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Abstract
Breast cancer (BC) intrinsic subtype classification is based on the expression of estrogen receptor (ER), progesterone
receptor (PR), human epidermal growth factor receptor 2 (HER2), and proliferation marker Ki-67. The expression of
these markers depends on both the genetic background of the cancer cells and the surrounding tumor microenvironment.
In this study, we explore macrophage traits in cancer cells and intra-tumoral M2-macrophage infiltration (MI) in relation
to intrinsic subtypes in non-metastatic invasive BC treated with breast conserving surgery, with and without postoper-
ative radiotherapy (RT). Immunostaining of M2-macrophage-specific antigen CD163 in cancer cells and MI were
evaluated, together with ER, PR, HER2, and Ki-67-expression in cancer cells. The tumors were classified into intrinsic
subtypes according to the ESMO guidelines. The immunostaining of these markers, MI, and clinical data were analyzed
in relation to ipsilateral local recurrence (ILR) as well as recurrence-free (RFS) and disease-free specific (DFS) survival.
BC intrinsic subtypes are associated with T-stage, Nottingham Histologic Grade (NHG), and MI. Macrophage phenotype
in cancer cells is significantly associated with NHG3-tumors. Significant differences in macrophage infiltration were
observed among the intrinsic subtypes of pT1-T2 stage BC. Shorter RFS was observed in luminal B HER2neg tumors
after RT, suggesting that this phenotype may be more resistant to irradiation. Ki-67-expression was significantly higher
in NHG3 and CD163-positive tumors, as well as those with moderate and high MI. Cancer cell ER expression is
inversely related to MI and thus might affect the clinical staging and assessment of BC.
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Introduction

Breast cancer (BC) is the most common cancer in women
worldwide and is composed of multiple subtypes reflecting
biologically and pathologically different entities [1, 2].
Surgery of BC entails complete removal of the primary tumor
in the breast and a surgical lymph node staging (N-stage) of
the axilla. Breast conserving surgery (BCS) in combination
with postoperative radiotherapy (RT) is an established treat-
ment of BC and results in equivalent disease-free and overall
survival rates compared tomastectomy [3]. The purpose of RT
is to eliminate microscopic tumor foci in the conserved breast
[4]. After BCS, ipsilateral local recurrence (ILR) of the prima-
ry tumor occurs in approximately 10% of breast cancer pa-
tients and is associated with increased risk of distant metasta-
ses and poor survival [5, 6].

BC classification is based on its underlying biology. The ex-
pression of estrogen receptor (ER), progesterone receptor (PR),
and human epidermal growth factor receptor 2 (HER2) together
with clinicopathological data such as Ki-67-expression, tumor
size, tumor grade, and lymph node stage (N-stage), are conven-
tionally used for patient management. Genetically, BC is classi-
fied into intrinsic subtypes with distinct clinical outcomes, i.e.,
luminal A, luminal B, HER2-overexpression, and triple negative
(basal-like) tumors. Each of these subtypes can be mapped to an
immunohistochemically (IHC) defined phenotype which in turn
reflects the biology associated with tumor growth [7–9]. ER/PR
and HER2 pathways are involved in cell growth and regulation
of cell proliferation. For example, estrogen is a potent breast
mitogen and ER inhibitors and estrogen-producing enzymes
(aromatases) are well-established, effective BC therapies [10].

Tumor-associated macrophages (TAMs) are a major com-
ponent of solid tumors [11]. M2-macrophage traits in tumor
cells, such as CD163-expression, and intra-tumoral macro-
phage infiltration (MI) in BC are associated with early tumor
recurrence and a poor prognosis [12–15]. Macrophage pheno-
type in cancer cells is suggested to be caused by fusion be-
tween TAMs and cancer cells, which yields hybrid cancer
cells with macrophage phenotype [16–18]. Both in vitro and
in vivo experimental data support these observations and sug-
gest that cell fusion may play a significant role in tumor pro-
gression [17]. Moreover, cell fusion may contribute to tumor
heterogeneity by creating subsets of tumor cells with reduced
susceptibility to chemo- and radiotherapy [15, 19–21]. The
expression of macrophage traits by cancer cells is associated
withMI suggesting that increased recruitment of macrophages
in tumor tissue might result in higher rates of fusion between
macrophages and cancer cells in tumor stroma [15, 22].
Moreover, experimental studies have shown that TAMs con-
tribute to increased tumor cell proliferation and induce de-
creased cancer cell expression of ER and PR in BC [23, 24].
Thus, there appears to be an interaction between TAMs, BC
phenotype, and thereby clinical histopathological assessment

and treatment. Little is known, however, regarding intra-
tumoral density of TAMs and macrophage phenotype in can-
cer cells in relation to patient prognosis, tumor differentiation,
tumor proliferation, and intrinsic subtype in BC.

In this study, we use a unique clinical material consisting of
patients with non-metastatic invasive BC treated with breast
conserving surgery, with and without postoperative radiother-
apy (RT) in order to examine intrinsic subtypes with regard to
macrophage phenotype, MI, and radiotherapy response in
terms of ILR, recurrence-free survival and disease-free
survival.

Materials and methods

Patient material and study design

We collected data on all patients (n = 1164) with BC with
isolated ipsilateral local recurrence (ILR) during the years of
1983–2008 from the breast cancer registry of the southeastern
region of Sweden. For comparison, we selected an age-
matched patient cohort (n = 1164), treated during the same
period and without ILR. Only patients with radically removed
tumors (R0), without lymph node metastases (N0) or distant
metastases (M0) were included. All patients were treated with
conventional BCS at surgical departments within the county
of Östergötland, Sweden. Using this retrospective design, we
were able to include patients who were not offered RT, as it
was not fully implemented in clinical routine until the early
1990s [25], thus allowing for investigations into possible as-
sociations between intrinsic subtypes, Ki-67 expression, and
tumor recurrence in relation to RT (Fig. 1a). Ethical approval
from the Regional Ethics Committee in Linköping was obtain-
ed according to Swedish Biobank Law (reference number:
2010/311–31).

Tumor histology was reviewed by an experienced pathol-
ogist (SG), and formalin-fixed paraffin-embedded tissue
blocks with invasive BC were chosen for tissue microarray,
constructed using two tissue cores (diameter 0.6 mm). Eighty-
three patient samples were included in total. Liver samples
were used as a position control.

Immunostaining and antibodies

CD163 is considered to be a macrophage-specific marker and is
generally not expressed in cell types other than monocytes/
macrophages [26]. Based on the cell fusion theory, we used
CD163-expression as a surrogate marker for macrophage pheno-
type in breast cancer cells [16, 27]. Five-micrometer sections
were obtained from formalin-fixed paraffin-embedded TMA tu-
mor specimens. The sections were de-paraffinized in xylene and
hydrated in a series of graded alcohols, pretreated with heat-
induced epitope retrieval and trisethylenediaminetetraacetic acid
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buffer (1 mM, pH 9, 20/5/20 min; Decloaking Chamber NxGen,
BiocareMedical), and stained for CD163 (anti-human,monoclo-
nal antibody, clone 10D6, Novocastra, Leica). Staining for estro-
gen receptor (ER; clone SP1, Ventana Roche), progesterone re-
ceptor (PR; clone 1E2, Ventana Roche), Ki-67 (clone MIB-1,
Dako Agilent), and human epidermal growth factor receptor 2
(HER2; clone 4B5, Ventana Roche) was done according to clin-
ical laboratory standards. All slides were scanned to digital im-
ages using the Hamamtsu NanoZoomer XL (Visiopharm LRI
AB). Evaluation of immunostaining was performed using
ImageScope viewing software (Leica Biosystems).

Evaluation of immunostaining

All immunostaining was evaluated by two experienced pa-
thologists (SG and HO), blinded to patient characteristics
and outcome. Macrophages and cancer cells were distin-
guished histomorphologically, the macrophages exhibiting
small, regular nuclei and the cancer cells atypical nuclei with
variations in size, shape, and chromatin staining. TAM infil-
tration was evaluated semi-quantitatively, classified in three
categories: no/low, moderate, or high [22, 28] (Fig. 1b–d).
The fraction of CD163-positive cancer cells was calculated

Women with breast cancer and local 
recurrence. Data from breast cancer 
registry of the southeastern region of 
Sweden between 1983-2008. N=1164

Total patient cohort of 2328 cases

Age-matched women with breast 
cancer without local recurrence. Data
from breast cancer registry of the 
southeastern region of Sweden 
between 1983-2008. N=1164

Exclusion:

- Mastectomy N=668

- Re-resection N=48

- Wrong classification of LR N=14

- Not radical resection N=241

- Lymph node metastasis N=808 

- Distant metastasis N=65

- Not ipsilateral LR N=20

- Missing data N=92

- Tumour blocks not available N=288

TMA created from primary tumors 
from eligible patients according to 
inclusion criteria N=84

Patients included 
in final analyses
N=83

Excluded 
due to IHC  
technical 
failure N=1

BC with postoperative radiotherapy N=41 BC without postoperative radiotherapy N=42

Ipsilateral local 
recurrence N=16

No ipsilateral local 
recurrence N=25

Ipsilateral local 
recurrence N=23

No ipsilateral 
local recurrence
N=19

a

Fig. 1 a Flow diagram showing the selection of 83 breast cancer patients
treated with breast conserving surgery. All patients had no lymph node or
distant metastasis at the time of surgery and the tumors were completely
removed. b–d Immunohistochemistry for CD163 used for scoring of
macrophage infiltration and evaluation of CD163-expression in breast

cancer cells. In b, low macrophage infiltration and breast cancer cells
negative for CD163. In c, moderate macrophage infiltration and breast
cancer cells positive for CD163 (red arrow). In d, high macrophage infil-
tration and some breast cancer cells positive for CD163 (red arrow)
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based on a count of 200 tumor cells in each TMA core. The
tumors were considered CD163-positive if > 15% of the tu-
mor cells expressed CD163 [15]. The expression of Ki-67,
ER, PR, and HER2 in cancer cells was evaluated according
to ESMO guidelines (2017) [29].

Intrinsic subtype classification

All tumors were assigned an intrinsic molecular subtype of
breast cancer (luminal A, luminal B, HER2-overexpression,
and triple negative) according to ESMO guidelines (2017)
[29, 30]. The criteria for intrinsic classification are summa-
rized in Table 1, supplement data.

Statistical analysis

SPSS statistics software, version 25 (IBMCorporation, USA),
was used for the statistical analyses. CD163-expression and
MI were evaluated in relation to intrinsic subtypes, NHG, and

clinicopathologic data using Pearson’s chi-square test. One-
way analysis of variance (ANOVA) was used together with a
post hoc Bonferroni’s test for analysis of continuous data.
Survival rates were estimated according to Kaplan-Meier
based on recurrence-free survival (RFS) and disease-free sur-
vival (DFS). The statistical significance of differences be-
tween survival rates was determined by the log-rank test.
For all analyses, p < 0.05 was considered statistically
significant.

Results

Out of 83 patients included in the study, 41 (49%) patients
received RT after BCS. ILR occurred in 39 (47%) patients, of
which 16 (41%) had received RT. Patient characteristics and
clinicopathological data are summarized in Table 1.

Intrinsic subtypes

The distribution of intrinsic subtypes was as follows: luminal
A 43 (52%), luminal B HER2-positive (HER2pos) 5 (6%),
luminal B HER2-negative (HER2neg) 14 (17%), and triple
negative 11 (13%) patients. There were no cases in the
HER2-overexpression subtype.

Significant differences were found in the distribution of
pathologic tumor stage (T-stage) (p = 0.04), NHG (p =
0.002), and MI (p = 0.001) in relation to intrinsic subtypes.
pT2 stage was more common in triple-negative tumors
(45%, 5 of 11) compared to luminal A (12%, 5 of 43), luminal
B HER2pos (0%, 0 of 5), and luminal B HER2neg (21%, 3 of
14; Table 2).

Luminal A phenotype was less commonly represented
among poorly differentiated tumors (NHG3) (14%, 6 out of
43). The corresponding rates in NHG3 tumors with luminal B
HER2pos, luminal B HER2neg, and triple-negative subtypes
were 40% (2 of 5), 50% (7 of 14), and 73% (8 of 11), respec-
tively (p = 0.002; Table 2).

Macrophage infiltration

High MI was more common in luminal B HER2neg tumors
(36%) and triple-negative tumors (36%) compared to luminal
A (5%) and luminal B HER2pos (0%) subtypes (p = 0.001).
Of the 43 luminal A subtype cases, 31 (72%) were classified
as low MI, 10 (23%) as moderate MI, and 2 (5%) as high MI
(Table 2). Since the luminal A subtype is mainly based on ER
expression, we further examined MI in relation to ER expres-
sion in cancer cells. ER expression in cancer cells was signif-
icantly higher in tumors with low MI compared to moderate
(p = 0.01) and high MI (p = 0.02; Fig. 2a). Conversely, the
proliferative index measured by Ki-67-expression was signif-
icantly lower in tumors with low MI compared to moderate
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Fig. 1 (continued)
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(p = 0.001) and high MI (p = 0.017; Fig. 2b). Ki-67-
expression was similar in tumors with moderate and high MI.

CD163-expression in breast cancer cells

CD163 expression (of any proportion) in breast cancer cells
was found in 43 patients (53%). In two cases, CD163 expres-
sion could not be evaluated due to technical failure. The mean
proportion of CD163-positive cells in all tumors was 9%
(range 0–41%). CD163 expression > 15% was chosen as the
cut-off for defining CD163-positivity in further analyses [15].
Applying this cut-off, 17 of 81 (21%) tumors were defined as
CD163-positive (Table 1).

The proportion of cancer cells expressing CD163 was
higher in NHG3 tumors compared to NHG1 (p = 0.008) and
NHG2 tumors (p = 0.06; Fig. 2c). No significant differences
were found in CD163 expression according to intrinsic sub-
types (Table 2). ER expression in cancer cells appeared higher
in CD163-negative tumors compared to CD163-positive tu-
mors, but this difference was not statistically significant (p =
0.22; Fig. 2d). Ki-67-expression was significantly higher in
CD163-positive tumors (p < 0.001; Fig. 2e).

Intrinsic subtypes, Ki-67-expression, radiotherapy,
and tumor recurrence

As expected, Ki-67-expression was significantly higher in
NHG3 tumors compared to NHG1 (p = 0.001) and NHG2
tumors (p < 0.001). NHG1 and NHG2 tumors showed no sig-
nificant difference in Ki-67 expression (Fig. 2f).

Regardless of RT, ILR occurred significantly earlier in pa-
tients with high proliferative tumors (Ki-67 ≥ 14%) compared
to patients with low proliferative tumors (156 months com-
pared to 234 months; p = 0.029) (Table 3). In patients who did
not receive RT, no significant difference in RFS was found
between patients with high and low proliferative tumors (167
and 138 months respectively; p = 0.8). After RT, patients with
low proliferative tumors had significantly longer RFS com-
pared to those with high proliferative tumors (285 compared
to 137 months; p < 0.001; Fig. 3a–c).

In patients who did not receive RT, there were no associa-
tions observed between RFS and intrinsic subtypes (p = 0.59).
On the other hand, in patients who received RT, RFS was
shorter for those with luminal B HER2neg tumors compared
to the other intrinsic subtypes (p = 0.004; Fig. 3d–f). For DFS,
no associations were found with Ki-67-expression or with
intrinsic subtype, regardless of RT (supplement data).

Discussion

Both intrinsic properties of breast cancer cells and TAMs are
involved in tumor progression [31, 32]. In this study, we in-
vestigated associations between intrinsic subtypes in relation
to MI, the expression of macrophage traits in cancer cells, and
response to RT in a well-defined patient cohort treated with

Table 1 Patient
characteristics Variables N (%)

Age groups (years)

≤ 40 15 (18)

41–50 18 (22)

51–60 17 (20)

61–70 15 (18)

≥ 70 18 (22)

Pathologic T-stage

pT1a 4 (5)

pT1b 23 (28)

pT1c 43 (51)

pT2 13 (16)

Nottingham grading system

NHG 1 20 (24)

NHG 2 38 (46)

NHG 3 25 (30)

ER status

Negative 14 (17)

Positive 66 (79)

Missing data 3 (4)

PR status

Negative 23 (28)

Positive 58 (70)

Missing data 2 (2)

HER2 status

Negative 73 (88)

Positive 6 (7)

Missing data 4 (5)

Proliferation index

Ki-67 < 14% 46 (55)

Ki-67 ≥ 14% 32 (39)

Missing data 5 (6)

Postoperative radiotherapy

No 42 (51)

Yes 41 (49)

Local recurrence

No 44 (53)

Yes 39 (47)

CD163-expression in breast cancer cells

Negative (< 15%) 64 (77)

Positive (≥ 15%) 17 (21)

Missing data 2 (2)

Macrophage infiltration

No/low 41 (49)

Moderate 28 (34)

High 12 (15)

Missing data 2 (2)
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BCS, with and without postoperative RT. Here, we show that
BC intrinsic subtypes are associated with T-stage, NHG, and
MI. ER expression is inversely related to intra-tumoral mac-
rophage density. In the group who did not receive radiothera-
py, no statistical differences were observed in RFS in relation
to intrinsic subtypes. However, in the group that received ra-
diotherapy, the patients with luminal B HER2neg tumors
showed a significantly shorter relapse-free survival.

NHG3 tumors showed a significantly higher proportion of
CD163-expressing tumor cells, suggesting an association be-
tween macrophage phenotype and poor differentiation. Not
surprisingly, high proliferative index was observed in NHG3
tumors, and high proliferative index was also observed in
CD163-positive tumors. Tumors with moderate and high MI
also showed a significantly lower ER expression and higher
proliferation index.

Intrinsic subtypes as a biological concept explaining
ILR

When the intrinsic subtype classification was reported almost
18 years ago by Sørlie et al. and Perou et al. [7, 8], postoper-
ative RT was a routine treatment after BCS and thus, this
classification has not been explored in a clinical material with
patients who have not been treated with radiation [33]. To our

knowledge, this is the first study where BC intrinsic subtypes
are investigated in relation to ILR and disease-free survival
after BCS treated with and without RT.

After BCS, luminal A cancers relapse two to three times
less often than HER2-positive and triple negative lesions [34].
In this study, when looking at the group of patients who re-
ceived radiotherapy, we observed significantly shorter
recurrence-free survival in patients with luminal B HER2neg
tumors compared to the other subtypes [35]. Differences in
recurrence-free survival according to subtype were not ob-
served in the group of patients who had not received radio-
therapy, suggesting that the effect of RT may be influenced by
the tumor’s intrinsic subtype. These findings, in line with
those reported in previous studies [36], reinforce the concept
that the prognosis of ILR of BC is mainly driven by the biol-
ogy of the disease.

Macrophage infiltration and breast cancer
classification

TAMs contribute to tumor progression by promoting angiogen-
esis, matrix remodeling, tumor cell proliferation, immune eva-
sion, invasion, and metastasis [37, 38]. In vivo macrophage de-
pletion delays the progression of preinvasive lesions into meta-
static carcinomas and inhibits development of secondary tumors

Table 2 Univariate analysis examining age, pathologic T-stage, Nottingham grade, intra-tumoral macrophage infiltration, and CD163-expression by
tumor cells among the intrinsic subtypes of breast cancer

Intrinsic subtypes

Luminal A N (%) Luminal B HER2pos N (%) Luminal B HER2neg N (%) Triple negative N (%) P

Age groups (years)

≤ 40 5 (12) 1 (20) 4 (29) 2 (18.2)

41–50 8 (18) 2 (40) 3 (21) 3 (27.3)

51–60 11 (26) 1 (20) 2 (14.3) 1 (9.1)

61–70 9 (21) 1 (20) 2 (14.3) 1 (9.1)

≥ 70 10 (23) 0 (0) 3 (21.4) 4 (36.3) 0.83

Pathologic T-stage

pT1 38 (88) 5 (100) 11 (79) 6 (54.5)

pT2 5 (12) 0 (0) 3 (21) 5 (45.5) 0.04

Nottingham grading system

NHG 1 14 (33) 0 (0) 1 (7) 0 (0)

NHG 2 23 (53) 3 (60) 6 (43) 3 (27)

NHG 3 6 (14) 2 (40) 7 (50) 8 (73) 0.002

CD163-expression

Negative (< 15%) 37 (86) 2 (50) 10 (71) 8 (73)

Positive (≥ 15%) 6 (14) 2 (50) 4 (29) 3 (27) 0.25

Macrophage infiltration

Low 31 (72) 1 (25) 3 (21) 2 (18)

Moderate 10 (23) 3 (75) 3 (43) 5 (46)

High 2 (5) 0 (0) 5 (36) 4 (36) 0.001
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Fig. 2 The relation of macrophage infiltration to a ER expression (mean
± 95% CI) and b Ki-67-expression (mean ± 95% CI) in breast cancer
cells. In c, comparing the mean number of cancer cells expressing CD163
in relation to NHG. In d, estrogen receptor (ER) expression in relation to
CD163-positive and CD163-negative breast cancers. The proportion of

Ki-67-positive breast cancer cells (mean ± 95% CI) for e CD163-positive
and CD163-negative breast cancers as well as f in relation to Nottingham
Histologic Grade (NHG). All comparisons are based on ANOVA follow-
ed by Bonferroni’s post hoc test
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while early recruitment of macrophages in tumor stroma accel-
erates tumor progression and invasion [39, 40]. Consistent with
these experimental data, clinical studies have shown that in-
creased MI in BC is associated with advanced tumors and poor
prognosis [41].

Moreover, macrophages are involved in downregulation of
ER expression in breast cancer cells by paracrine-mediated
transcriptional repression, independent of the intrinsic pheno-
type of the cancer cells themselves [23]. Consistent with these
in vitro data, this study shows that MI is inversely related to
cancer cell ER expression. Moreover, the distribution of the
intrinsic subtypes differed significantly among tumors with
low, moderate, and high MI.

These observations are likely to have clinical relevance as
downregulation of ER in breast cancer cells will change the
pathologic staging and the treatment options for the patients.
Taking to consideration that the influence of TAMs may vary
within the tumor (spatially, contributing to tumor heterogeneity)

and during different stages of tumor progression (temporally),
macrophage-induced downregulation of ER may potentially in-
fluence clinical response to endocrine treatment [42].

Macrophage phenotype in cancer cells and breast
cancer classification

CD163 is a macrophage-specific transmembrane scavenger
receptor and a marker of the M2-macrophage phenotype
[43]. Macrophage traits in cancer cells, defined by CD163-
expression, have been reported for several tumor types,
among others renal cell carcinoma [44], breast [21], colorectal
[13], and bladder cancers. Moreover, breast cancer cells also
express other macrophage markers such as MAC387 [12],
DAP12 [45], and CD45 [21]. Accumulating in vitro [16,
46], in vivo [17, 18], and clinical evidence [27, 47] indicate
that macrophage traits in cancer cells result from fusion be-
tween TAMs and cancer cells. This fusion process yields

Table 3 Univariate analysis examining ipsilateral local recurrence after breast conserving surgery in relation to radiotherapy, age, intrinsic subtypes,
proliferation index, Nottingham Histologic Grade (NHG), CD163-expression in tumor cells, and macrophage infiltration in breast cancer

No radiotherapy Radiotherapy

Local recurrence Local recurrence

No N (%) Yes N (%) P No N (%) Yes N (%) P

Age group

≤ 40 2 (10) 6 (26) 1 (4) 6 (37)

41–50 1 (5) 5 (22) 6 (24) 6 (38)

51–60 6 (32) 3 (13) 7 (28) 1 (6)

61–70 4 (21) 1 (4) 8 (32) 2 (13)

≥ 70 6 (32) 8 (35) 0.11 3 (12) 1 (6) 0.024

Intrinsic subtypes Ki-67

Luminal A 11 (69) 12 (60) 15 (65) 5 (36)

Luminal B HER2pos 1 (6) 0 (0) 2 (9) 2 (14)

Luminal B HER2neg 2 (12.5) 3 (15) 2 (9) 7 (50)

Triple negative 2 (12.5) 5 (25) 0.55 4 (17) 0 (0) 0.017

Proliferation index

Ki-67 < 14% 14 (78) 15 (68) 20 (83) 6 (43)

Ki-67 ≥ 14% 4 (22) 7 (32) 0.5 4 (17) 8 (57) 0.01

Nottingham grading system

NHG1 4 (21) 5 (22) 8 (32) 3 (19)

NHG2 9 (47) 10 (43) 12 (48) 7 (44)

NHG3 6 (32) 8 (35) 1 5 (20) 6 (37) 0.5

CD163 expression

Negative (< 15%) 15 (79) 16 (73) 21 (84) 3 (20)

Positive (≥ 15%) 4 (21) 6 (27) 0.64 4 (16) 3 (20) 0.75

Macrophage infiltration

Low 11 (58) 11 (50) 12 (48) 7 (47)

Moderate 5 (26) 8 (36) 10 (40) 5 (33)

High 3 (16) 3 (14) 0.8 10 (3) 3 (20) 0.8
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Fig. 3 Kaplan-Meier curves demonstrating recurrence-free survival in
relation to a–c proliferation index and d–e intrinsic subtypes for 83 pa-
tients with non-metastasized pT1-pT2 breast cancers treated with breast

conserving surgery. The survival analysis is based on time to ipsilateral
local recurrence rates and comparison is estimated according to log-rank
(Mantel–Cox) test
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hybrid cells that acquire genetic and phenotypic characteris-
tics from both maternal cells and that exhibit a metastatic
phenotype [27]. Moreover, the macrophage-breast cancer cell
hybrids acquire stem cells properties [48] and display morpho-
logic and genetic heterogeneity [21].

In our earlier studies, we have demonstrated that CD163 ex-
pression in breast cancer cells is associated with advanced tumor
stage [12] and shorter disease-free survival but we have not ob-
served an association with ILR [15]. In this study, we observed a
significantly higher proportion of CD163-expressing tumor cells
in NHG3-tumors, but we observed no differences in CD163
expression among intrinsic subtypes.

The rationale behind the intrinsic subtypes is that breast can-
cers are clustered into groups differentiated by expression pat-
terns of co-expressed gene clusters related mainly to prolifera-
tion, hormone receptor signaling (luminal cluster), HER2 signal-
ing, and basal epithelial cells of the breast. These gene panels and
their immunohistochemically corresponding groups are mainly
related to tumor growth [7, 8]. Cell fusion yields new cell clones
that are genetically distinct from their maternal cell populations,
contributing to tumor heterogeneity by causing transcriptional
changes and acquisition of mesenchymal associated phenotypes
[18]. Although not statistically significant, we observed a trend
suggesting an inverse relationship between ER expression and
CD163 expression in BC tumor cells, consistent with findings
from previous studies [12, 49]. The observations in this study
illustrate the complex relationship between macrophage pheno-
type, ER expression, and differentiation, and raise the hypothesis
that macrophage-breast cancer cell fusion may contribute to ge-
notypic and immunophenotypic features reflected in the intrinsic
subtypes.

Conclusion

Significant differences in macrophage infiltration are ob-
served among the intrinsic subtypes of pT1-T2 stage BC.
Shorter recurrence-free survival was observed in luminal B
HER2-negative tumors after RT, suggesting that this pheno-
type may be more resistant to irradiation. Tumor cell expres-
sion of ER is inversely related to macrophage infiltration. This
study demonstrates new insights into the biological and clin-
ical significance of macrophages in BC.
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