), and the Attention and Symbol trails

subtest scores from the Cognitive Linguistics Quick Test (Helm-

Estabrooks, 2001). These measures were chosen to sample across

a range of lesion effect sizes and potential anatomical loci.

Participants were drawn from other studies examining lesion-

behavior relationships (Lacey, Skipper-Kallal, Xing, Fama, & Turkeltaub,

2017; Xing et al., 2016; Xing, Lacey, Skipper-Kallal, Zeng, &

Turkeltaub, 2017). All participants provided written informed consent

and all studies were approved by the Georgetown University IRB.

To assess the impact of each method on systematic biases in vox-

elwise statistics because of lesion volume effects, we also examined

the effect of the lesion volume correction methods on the distribution

of unthresholded SVR-β values throughout the brain. All computations

were conducted on an Intel Xeon (E5–2680 v4) with CPUs at 2.4 GHz

and 58 GB of RAM, running Ubuntu 16.04, parallelized across the

14 system cores.

2.2.2 | Handling of covariates (including multiple
covariates)

In the new SVR-LSM toolbox, an arbitrary number of covariates may be

incorporated into an analysis, allowing for flexible analysis designs.

Nonetheless, as in typical regression models, including too many covari-

ates could result in invalid results. Because the valid upper limit of num-

ber of covariates that may be included is not clear, we emphasize that

care should be taken in including more than a few. As with controlling

for lesion volume, covariates are handled using nuisance models and a

partialing out strategy, which residualizes the single behavioral score

under investigation with respect to the specified covariates prior to

SVR analysis. Behavioral covariates may also be factored out of the raw

lesion data, effectively allowing behavioral data to be included in the

model in each way the lesion volume may be handled (see above).

Behavioral covariates are specified through the graphical interface in an

interactive listbox and incorporated into the analysis by checkboxes

indicating whether to covary values out of the behavior of interest, the

lesion data, or both.

2.2.3 | Statistical thresholding

The voxelwise SVR-β values produced by the SVR analysis must be

converted into p values via permutation testing before they can be

interpreted. Permutation testing involves randomly reassigning the

actual behavioral scores in the data set to the lesion masks in the data

set, simulating the null hypothesis that there is only a chance level

association between the behavior and the lesion distributions. These

permutations are first used to generate voxelwise distributions of

SVR-β values obtained through these chance associations. Impor-

tantly, the distribution at each voxel is catalogued separately as the

distributional properties depend on the number of patients lesioned at
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a given voxel, the volume of those lesions, and other characteristics

that differ across voxels. This allows a critical SVR-β value to be deter-

mined for each voxel that is associated with the user-selected uncor-

rected p value threshold. A map of the critical SVR-β values at each

voxel is then assembled and acts as a voxelwise mask to threshold for

voxels which are statistically significant before correction for cluster

extent. The new cluster-level correction procedure then evaluates

each of the previous permutations, which were saved to disk, first

applying the voxelwise mask and then recording the size of the single

largest cluster surviving from each permutation map. The distribution

of these cluster sizes provides the null distribution from which the

FWE-corrected cluster threshold is determined. Adapted from func-

tional neuroimaging analysis (Nichols & Holmes, 2002), this procedure

has been applied to univariate lesion-mapping studies (Mirman et al.,

2015; Pillay, Stengel, Humphries, Book, & Binder, 2014) and was

recently shown to adequately control for false positive rate (Mirman

et al., 2018). Although permutation-based correction for multiple com-

parisons controls false positives in univariate VLSM, this approach

does not control for false negative findings. Mass-univariate analyses

are still susceptible to mislocalization and false negatives when behav-

iors rely on multiple structures (Mah et al., 2014; Zhang et al., 2014).

2.2.4 | Inclusion of MATLAB SVM

The original implementation of SVR-LSM runs within the MATLAB

environment, but relies on a popular open-source third-party machine

learning library for SVR functionality, LibSVM (Chang & Lin, 2011).

Thus, when installing this implementation of SVR-LSM, a user may be

required to compile LibSVM on their system from binaries. Although

this process is easy in some computing environments, it can be burden-

some in others due to variable support of compilers across operating

systems and MATLAB versions. MATLAB (2014) introduced SVR func-

tionality into their Statistics and Machine Learning Toolbox™, including

the type utilized by the existing implementation of SVR-LSM (Zhang

et al., 2014). To alleviate the need to install the LibSVM package, we

provide the option of using SVR functionality from the Statistics and

Machine Learning Toolbox™, configurable through a program menu.

We retain functionality of LibSVM and leave the cost and gamma

parameters user-configurable.

2.2.5 | Graphical user interface

We wrap these functions in a graphical interface constructed in

MATLAB. As shown in Figure 1, the interface consists of a single dia-

log window launched in MATLAB. Within the Analysis Configuration

pane, the user specifies a directory containing lesion images, a design

file containing a list of patients and relevant behavioral scores, and an

output filename. The directionality of the hypothesis is then specified

as well as the lesion volume correction method and minimum lesion

overlap cutoff for voxels to be included in an analysis. Covariates may

be specified in the covariates pane, and may be regressed out of the

lesion data, the behavioral score data, or both. Permutation testing

can be configured in the top right pane by indicating the number of

permutations desired and critical values at the voxelwise and cluster-

wise levels. Once these parameters are configured, the user clicks

“Run Analysis” and waits for the analysis to conclude. A pane in the

bottom right of the interface displays progress to the user as the anal-

ysis proceeds.

FIGURE 1 Screenshot of the MATLAB-based graphical user interface for SVR-LSM. The single window contains a pane for configuring an

analysis, a pane for configuring covariates, a pane for permutation testing, and a feedback pane that reports the progress of an analysis [Color
figure can be viewed at wileyonlinelibrary.com]
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2.2.6 | Other new features

In addition to the technical advances outlined above, we include other

additions that assist in analysis configuration, execution, diagnostics,

and interpretation. An online reference file details all options within

the program. A few notable features include:

• Analyses configured through the graphical interface may be saved

to disk and loaded later or may be executed from the command

line without user interaction.

• To speed up analyses, an option is provided to parallelize the per-

mutation procedures through the graphical interface. When

enabled, this option will utilize the parallel pool with the number

of workers specified in the MATLAB Parallel Computing Toolbox

preferences. A system that supports parallel processing is neces-

sary for this functionality.

• To assist with diagnostics and interpretation of results, each

analysis produces an overview file that may be viewed in the

browser which contains a short narrative describing the analysis

specifications and thumbnails of various output steps. Thumb-

nails include a lesion overlay image delineating a lesion overlap

map and a mask of voxels to which the analysis was restricted

based on the minimum lesion overlap threshold, unthresholded

SVR-β maps, voxelwise thresholded SVR-β maps, and SVR-β

maps thresholded at both the voxel and cluster level, with

numerically labeled clusters. To assist with detection of correla-

tion among the main behavioral predictor and covariates speci-

fied in the behavioral nuisance model, including lesion volume,

output also includes a matrix of pairwise scatter plots to visual-

ize the correlation matrix of those variables. Each plot displays

the least squares slope and correlation coefficients, with signifi-

cant t-statistics highlighted red. Finally, the output file also plots

the largest observed clusters and how they relate to the critical

cluster threshold as it changed throughout the permutation test-

ing procedure. This last output can help assess when the critical

cluster threshold has reached a point of stability and can give

insight into the robustness of observed cluster sizes relative to

the permutation testing.

3 | RESULTS

3.1 | Comparison between results of different SVR-
LSM implementations

To ensure that the new implementation reproduces the results

achieved with the prior implementation of SVR-LSM, we ran an analy-

sis using WAB Repetition as the behavioral score and parameter

values cost of 30 and gamma of 5 using both implementations.

Because MATLAB utilizes a formulation of the Gaussian radial-basis

function kernel that differs from LibSVM’s formulation, we used the

algebraic equivalent of a gamma of 5 (sigma = 0.316) for MATLAB

SVR analyses. As shown in Figure 2, the two implementations produce

SVR-β maps that are identical (voxelwise r[433] = 1.00, p < .001).

Next, to ensure that the MATLAB and LibSVM implementations

within the new toolbox produce the same result, we reran the same

analysis using the native MATLAB SVR functionality. The results were

nearly identical, with negligible differences in exact SVR-β values (vox-

elwise r[433] = .94, p < .001). Voxelwise correlations were restricted

to voxels that were nonzero in any of the three analyses.

3.2 | Computing time

The time required to run an analysis will depend on the resolution of

the lesion maps, the sample size of individuals in the analysis, the

number of permutations used for statistical thresholding, and the

specifications of the computer on which the analysis is run. To provide

rough estimates of the time required for typical analyses, we timed

several analyses varying the parameters of parallelization (on/off ),

method of correcting for lesion volume (no correction, dTLVC, Regres-

sion on both behavior and lesion), number of permutations computed

(1,000, 5,000, 10,000), and sample size (50, 100, 150). Analyses were

carried out on an Intel Xeon (E5–2680 v4) with CPUs at 2.4 GHz and

58 GB of RAM, running Ubuntu 16.04. Parallelized analyses utilized

all 14 system cores. Results for these analyses are listed in Table 1.

Execution time grew with sample size, lasting on average 67/16 minutes

(unparallelized/parallelized) for a sample size of 50, 217/66 minutes for

a sample size of 100, and 445/132 minutes for a sample size of 150.

Likewise, execution time grew with the number of permutations, lasting

on average 47/14 minutes for 1,000 permutations, 227/68 minutes for

5,000 permutations, and 455/131 minutes for 10,000 permutations.

Enabling parallelization resulted in analyses completing on average six

times faster, with at least a two-fold decrease and at most a nine-fold

decrease in execution time. Duration of analyses using dTLVC correction

was 131/16 minutes, which was comparable to analyses with no correc-

tion applied, 128/16 minutes. Regressing out lesion volume resulted in

slower execution time, lasting on average 470/181 minutes. Regressing

out lesion volume results is slower analyses because the SVR takes

FIGURE 2 Comparison of uncorrected SVR-β value output for

original SVR-LSM (left; Zhang et al., 2014), for the new
implementation using LibSVM (middle), and MATLAB’s SVM
functionality (right). For each output, the value is shown at the same

sample voxel coordinate of MNI = −42, 2, 9 also indicated by
crosshairs. This analysis was conducted on individuals with chronic
left-hemisphere stroke (N = 48) modeling the score for WAB
repetition and SVR parameters of cost = 30 and gamma = 5,
minimum lesion threshold of 10 [Color figure can be viewed at
wileyonlinelibrary.com]
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longer to converge, and this extra time accumulates over the permuta-

tion portions of the analysis.

3.3 | Distribution of bias related to lesion volume

To explore the distribution of bias related to lesion volume in a hypo-

thetical lesion-symptom mapping analysis, we examined the average

lesion volumes of those with and without lesions at each voxel in a

cohort of left-hemisphere stroke survivors (N = 48). These maps

revealed that the presence of lesions at most locations was associated

with large lesion volume (Figure 3a), while the absence of lesions at

the same voxels was associated with small lesion volume (Figure 3b).

Larger lesions were particularly associated with lesion status at the

border of middle cerebral artery (MCA) territory, and the largest

lesions were associated with lesion status in anterior cerebral artery

territory. A difference map of average lesion volume in those with and

without lesions at every voxel reveals large bias throughout most of

the left hemisphere (Figure 3c), a difference that was statistically sig-

nificant throughout a large portion of MCA territory (Figure 3d).

3.4 | Comparison of lesion volume correction
methods

To compare the effects of lesion volume correction using the methods

available in the new SVR-LSM toolbox, we conducted analyses on

20 different behaviors using no correction and the four lesion volume

correction methods provided. Conducting analyses without lesion vol-

ume correction produced the greatest number of suprathreshold vox-

els after voxelwise and clusterwise correction. Of the 20 behaviors

tested, 16 produced significant results (24,887 significant voxels on

average). When the dTLVC transform was applied to correct for lesion

volume, the same 16 behaviors produced significant results, although

the average volume of significant voxels was reduced (10,718 signifi-

cant voxels on average). With lesion volume regressed out of the

behavior, two of 20 analyses produced significant results (3,827 sig-

nificant voxels on average). With lesion volume regressed out of the

raw lesion data, one of the 20 analyses produced significant results

(4,095 voxels). Finally, with lesion volume regressed out of both

behavioral data and raw lesion data, seven of 20 analyses produced

significant results (2,884 voxels on average). A spaghetti plot of the

20 analyses for five correction choices is shown in Figure 4. Table 2

lists the behaviors that were significant for each lesion volume correc-

tion method. See Supporting Information Figure for thumbnails of the

SVR-β maps for the 20 behaviors across the five lesion-volume correc-

tion methods. See Supporting Information Figure and Supporting

Information Tablefor a demonstration that this effect also applies to

mass-univariate VLSM (for VLSM methods, see Supporting Informa-

tion Methods).

Because the motivation for performing lesion-volume correction

is to remove bias in the data, we also examined uncorrected SVR-β

maps for evidence of this bias and the extent to which each lesion-

volume correction method addressed it (Figure 5). We examined two

behaviors, one with significant findings across all methods (WAB Flu-

ency) and one with significant findings only without lesion volume

correction or with dTLVC (Pyramids and Palm Trees). In addition to

plotting a histogram of SVR-β values for each lesion correction

method, we also generated distributions of SVR-β maps resulting from

1,000 permutations for each analysis to examine the null distributions

against which the real data would be compared in an SVR-LSM

analysis.

The SVR-β values for the permutation data were normally distrib-

uted and centered at 0 for all analyses of both behaviors. The width

of these distributions varied somewhat across correction methods

with the narrowest distributions (i.e., least variance in SVR-β values)

observed in the permutations without lesion volume correction.

The SVR-β distributions for both analyses without lesion volume

correction were substantially shifted leftward, such that nearly all

SVR-β values in these analyses were negative. This indicates that

lesions at most voxels in these analyses were associated with negative

effects on behavior. DTLVC had only a marginal effect on this left-

ward bias, with the distributions slightly shifted rightward for both

behaviors compared to the analyses without lesion volume correction.

In contrast, all three regression methods qualitatively changed the

shape of the distributions compared to no correction or dTLVC. For

Pyramids and Palm Trees, which did not yield any significant results

TABLE 1 Analysis duration for SVR-LSM with and without

parallelization for three sample sizes (50, 100, 150), three numbers of
permutations (1,000, 5,000, 10,000) and for three methods of lesion
volume correction (no correction, dTLVC, and regression on both
behavior and lesion volume)

Correction
method

Sample
size

Number of
permutations

Analysis duration (minutes)

Unparallelized Parallelized

No correction
for lesion
volume

50 1,000 7 1

5,000 33 5

10,000 64 11

100 1,000 22 3

5,000 105 14

10,000 211 27

150 1,000 46 5

5,000 222 26

10,000 443 51

DTLVC 50 1,000 7 1

5,000 32 5

10,000 62 11

100 1,000 22 3

5,000 106 14

10,000 221 27

150 1,000 45 5

5,000 228 26

10,000 458 52

Regress on both
behavior and
lesion

50 1,000 27 7

5,000 127 34

10,000 248 67

100 1,000 83 33

5,000 396 159

10,000 786 311

150 1,000 161 72

5,000 795 327

10,000 1604 621
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with lesion volume regressed out of analyses, all three methods

resulted in normal distributions centered on 0, little different than the

permutation distributions. For WAB Fluency, which did yield signifi-

cant results in these analyses, the distributions were wider than the

permutation distributions and shifted leftward such that the left (neg-

ative) tail extended beyond the null distributions.

3.5 | Lesion correction effects on localization of
behaviors

To explore whether controlling for lesions size alters localization

in lesion symptom mapping analyses, we first examined the

SVR-LSM maps of the 20 behavioral scores (Section 3.4, Support-

ing Information Figure). Several of the analyses without lesion vol-

ume correction produced similar maps despite examining different

behaviors, with large areas of significance falling in the region of

lesion volume bias shown in Figure 3d. When significant clusters

survived in the lesion volume corrected maps, they were substan-

tially smaller, but not spatially displaced from the uncorrected

results. The same effects were also observed when the analyses

were computed using a mass-univariate VLSM approach

(Supporting Information Figure). This suggests that the data trans-

formations required for lesion volume correction did not cause

mislocalization of the behaviors.

FIGURE 3 Figure showing the regional bias caused by lesion volume in a cohort of individuals with left-hemisphere stroke (N = 48). The panels

show maps of average lesion volume in (a) the “lesion present” group at each voxel, (b) the “lesion absent” group at each voxel, and (c) a difference
between average lesion volume in the “lesion present” and “lesion absent” groups, and (d) regions where lesion volume was significantly different
(red outline, red translucent fill). The analysis displayed in panel d was conducted in SVR-LSM treating lesion volume as the behavioral variable,

thresholded voxelwise at p < .05 (two-tailed) based on 10,000 permutations [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 Spaghetti plot showing the effect of five lesion volume correction methods on twenty behaviors in a group of individuals with left-

hemisphere stroke (N = 49). Lesion volume methods include (a) none, (b) dTLVC, (c), regression of lesion volume out of the raw voxel data,
(d) regression of lesion volume out of the behavioral data, and (e) regression of lesion volume out of both behavioral data and out of raw voxel
data. All analyses were thresholded at voxelwise at p < .005 (one-tailed) and clusterwise correction at p < .05, based on 10,000 permutations
[Color figure can be viewed at wileyonlinelibrary.com]
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To examine more directly the effect of lesion volume control on

localization of behaviors strongly or weakly associated with lesion vol-

ume, we next performed lesion-symptom mapping analyses of two

simulated behaviors. Based on the earlier result (Figure 3d), one simu-

lated behavior was generated by taking the number of lesioned voxels

in a 4 mm sphere surrounding a voxel strongly related to lesion vol-

ume (Figure 6a; MNI = −48, −17, 28; SVR-β = 9.47; p < .001 based on

10,000 permutations, 23 overlapping lesions), and one behavior was

generating using the same approach at a voxel less associated with

lesion volume (Figure 6b; MNI = −47, −51, 14; SVR-β = 3.12, p = .07

FIGURE 5 Histograms of uncorrected SVR-β values after five lesion volume correction methods (green) for two behaviors, including Pyramids

and Palm Trees (top row) and WAB Fluency (bottom row). Also shown is the average histogram of 1,000 permuted SVR-β maps for each behavior
and correction method (red) and a normal distribution fit to the permutations, scaled to the histograms [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 2 Table listing which of 20 behaviors were significant for each of five lesion volume correction methods using support vector regression

lesion-symptom mapping

Behavior under investigation

Lesion volume correction method

No correction dTLVC Regress on lesion Regress on behavior Regress on both

Philadelphia naming test (oral) • • ○ ○

Philadelphia naming test (written) • • ○ ○ ○

Category fluency • • ○ ○ ○

Letter fluency • • ○ ○ •

Western aphasia battery content • • ○ ○ ○

Western aphasia battery fluency • • ○ ○ •

Backward digit span • • ○ ○ ○

Western aphasia battery repetition • • ○ ○ ○

Pseudoword repetition • • ○ ○ •

Imageability effect (concrete minus abstract) ○ ○ ○ ○ ○

Regularity effect (regular minus exception) • • • ○ •

Lexicality effect (word minus pseudoword) ○ ○ ○ ○ ○

Pyramids and palm trees • • ○ ○ ○

Western aphasia battery word recognition • • ○ ○ •

Western aphasia battery yes/no • • • • •

Picture pointing • • ○

BDAE complex ideational material • • ○ ○ ○

CLQT attention score ○ ○ ○ ○

CLQT symbol trails score ○ ○ ○ ○ ○

Western aphasia battery sequential commands • • ○ ○ •

A solid bullet (•) indicates that significant findings for a given combination of behavior and lesion volume correction method which survived voxelwise
thresholding, p < .005 (one-tailed) and clusterwise correction, p < .05 based on 10,000 permutations. An empty bullet (○) indicates that the analysis
resulted in voxels that survived voxelwise thresholding but did not survive cluster correction.
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based on 10,000 permutations, 18 overlapping lesions). We then

examined the effect of each lesion correction method on the localiza-

tion of the simulated behaviors. Lesion-symptom mapping of these

behaviors should ideally produce significant results in a fairly focal

area surrounding the seed.

As depicted in Figure 6a, lesion symptom mapping of the simu-

lated behavior that was strongly related to lesion volume produced

significant results in a large area surrounding the seed from which the

behavior was derived (red). When dTLVC was applied, the region that

was identified as significantly related to the simulated behavior

became less dispersed relative to no correction. When regression

methods were applied to correct for lesion volume, the region that

was identified as significantly related to the simulated behavior

became more focal, and was still centered on the seed location. For

the simulated behavior that was less correlated with lesion volume

(Figure 6b), all correction methods produced significant results sur-

rounding the seed voxel without a qualitative difference in the num-

ber or distribution of significant voxels. See Supporting Information

Figure for a demonstration that this effect also applies to mass-

univariate lesion-symptom mapping.

3.6 | Case studies of the effect of lesion-volume
correction on multivariate lesion-symptom mapping

To illustrate the effects of lesion volume correction on a hypotheti-

cal lesion-symptom mapping analysis, we focus here on SVR-LSM

results for two behaviors, specifically Pseudoword Repetition and

WAB Yes/No. Pseudoword repetition tests phonological processing

without lexical-semantic support by asking participants to repeat

aloud pronounceable nonwords that are dictated by the examiner.

WAB Yes/No tests sentence-level comprehension by asking partici-

pants to respond yes or no to a series of question sentences

(e.g., “Will paper burn in fire?”). Each analysis was first conducted

without controlling for lesion volume, and then conducted again with

lesion volume regressed out of both voxelwise lesion data and

behavioral scores.

When lesion volume was not controlled, lesions were associated

with impaired Pseudoword Repetition in a single large cluster of

regions that included portions of left inferior frontal gyrus, superior

temporal gyrus, ventral premotor cortex, and much of the inferior

parietal lobe (Figure 7a, left). When lesion volume was regressed out

of both behavior and lesion data as a covariate, many of these regions

were no longer significant. Rather, regions where lesions resulted in

impaired Pseudoword Reading were contained in single smaller clus-

ter, containing posterior superior temporal gyrus, supramarginal gyrus,

and ventral post-central gyrus, roughly surrounding area Spt in the

temporoparietal junction (Figure 7a, right).

When lesion volume was not controlled, lesions were associ-

ated with impaired WAB Yes/No score in a single large cluster of

regions that again included inferior frontal gyrus, ventral premotor

cortex, insula, ventral post-central gyrus, and a large swath of supe-

rior and middle temporal gyri, extending subcortically into the parie-

tal lobe (Figure 7b, left). When lesion volume was regressed out of

both behavior and lesion data as a covariate, lesions were associ-

ated with impaired WAB Yes/No scores in a single smaller cluster

primarily consisting of the middle and superior temporal gyri,

extending into the insula and posterior inferior frontal gyrus

(Figure 6b, right).

FIGURE 6 Effect of lesion volume correction on SVR-LSM localization for (a) a simulated behavior significantly correlated with lesion volume and

(b) a simulated behavior less correlated with lesion volume. Behaviors were simulated by summing the number of lesioned voxels within a 4 mm
sphere (red) placed based on its correlation with lesion volume. At the left of each pane is shown a scatterplot of lesion volume versus the
simulated behavior across the patient sample. Voxels with statistically significant results at voxelwise p < .001 based on 10,000 permutations are
shown in bright green [Color figure can be viewed at wileyonlinelibrary.com]
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4 | DISCUSSION

Lesion-symptom mapping has become a cornerstone of cognitive neu-

roscience research, and methodological developments have enabled

multivariate approaches with benefits over traditional mass-univariate

methods. Despite the availability of multivariate methods for lesion-

symptom mapping, these techniques have yet to be widely adopted,

perhaps in part due to limitations of previously available implementa-

tions. Here, we have provided new methods for SVR-LSM that make

it easier to implement and expand on the types of analyses that can

be conducted. We have also provided tools, such as permutation-

based FWE correction at the cluster level, to improve the rigor of

SVR-LSM analyses.

Lesion volume confounds limit the rigor of lesion symptom map-

ping analyses, but there is no consensus about how to best control for

these effects in practice. We compared several different approaches

here, including a new approach as described above. Although our

focus was on the comparison using SVR-LSM, we replicated the ana-

lyses using mass-univariate methods (Supporting Information

Figures and Supporting Information Table) to illustrate that the lesion

volume problem is similar in univariate VLSM. The results demon-

strated that the most liberal approach is to ignore lesion volume as a

confound. Doing so resulted in significant lesion-deficit associations in

16 of 20 behaviors examined, many including large numbers of signifi-

cant voxels. In a simulated behavior strongly related to lesion volume,

lack of correction resulted in identifying significant lesion-behavior

associations in a large area of the brain. Using dTLVC was only mod-

estly more conservative, with significant results again observed for

the same 16 behaviors and somewhat fewer suprathreshold voxels.

Examination of the SVR-β distributions for both of these approaches

revealed that voxelwise associations with behavior were dramatically

skewed toward negative relationships, a bias related to the influence

of lesion volume on voxelwise statistical values, as demonstrated by

the correction of the bias after regressing out lesion volume. Lesion

volume has a large impact on lesion-symptom maps because the likeli-

hood of any given voxel being lesioned is directly proportionate to the

size of the lesion. Thus, at any given voxel, patients with large lesions

are more likely to have a lesion at that voxel compared to patients

with small lesions. In our cohort, this lesion volume difference was

present throughout most of the perisylvian tissue as well as much of

the underlying white matter, demonstrating how widespread these

effects are in the brain. The voxelwise lesion volume difference means

that statistical values at most voxels in an uncorrected map result

from comparisons between groups (lesion present and lesion absent)

that are mismatched on lesion volume, producing a strong bias toward

finding lesion-deficit associations in large areas of the brain when

behaviors are related to lesion volume. This bias was demonstrated

here by the similarity of lesion-symptom maps generated for different

behaviors when lesion volume correction was not used, and by the

analysis of the simulated behaviors, which yielded a large area of sig-

nificance for the behavior associated with lesion volume when this

relationship was not corrected. DTLVC only partially corrects this bias

because it still leaves bias in unlesioned voxels, which make up a

majority of most lesion maps.

The decision of how to address the lesion volume bias ultimately

should be driven by the research question. Permitting the bias to

remain in the analysis may be appropriate if the question is “Where

are lesions associated with deficits in behavior X?” as lesions should

almost always be associated with negative changes in behavior. This

may be reasonable for clinical questions about expected deficits based

on lesion distribution, but results should not be taken to indicate that

the areas of the brain identified as significant are important for the

behavior under investigation.

Allowing the lesion volume bias to impact results is not appropri-

ate if the analysis aims to localize the substrates for a given behavior

by asking “Is behavior X more strongly associated with lesions in cer-

tain brain areas compared to others?” This is the type of question

motivating most lesion-symptom mapping studies, and in this case the

lesion volume bias confounds the association between the behavior

and lesion location. As an analogy, imagine a hypothetical experiment

aiming to determine if the left inferior frontal gyrus is important for

cognitive control. The experimenters compare two groups of patients,

one with lesions involving left inferior frontal gyrus and one with

lesions elsewhere. The left inferior frontal gyrus lesion group performs

worse on the cognitive control tasks as predicted, but also has larger

lesions than the control lesion group. One cannot conclude from these

results that the left inferior frontal gyrus is associated with cognitive

control because the observed behavioral difference may have been

driven purely by the difference in lesion volume between the groups.

Performing lesion-symptom mapping without adequate lesion volume

correction is like performing similarly biased comparisons at each

voxel in the brain.

Our analyses of Pseudoword repetition and WAB Yes/No illus-

trate this principle. Without controlling for lesion volume, impaired

FIGURE 7 Brain regions where lesions are significantly related to

behavioral deficits in (a) Pseudoword Repetition and (b) WAB Yes/No
prior to lesion-volume correction (left) and following lesion volume
correction by regressing lesion volume out of both behavior and
lesion data prior to SVR (right). Resulting statistical maps are
corrected voxelwise at p < .005, and by cluster extent at p < .05
based on 10,000 permutations [Color figure can be viewed at

wileyonlinelibrary.com]
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performance on these measures are associated with spatially nonspe-

cific regions of the brain that span frontal, parietal, and temporal

lobes. Controlling for lesion volume reveals that pseudoword repeti-

tion relates to more specific cortical regions, specifically area Spt and

nearby cortical areas. Area Spt is a key component of the dorsal

stream of modern neuroanatomical language models (Hickok & Poep-

pel, 2007) and is believed to perform the sensory-motor transforma-

tions that enable direct mapping from auditory input to motor output,

which is required for behaviors like pseudoword repetition. Indeed,

this finding is highly congruent with previous functional neuroimaging

studies of healthy adults, and this region is implicated in conduction

aphasia, a syndrome in which this skill is particularly impaired

(Buchsbaum et al., 2011; Hickok et al., 2000; Hickok, Buchsbaum,

Humphries, & Muftuler, 2003). Controlling for lesion volume reveals

that poor performance on WAB Yes/No score results from lesions to

superior and middle temporal gyri, and portions of posterior inferior

frontal gyrus. These findings also converge with existing work examin-

ing regions relevant to auditory comprehension of single words and

sentences, which are the primary linguistic skills required for this task.

Many lines evidence from patients with aphasia indicate auditory

comprehension is associated with superior temporal cortex (Hillis,

Rorden, & Fridriksson, 2017), but there is also evidence for a broadly

distributed network supporting sentence comprehension throughout

the middle temporal gyrus (Turken & Dronkers, 2011). Recent work

on the semantic variant of primary progressive aphasia underlines the

additional contributions of the anterior temporal lobe for language

comprehension (e.g., Mesulam et al., 2015). These two cases illustrate

that without controlling for lesion volume, analysis results are broadly

distributed, whereas more specific and informative results that con-

form to modern neuroanatomical language models are identified with

lesion volume control.

For the type of research question described above, statistically

controlling for lesion volume is necessary to interpret a significant

result as indicating a role for the identified brain structure in the

behavior under investigation. DTLVC appears to only partially correct

for lesion volume biases, based on the residual negative skew in the

SVR-β histograms and the modest effects of this method on both the

analyses of real behaviors and the simulated behavior strongly related

to lesion volume. In contrast, all three regression methods provided

more conservative correction, completely addressing the skew in

SVR-β histograms and improving the spatial specificity for localizing

the behavior strongly related to lesion volume. Importantly, spatial

specificity was not affected by lesion volume correction when the

behavior was less strongly related to lesion volume, and none of the

lesion volume correction methods introduced mislocalization of

lesion-behavior associations. Together these findings suggest that cor-

recting for lesion volume offers a practical benefit of gaining greater

spatial specificity in localizing a lesion-symptom relationship in regions

confounded by lesion volume, without negatively influencing localiza-

tion in regions less confounded with lesion volume.

The cost of rigorously addressing lesion volume is more conserva-

tive voxelwise thresholding, as demonstrated by the relative paucity

of significant results in the analyses using any of the three regression

approaches. Among the three options examined here, regressing

lesion volume out of both the behavioral scores and the lesion maps

appeared to be the most sensitive method. This may be because true

lesion-deficit relationships are obscured by applying a nuisance model

to one variable (i.e., dependent or independent) but not the other. In

other words, the lesion-symptom relationship was more detectable

when both the dependent and independent variables were trans-

formed to control for lesion volume prior to the analysis, rather than

just one or the other. This method is also appealing because it is math-

ematically nearly equivalent to how lesion volume (or any other covar-

iate) is dealt with in statistical analyses of studies like the hypothetical

one described above. It is notable, that given the relatively small sam-

ple size used here, identifying significant associations between lesion

location and deficits for seven out of 20 behaviors suggests that this

method is conservative, but not overly so.

It should also be noted that correcting lesion volume is likely

unnecessary when the behavioral variable has no relationship to lesion

volume. This is illustrated by the analyses of the simulated behavior

that was not strongly related to lesion volume (Figure 6b). In this case,

lesion volume correction did not qualitatively alter the lesion symptom

maps. Similarly, if behavioral covariates are included that have a simi-

lar relationship to lesion volume as the test behavior, correcting for

lesion volume may be redundant. However, even a weak residual rela-

tionship between the behavior of interest and lesion volume could

induce a small brain wide bias, so erring on the side of lesion volume

correction seems appropriately conservative in general.

Although lesion volume was strongly related to lesion location in

our patient sample, it is possible that in some cohorts this relationship

will be weaker. In these cases, the lesion volume confound would still

systematically bias the resulting lesion-symptom map toward finding

large regions of lesion-symptom association but would cause less dra-

matic spatial displacement in the location of these effects. Unfortu-

nately, it is often difficult to assess the degree to which a lesion

volume confound might influence the results of existing lesion-

symptom mapping literature. For instance, in reviewing the literature

for lesion-symptom mapping studies of our example of pseudoword

repetition, we found a number of studies that examined the behavior

(Baldo, Katseff, & Dronkers, 2012; Fridriksson et al., 2010), but in only

one study (Rogalsky et al., 2015) was it clear that lesion volume was

included as a covariate. These studies generally converge on consis-

tent findings regarding the role of temporoparietal cortex in this task,

which may suggest that lesion volume confounds cause less severe

spatial displacement of results than we observed here.

Multivariate lesion-symptom mapping is still in its infancy and

there were a number of questions about how to optimize the

approach that we were not able to address here. First, we did not

investigate procedures to optimize our SVR hyperparameters. Rather,

we used fixed hyperparameter values that were recommended by the

initial SVR-LSM publication (Zhang et al., 2014). It is likely that optimal

hyperparameter values may differ depending on analysis characteris-

tics such as voxel size, and future work should examine this issue.

Although our analyses could have slightly different solutions with

optimized hyperparameters, importantly, our findings about lesion

volume correction held for both multivariate and mass-univariate

lesion-symptom mapping analyses. Second, in this toolbox we handled

covariates by applying nuisance models prior to submitting the data to

the SVR. Although it is possible to include an arbitrary number of
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covariates in this way, it is not clear how many covariates are too

many and future work should explore this question. Furthermore,

future work should also explore an alternative approach to controlling

for lesion volume and behavioral covariates by adding them as addi-

tional features directly in the SVR model. Finally, this toolbox will con-

tinue to be developed to keep abreast with new developments in the

field of lesion-symptom mapping. For instance, methods we intend to

add in future releases include hyperparameter optimization for each

analysis and innovative thresholding procedures such as continuous

family-wise error rate correction (Mirman et al., 2018).

In conclusion, we have provided a new software implementation

with a graphical interface that may facilitate the adoption of SVR-LSM

as a multivariate alternative to traditional VLSM. The new implementa-

tion takes advantage of MATLAB’s SVR functionality in its native Statis-

tics Toolbox, addresses prior limitations and adds new functionality,

including cluster-level family-wise error correction using permutation

testing, highly flexible handling of behavioral covariates through nui-

sance models, and a novel method for lesion volume correction that

supplements a number of existing methods. We have also demon-

strated the degree of bias lesion volume effects can induce in lesion

symptom maps and explored the impact of several different approaches

to handling lesion volume, which may aid investigators in selecting the

most appropriate approach for their specific research questions.
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