Skip to main content
. 2019 Apr 25;4(4):7596–7604. doi: 10.1021/acsomega.9b00761

Table 2. Linear Regression Equations and Correlation Coefficients for the Relevant Reducing Sugars Obtained by the Proposed and the Reference Methods.

  linear regression equationsa
reducing sugar proposed methodb reference methodc
d-(+)-glucose A = 1.5 × 105C – 0.0665 A = 3.6 × 104C + 0.0063
r = 0.9999 r = 0.9999
d-(+)-galactose A = 2.5 × 105C – 0.0874 A = 3.2 × 104C – 0.0045
r = 0.9996 r = 0.9997
d-(−)-fructose A = 0.9 × 105C – 0.0196 A = 3.5 × 104C – 0.0107
r = 0.9996 r = 0.9995
d-(+)-mannose A = 1.7 × 105C – 0.1413 A = 2.5 × 104C – 0.0196
r = 0.9996 r = 0.9996
d-(+)-maltose monohydrate A = 2.9 × 105C – 0.0973 A = 4.1 × 104C – 0.0408
r = 0.9996 r = 0.9994
d-(+)-lactose monohydrate A = 3.3 × 105C – 0.1413 A = 4.2 × 104C – 0.0157
r = 0.9999 r = 0.9994
a

A stands for absorbance, C for molar concentration, and r for linear correlation coefficient. All correlation coefficients (r) were found using absorbances that were repetitively measured three times (N = 3).

b

Linear ranges (in final conc.) were 9.6 × 10–7 to 7.2 × 10–6 mol L–1 for glucose, 6.0 × 10–7 to 4.8 × 10–6 mol L–1 for galactose, 9.6 × 10–7 to 9.6 × 10–6 mol L–1 for fructose, 1.2 × 10–6 to 9.6 × 10–6 mol L–1 for mannose, 1.2 × 10–6 to 6.0 × 10–6 mol L–1 for maltose and lactose.

c

Linear ranges (in final conc.) were 6.0 × 10–6 to 3.0 × 10–5 mol L–1 for all sugar standards.