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ABSTRACT: The charge distribution of NO2 groups within the crystalline
polymorphs of energetic materials strongly affects their explosive properties.
We use the recently introduced basis-space iterated stockholder atom
partitioning of high-quality charge distributions to examine the approximations
that can be made in modeling polymorphs and their physical properties, using
1,3,5-trinitroperhydro-1,3,5-triazine, trinitrotoluene, 1-3-5-trinitrobenzene, and
hexanitrobenzene as exemplars. The NO2 charge distribution is strongly
affected by the neighboring atoms, the rest of the molecules, and also
significantly by the NO2 torsion angle within the possible variations found in
observed crystal structures. Thus, the proposed correlations between the
molecular electrostatic properties, such as trigger-bond potential or maxima in
the electrostatic potential, and impact sensitivity will be affected by the changes
in conformation that occur on crystallization. We establish the relationship
between the NO2 torsion angle and the likelihood of occurrence in observed crystal structures, the conformational energy, and
the charge and dipole magnitude on each atom, and how this varies with the neighboring groups. We examine the effect of
analytically rotating the atomic multipole moments to model changes in torsion angle and establish that this is a viable approach
for crystal structures but is not accurate enough to model the relative lattice energies. This establishes the basis of transferability
of the NO2 charge distribution for realistic nonempirical model intermolecular potentials for simulating energetic materials.

■ INTRODUCTION

Energetic materials, which decompose explosively under
various external stimuli, are intrinsically difficult to study
experimentally, and hence, the design of new materials with
desirable property combinations such as low sensitivity but
high detonation performance can benefit from accurate
molecular modeling.1−3 The explosive properties are sensitive
to the arrangement of molecules in the crystal and hence to the
polymorph formed.1,4−6 Consequently, crystal structure
prediction (CSP) methods may be used to determine whether
an energetic molecule can crystallize in a dense structure with
good energetic properties, helping to focus synthetic efforts.
There have been extensive quantum mechanical studies7

seeking to find correlations with the experimental impact
sensitivity of the materials,1,3,8−18 but these are on the intrinsic
sensitivity or stability of the isolated molecule as opposed to
the measured sensitivity of the condensed phase.7 It has been
recognized that the crystal structure will also affect energetic
properties, as the intermolecular interactions in the solid are
linked to dissociation processes essential to detonation, such as
defect formation. Correlations have been found between the
heat of fusion of the crystal and the N−N bond dissociation
energy19 or crystalline void space,20 but the prediction of
impact sensitivity and other processes is clearly a complex

combination of molecular and crystalline properties.21−23 In
particular, the crystalline conformation can differ from the
isolated molecule conformation and vary between polymorphs
and with temperature and pressure. We examine how changes
in NO2 torsion angles that can occur on crystallization can
affect the molecular charge distribution and associated
electrostatic properties. This is a preliminary and necessary
step toward the goal of developing methods of predicting
impact sensitivity and other explosive properties, using CSP-
generated crystal structures.
Computing energetic material properties requires accurately

modeling regions of the repulsive wall. These regions of the
potential energy surface are not adequately sampled by
empirical intermolecular potentials as they have been fitted
to crystals at ambient conditions. Thus, developing non-
empirical methods for modeling the intermolecular forces
between energetic molecules, suitable for molecular dynamics
(MD) simulations, has been the subject of a considerable body
of recent research.24−26 However, such methodologies have
usually treated the molecules as rigid. A distributed multipole
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model of the molecular charge distribution provides both a
method of examining the transferability of the local charge
distribution and a model for calculating the electrostatic
contribution to the intermolecular energy. This study only
examines the conformation dependence of the electrostatic
term. However, other contributions to the intermolecular
energy, such as the induction, dispersion, and anisotropic
short-range repulsive terms, are very closely related to the
molecular charge distribution and therefore are expected to
show similar transferability properties. The electrostatic term
tends to be the most dominant, orientation-dependent
determinant of intermolecular interactions between molecules
in van der Waals contact. It is arguably27 the dominant
contribution to the interactions, which are often described by
crystal engineers as hydrogen bonding, π···π stacking, N···O
interactions, etc. Presently, accurate nonempirical models for

intermolecular forces derived from the molecular charge
distribution have tended to focus on rigid molecules28 because
of the difficulty of modeling the changes in charge distribution
with conformation.
This study of NO2 group charge distributions and the

modeling of energetic crystals is aided by the recently
introduced basis-space iterated stockholder atom (BS-ISA)
analysis of the molecular charge distributions.29,30 This
partitioning of the molecular charge distribution produces
atomic electron densities that decay from the atomic center
almost exponentially. Additionally, the ISA scheme produces
maximally spherical and so transferable atomic charge
distributions, which are relatively insensitive to basis set yet
fast at converging, and allows the use of high-quality molecular
wave functions.31 The high degree of sphericity of the ISA
atoms reduces the importance of higher atomic multipole

Figure 1. Crystal structures of the energetic polymorphic crystals TNB,32 HNB,33 TNT,34 and RDX.35−38 The form, Cambridge Structural
Database (CSD) reference code, determination conditions (at ambient pressure unless stated otherwise), density, and NO2 torsion angles (deg) are
given below each crystal structure. These were obtained from their experimental Cambridge Structural Database39−41 entries and visual
representations of the structures constructed using CCDC Mercury 3.6.42,43 The iterated stockholder atom (ISA) atomic charges for the optimized
structures, computed at the PBE0/aug-cc-pVTZ level, are given in parentheses in red or blue for positively or negatively charge nuclei, respectively.
The NO2 torsion angles for the optimized molecules are given below the structural diagrams.
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moments enabling the truncation of the multipole moment
expansion at lower-order terms.
The atomic multipole moments of the nitro groups can be

examined for both transferability between molecules and
conformations, and used in models for impact sensitivity. This
study is based on the nitro explosives 1-3-5-trinitrobenzene
(TNB), hexanitrobenzene (HNB), trinitrotoluene (TNT), and
1,3,5-trinitroperhydro-1,3,5-triazine (RDX) whose structurally
characterized polymorphs are shown in Figure 1. From the
variation in nitro torsion angles (and axial/equatorial
conformation in RDX) between polymorphs, it is clear that
the crystalline structure has a significant effect on the
molecular conformation. This, in turn, will affect the charge
distribution by changing the orbital overlaps in π and σ
bonding.
While there are currently a few reliable methods for

predicting the detonation pressures and velocities of CHNO
energetics,1 there has been less progress made toward
predicting the sensitivity of an explosive compound to the
different stimuli that can initiate detonation.44 This reflects the
intricacies of initiation leading to detonation; for example, the
explosive molecule LLM-119 is sensitive to impact but
moderately insensitive to friction and electrical sparks.45 A
widely studied and important measure of sensitivity is impact
sensitivity, which is the vulnerability of the material to
explosion after sudden compression due to impact.7 This is a
complex process, dominated by the chemistry of the chemical
reaction that takes place,2 chemical bonding, and molecular
interactions within the crystal. The impact sensitivity of an
energetic material is normally determined using a drop-weight
test,46 being inversely proportional to h50%, the height at which
50% of the experiments produce a reaction on dropping a
weight onto the material. The impact sensitivity of material is
heavily dependent on the particle size,1 the shape and hardness
of the crystals, the roughness of its surfaces, the purity and the
presence of lattice defects, as well as the intrinsic differences in
polymorph packing,6,47−49 the surrounding temperature during
experiment, and the weight used. Hence, the observed impact
sensitivities (h50%) for TNT vary from around 100 cm to over
250 cm.4,5 We use the experimental impact sensitivities
obtained in 1990 by Wilson and Bliss5 as they are a consistent
set of experiments under consistent conditions, for TNB,
HNB, and TNT, though these do not have separate values for
the different polymorphs. RDX is a comparatively new
explosive and its impact sensitivities were measured later.44,50

Correlations between the molecular electrostatic potential (a
molecular property) and the impact sensitivity (a crystal
property) of CHNO energetic materials were investigated
decades ago,9−13 based on the crude electrostatic models9,14−18

available at the time. One approach focuses on the charge
distribution at the trigger bonds (the bond likely to break
during initiation).46,51 The trigger bonds are typically X−NO2
functional groups, and the strengths of C−NO2 and N−NO2
bonds are found to be inversely proportional to the magnitudes
of the positive electrostatic potentials in the C−N and N−N
internuclear regions (Vmid).

15,16,52,53 A more impact sensitive
(low h50%) conformer would be one where the charge gradient
in the X−NO2 bonds is the largest. The electrostatic potential
at the longest C−NO2 bond is often used,16,18,54 as calculated
by the equation first proposed by Owens in 198518

= +V
Q

R
Q

R0.5 0.5mid
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(1)

where R is the longest bond length between C and N in the
C−NO2 bonds, while QC and QN are the atomic charges. The
above equation is based on the assumption that the longest X−
NO2 bond will be the first bond to break during the initiation
process. The initial correlations between Vmid and impact
sensitivity computed using the Mulliken point charges55 with
an HF/STO-3G level of theory18 on each atom were only
observed within a specific group of poly-nitroaromatics, which
at least partly reflects the limitations of the partitioned charges
in early ab initio calculations. Alternatively, to incorporate the
response of the other trigger bonds in the molecule, the
averaged Vmid
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has been used4 to derive empirical correlation models for
reproducing impact sensitivities of CHNO explosives. A more
general but complex correlation has been suggested between
the electrostatic potential surface of the isolated molecule and
crystal impact sensitivities, with the sensitivity of the explosive
to impact being exponentially related to the average positive
and negative potentials across the molecular electrostatic
potential surface4

= + [− | ̅ − | ̅ || ]+ −h a a a V Vexp ( )50% 1 2 3 S S (3)

where an are best-fit parameters, and V̅S
+ and V̅S

− are the average
positive and negative electrostatic potentials on the isosurface.
This is an example of the more intricate correlations that have
been investigated. However, the goal of finding an adequate
predictive correlation of impact sensitivity with molecular
properties across all chemical families of explosives is still
elusive. This could well be because sensitivity to initiation
causing detonation is not limited to a molecular property but
also the crystal environment. Now that CSP could, in principle,
be used in the design of new explosives, the likely
crystallization environment of a molecule prior to its synthesis
is no longer unknown. Given that the empirical correlations of
molecular properties with impact sensitivity have focused on
electrostatic properties yet ignored the conformational change
on crystallization, it is appropriate to ask whether these
changes in NO2 torsion angle would affect the impact
sensitivity.
In this study, we focus on the electrostatic potential surface

maximum (Vmax) and minimum (Vmin), as many studies have
focused on the correlation of impact sensitivity with these
molecular properties.1,3,7,21,51−53,56−59 The electrostatic max-
ima and minima in molecules have been used in a method of
estimating the likelihood of cocrystal formation,60 i.e., as a
simple and approximate surrogate for likely relative crystal
energies. Analysis of the electrostatic potential of isolated TNT
and CL-20 molecules and their hetero/homodimers3 was able
to correlate their electrostatic potential maxima (Vmax), minima
(Vmin), and the range of the minima and maxima (Vtot), to
justify cocrystal formation and observed sensitivities to impact.
Though not explicitly discussed in the paper,3 it showed that
the change in conformation of CL-20 and TNT from pure
crystal to cocrystal changes the charge distribution of the
isolated molecules and thus the electrostatic potential, which
may help rationalize the reduced impact sensitivity of the
cocrystal.
Thus, this paper uses state-of-the-art electrostatic models to

examine the role of conformational change on the charge
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distributions of NO2 groups. We use iterated stockholder atom
(ISA)29 partitioned distributed multipoles to determine
whether changes in torsion angle due to crystallization affect
some proposed correlations with impact sensitivity. We also
investigate whether this change is important to the molecular
modeling of nitroenergetics, specifically for crystal structure
prediction (CSP) studies and the development of nonempirical
anisotropic atom−atom intermolecular potentials.

■ METHODS
The static isolated molecular structures of RDX, TNT, TNB,
and HNB were optimized using the Perdew−Burke−Ernzerhof
(PBE) general gradient approximation combined with a
portion of exact exchange to form the PBE0 functional61−63

and the aug-cc-pVTZ Dunning basis64 using the Gaussian 09
program.65 This level of theory was also used for conforma-
tional analysis (unless stated otherwise), as augmentation is
required for a better description of the higher multipole
moments. In addition, for calculating the molecular charge
densities in the experimental crystal conformations, hydrogen
atom positions were corrected to standard bond lengths
(Caromatic−H = 1.08 Å, Csp3−H = 1.06 Å)66 to account for the
systematic error in X-ray structure determinations. The “ISA”
distributed multipoles (Qlm

i ) of each conformation were
calculated in the molecular axis frame (Figure S1) and derived
using the most recent iterated stockholder atom algorithm
implemented in CAMCASP 6.0,67 the ISA-A algorithm.68 The
ISA-A method develops on the previous BS-ISA method in
CAMCASP 5.9, which includes a method for refitting the
atomic electron density tails,31 by including another
independent atomic basis set. Therefore, the ISA-A algorithm
in CAMCASP 6.0 contains three bases:

• The main basis to calculate the molecular orbitals. In
this study, an aug-cc-pVTZ basis set is used.

• An auxiliary basis for refitting the atomic electron
density tails. This basis can take both Cartesian and
spherical Gaussian-type orbitals (GTOs). In this study,
we use Cartesian GTOs of aug-cc-pVTZ size.

• And an atomic basis to determine the ISA atomic
expansions. In this study, an aug-cc-pVQZ basis set is
used as it is independent of the main and auxiliary basis
sets. However, the spherical coordinate system for the
GTOs must always be used.

The distributed multipole expansion is evaluated to
hexadecapole level (rank l = 4) so that the potential and
energies could be evaluated including all terms up to R−5 and
so include the electrostatic effects due to lone-pair and π
atomic anisotropies. To test the transferability of the multipole
moments with changes in the NO2 torsion angle, Z matrices of
these structures were created and the NO2 functional groups
were rotated through 180° in 20° increments, while the rest of
the molecule was held rigid at the optimized structure. The
extent to which the nitro group torsion angles can change in
the condensed phase was investigated using histograms of the
frequency a O−N−X−C torsion angle (rounded to nearest
degree) occurred in the relevant organic crystal structures
found in the Cambridge Structural Database (CSD).69 The
histograms were constructed for the four unique chemical
environments found in the four energetic molecules, with the
most commonly observed environment being a C−NO2 on an
aromatic ring with two adjacent hydrogen atoms (Table S1).

The ISA distributed multipoles can be analytically rotated
from the molecular axes into the atomic local axes of the
molecule, with the z-axis along the X−N plane (along the
bond) and the x-axis into X−NO plane (perpendicular to
the z-axis but in the plane of the molecule) (Figure S1).
Analytically rotating the local axis-defined multipoles to a
different X−NO2 torsion angle provides an electrostatic model
that includes the geometric effects of conformational change
but does not explicitly account for changes in the molecular
charge distribution. Provided that the non-NO2 torsion angles,
bond lengths, and angles are identical, it is possible to
analytically rotate the multipoles to represent the geometric
change in torsion angles, using ORIENT 4.9.08,70 a method-
ology previously used to study the transferability of electro-
static models between polypeptides.71

To focus solely on the effects of changing NO2 torsion
angles and compare experimentally observed and optimized
conformations, the experimentally observed NO2 torsion
angles were used, while all of the bond lengths and angles
and non-NO2 torsion angles were kept rigid at their optimized
values. These structures and charge distributions calculated in
this conformation are referred to as the optexptNO2. In
addition, multipole moments calculated in the optimized
conformation were analytically rotated into the optexptNO2
conformation. Charge distributions obtained this way are
referred to as anarot (analytically rotated). The electrostatic
properties obtained from the analytically rotated distributed
multipoles can then be contrasted with those acquired from
calculating the charge distribution in the optexptNO2
conformation, which also accounts for the rearrangement of
charge within the molecule, e.g., from changes in π
conjugation. Analytical rotation can only be applied to the
nitroaromatic molecules, as the aromatic ring is rigid and
undergoes negligible changes when the molecules are
optimized and the nitro group rotates. Only the NO2 torsion
angles change between the optimized and observed con-
formations (Figure S2). However, for nitramines, like RDX,
there is a notable difference in the conformation of the
aliphatic ring in the experimental crystalline conformers and
the optimized conformation. The difference also results in a
change in non-NO2 torsion angles upon optimization. Thus,
changing only the NO2 torsion angle in the optimized structure
using the standard Z-matrix definition (the optexptNO2
methodology) gives a structure that is different from the
experimental structure. Hence, it is not possible, let alone
appropriate, to test transferability by analytically rotating the
multipoles of RDX (Figure S2 and Table S4).
Using the various sets of distributed multipole moments, the

electrostatic potential was computed and mapped onto an
isodensity surface of 10−3 electron/bohr3, using CAMCASP
6.0,67 which was visualized on the isolated molecular structures
using the ORIENT 4.9.0870 program. This isodensity surface
was chosen as the majority of electrostatic potential studies on
energetic materials and their sensitivities use this surface,
following the suggestion by Bader,72,73 as it can include more
than 95% of a molecule’s true electronic density. This surface
has recently been used to define the molecular volume for use
in estimating the density of energetic materials.74 The
electrostatic potential on this isodensity surface is approx-
imately 3 Å from the nearest nucleus in the molecule and so
gives the electrostatic potential sampled by the nonhydrogenic
nuclei that would be in van der Waals contact with the
molecule in the crystal. Lattice energies were calculated using a
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combination of the ISA distributed multipoles, to obtain the
electrostatic energy, and the exp-6 FIT potential, for all other
contributions using DMACRYS.75

Crystal structure analysis and visual representations used the
analysis software of the Cambridge Crystallographic Data
Centre, mainly Mercury 3.6.42,43 Root-mean-square deviation
(RMSDn) calculations, the optimum overlay of n (n ≤ 15 for
crystal structures, n = 1 for molecular conformation
comparisons) molecules in two crystal structures excluding
the hydrogen atoms, were also done using Mercury.

■ RESULTS

Molecular Electrostatic Properties and Correlation
with Impact Sensitivity. The electrostatic potential around
the static optimized conformations of the four energetic
molecules (Figure 2) clearly shows that the electrostatic term
will greatly influence intermolecular interactions and hence
explosive properties. Potential extrema (Vmax and Vmin) are
influenced by the molecular symmetry and not necessarily
centralized around the NO2 groups, in contrast to the measure
of the local NO2 charge distribution Vmid. The AAE and AAA
crystalline conformations of RDX optimize to very different
geometries and therefore are conformational polymorphs.76

The AAE conformation, with one equatorial NO2 group, is the
lower-symmetry, higher-energy conformation of RDX and
occurs in the most stable α polymorph and one of the two
independent molecules in the high-pressure γ form. It has a
different surface shape and potential minimum (Vmin), but the
potential maximum for this bowl-shaped molecule is virtually
unaffected. The nitramine RDX has a significantly larger
gradient in the electrostatic potential around the molecule than
any of the flatter nitroaromatics.

The variations in charges on the X and N atoms in the X−
NO2 groups of the optimized conformations are contrasted
with X−NO2 groups in the experimentally observed con-
densed-phase conformations that have the most unique
structures (Table S2). This clearly shows that the nitrogen
atoms in the N−NO2 groups in RDX are more positively
charged (0.882−0.945e) than any nitrogen in the aromatic C−
NO2 groups (0.749−0.852e), and even within the C−NO2
groups, the charge distributions are far from transferable (as
seen in the atomic charges in Figure 1). Changes in
conformation result in variations in the trigger-bond parameter
Vmid (both longest and average) that can be comparable to the
conformational differences between molecules (Table S2). The
values of Vmid differ more between the molecules but also vary
between the different crystalline conformations.
On comparing the molecular electrostatic properties Vmax

and Vmid against experimental impact sensitivity (Figure 3),
one observes that conformational changes due to crystal-
lization do affect these properties. There is a notable spread in
Vmax and Vmid of the optimized and observed conformations in
the nitrobenzenes TNB and TNT. This will significantly affect
any correlation with impact sensitivity for the nitrobenzenes.
Furthermore, for RDX, the spread of values for either Vmax and
Vmid is not substantially larger than that for TNB despite RDX
having many large conformational changes (Figures 1 and S1).

Modeling the Electrostatic Contribution to Lattice
Energies. How much variation is likely within the crystalline
state and how does this affect atomic charges? Analysis of the
NO2 torsion angles in the crystal structures in the Cambridge
Structural Database (CSD) shows that an aromatic NO2 group
adjacent to two hydrogen substituents is almost always planar,
to within 20°, which corresponds to a fairly small change in
conformational energy, as shown for the para-nitro group in

Figure 2. Electrostatic potential (eV) computed using the ISA distributed multipole analysis (ISA-DMA) on the isodensity surface of 10−3

electron/bohr3 around the static optimized isolated molecular structures of TNB, HNB, TNT, and RDX. Note that for some of the above
molecules the maximum, Vmax is greater than the potential scale, which is +1 eV (red) to −1 eV (blue). Alternative h50%/cm measurements5,44,77,78

have been included in parentheses.
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TNT in Figure 4. There is a large barrier of about 25 kJ/mol
for rotating the nitro group, presumably from changes in π
electron conjugation. The atomic charge on C4 (the carbon
bound to the para-NO2) rises, while those on the neighboring
C3 and C5 fall. We find that the atomic charge on N2 is mainly
responsible for the charge balance. Additionally, the dipole

moments on the nitro O atoms change significantly with
rotation. A similar picture is seen for the NO2 groups in TNB
(Figure S3a), which are also adjacent to aromatic C−H groups.
The picture is very different for the ortho-nitro groups in TNT
(Figure 4), where a large range of torsion angles are observed
for the NO2 between a methyl and hydrogen substituents on
an aromatic ring. Here, the planar conformation is the most
commonly observed in the crystal structures, but this
corresponds to a maximum in the intramolecular energy.
There is a known preference for planar, extended conforma-
tions of molecules in the crystalline state as this often allows a
denser packing.79 The height of the energy barrier is probably
overestimated because of the methyl group being fixed in the
calculation and hence sterically clashing with the NO2 group,
whereas in the crystal structure, the methyl could rotate out of
the way. However, one should note that the crystallographic
angle in the CSD is an average over the torsional vibrations of
the methyl and nitro groups. In the ortho case, the charges and
dipoles change on many more atoms, though again the dipoles
change most on the nitro-oxygen atoms. While this effect is
probably exaggerated by the steric clash, it highlights the effects
of changing π conjugation between the nitro groups and the
aromatic ring.
There is far sparser CSD data for an aromatic NO2 between

two other NO2 groups (HNB), suggesting that any angle could
be observed (Figure S3b). Nonetheless, the height of the
conformational energy barrier is so great that without allowing
for a concerted and highly correlated change in the other NO2
torsion angles the range of angles seen in other crystalline
conformations would not occur in HNB. There is even less
CSD data for N−NO2 groups (Figure S3c), as seen in the
analysis of the AAE conformer of RDX. We find that there are
significant variations in some of the atomic charges and dipoles
for the ring nitrogen and the attached NO2 atoms. Overall,
from Figure 4, it is clear that the nitro group can adopt a range
of conformations, as a compromise between the intramolecular
steric hindrance and the crystal packing forces, and that these
changes in conformation do affect the nitro group charge
distribution, resulting in very different charge distributions for
various NO2 environments.
The difference maps in Figure 5 show the extent to which

the changes in charge distribution, from the rearrangement of
the valence electrons, affect the electrostatic potential around
each nitroaromatic molecule. The difference between the
potential calculated for optexptNO2 and anarot multipole
moments is shown. The differences are very dependent on the
extent to which the torsion angles differ between the optimized
and experimental structures, ranging from being negligible for
TNB to underestimating Vmin by nearly 0.3 eV for TNT.
Table 1 illustrates how analytically rotating the atomic

multipole moments affects the intermolecular lattice energy
(UINT). For TNT, which has the largest NO2 torsion angle
difference between experimental and optimized structures,
there is a significant change in the lattice energies of TNT
(Table 1). However, the effect of anarot multipoles on the
minimized lattice parameters and hence potential energy
surface minima is negligible. The small change in the lattice
energy of TNB reflects the very small differences in the torsion
angles upon crystallization. The lattice energy differences are
mainly due to variation in the electrostatic contributions (Uelst)
as changes in the dispersion−repulsion terms (Udisp−rep) arise
only from the change in the lattice structure. Even though the
relative lattice energies are not well reproduced when rotated

Figure 3. Calculated trigger-bond potential, Vmid,avg, and molecular
electrostatic potential surface maximum, Vmax, plotted against the
experimentally observed impact sensitivities (h50%) for the three
nitroaromatic explosives.5 RDX has a different symbol as it is from a
different chemical family, nitramines, and its observed h50% has been
obtained from a different source.50 The variations between the
optimized and the most different crystalline conformations, HNB(opt
≈ expt), TNB(opt ≈ form III, molecule 1 in form I, molecule 2 in
form II), TNT(opt, α), and RDX(opt(AAA), opt (AAE), α(AAE),
and ε(AAA)), are shown. The atomic charge variations and other
electrostatic properties (including Vmid,longest, Vmin) are given in Table
S3, along with the plotted values.

Figure 4. Conformational behavior of the para-nitro (left) and ortho-
nitro (right) groups in TNT. The behavior as a function of torsion
angle is given for (top to bottom) the distribution of the observed
angles in the CSD for each environment; the change in PBE0/aug-cc-
VTZ energy relative to the optimized molecule as the nitro group
torsion angle is changed; and the relative changes in the magnitude of
ISA charge and dipole on each atom. The oxygens that undergo the
most significant changes in dipole moment have been indicated, and
the optimized NO2 torsion angles are also illustrated, alongside other
more notable NO2 torsion angles.
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multipole moments are employed, the low RMSD15 values
indicate that the crystal geometries differ insignificantly. This is
also illustrated by the overlays in Figure S3. Hence, the anarot
distributed multipole model, which assumes that the atomic
charge distributions can be analytically rotated with changes in
the NO2 torsion angle, reproduces the experimental poly-
morph structures satisfactorily enough to be used in CSP for
initial analysis of the potential energy landscape.

■ DISCUSSION

We find that the crystalline and isolated (optimized)
conformations of most molecular explosive materials differ
significantly, providing a challenge in evaluating the thermody-
namic stability of their polymorphs even at ambient
conditions,81 let alone at the high temperatures and pressures
sampled during detonation. This study highlights the effects of
the changes in the NO2 torsion angles that can occur upon

crystallization, how these can differ between polymorphs, and
its importance in accurate predictive modeling.
The experimental polymorphs studied show a range of

crystalline conformations that are fairly typical of those seen in
all of the other nitroaromatic and nitramines in the Cambridge
Structural Database (CSD). When the adjacent functional
groups on the aromatic ring (or C−N−NO2 chain, e.g., RDX)
are hydrogen atoms, then the NO2 torsion angles vary by about
±20° and the nitro groups are relatively planar (Figures 4 and
S3a). On the other hand, when the adjacent functional groups
are larger, any angle may be observed (Figures 4 and S3b). In
the isolated molecule, the interactions with the specific
neighboring substituents can have a major effect on the charge
distribution and torsion angle of a nitro group; however, in the
condensed phase, correlated changes in substituent conforma-
tion are more affected by crystal packing. On comparing NO2

torsion in Figure 1, the nitroaromatics show differing degrees
of conformational adjustment due to the packing forces within

Figure 5. Difference in electrostatic potential around the nitroaromatic molecules for charge distributions calculated with the NO2 groups in their
experimentally observed torsion angles (optexptNO2) and those analytically rotated from the PBE0/aug-cc-pVTZ optimized molecular structure
(anarot) viewed from above and below. The potential is mapped onto an isodensity surface of 10−3 electron/bohr3 in electron-volts (eV), and the
scale varies from molecule to molecule. The RMSD1 for the overlays of the optimized (gray) and optimized with experimental NO2 torsion angles,
optexptNO2 (red), molecular conformations, for each nitroaromatic are included for comparison and given in Å.
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the crystal lattice. HNB has only one crystal structure, but the
six nitro groups have different torsion angles ranging between
48 and 60°, losing its molecular symmetry and reflecting the
compromises between the intramolecular steric forces and the
adaption to intermolecular interactions to give a dense crystal.
The TNT polymorphs have rather similar crystalline
conformations as they are polytypic, comprising of different
stacks of comparable layers of molecules.6,82 Nonetheless, the
two independent molecules in each polymorph show variations
in the torsion angles of the ortho-NO2 groups that sterically
interact with the methyl, and the para-NO2 groups are not
coplanar. The optimized TNB molecule is planar, but the four
crystalline conformations in the two polymorphs have torsion
angles that are up to 32° from planar. Thus, crystal packing
forces can easily overcome intramolecular stabilization from
conjugation, shifting nitro groups from their preferred planar
conformation.
Using an improved novel method of partitioning the isolated

molecular charge distribution (ISA) and a high level of theory
(PBE0/aug-cc-VTZ) to obtain realistic atomic charges and
higher-order multipole moments for an X−NO2 group shows
that the NO2 charge density differs considerably between N−
NO2 and C−NO2 (Figure 1 and Table S2). Moreover, the
charge density varies significantly with the neighboring
functional groups (e.g., ortho- and para-groups in TNT,
Figure 1) and also with the NO2 torsion angle. This is to be
expected as the atomic charges, in particular, reflect the
changes in valence electron distribution, which also determine
the molecular reactivity. Our study shows that the published
empirical correlations of local electrostatic properties around
the NO2 “trigger bond”, such as Vmid, or the molecular
property Vmax with the crystal property, impact sensitivity
(h50%),

1,59,83 will be significantly affected by the neglect of the
conformational change (Figure 3 and Table S2).
The packing arrangement of the reactive groups in the

crystal will also strongly affect the energetic properties. The
early correlation between detonation properties and density led
to the development of MOLPAK,84 one of the first crystal
structure prediction (CSP) codes, which sought to establish
the possible density of a crystal from the molecular structure.
Since then, CSP methods have evolved to help predict possible
polymorphs and help support their structural characterization
from powder X-ray diffraction and other analytical techniques.

While these techniques are being extensively developed for the
pharmaceutical industry,85,86 the much-needed extension to
energetic materials requires fundamentally different modeling
of specific functional groups under the extreme conditions
unique to explosives. For example, periodic density functional
calculations on crystalline nitroguanidine required the develop-
ment of a specific dispersion correction.87 This paper has
established the care required in CSP studies of nitroaromatic
explosives to ensure that the large variations in possible NO2
torsion angles, shown by the CSD distributions (Figures 4 and
S3), are effectively considered. It is the balance between the
molecular cost for the conformational change (ΔEintra) and the
improved intermolecular lattice energy (UINT) from a denser
packing, which determine the total lattice energy (Elatt = ΔEintra
+ UINT). Ab initio calculations on the molecule (Ψmol) can be
used to obtain ΔEintra and analyzed to obtain the atomic
multipoles, polarizabilities, and dispersion coefficients that
determine the long-range intermolecular forces. In this study,
the ISA analysis of Ψmol provides an anisotropic intermolecular
potential with the atomic multipole moments being used to
calculate the electrostatic contribution to the intermolecular
energy. It seems that cell geometries can be obtained relatively
accurately and very quickly without recalculating the charge
density as the nitro groups rotate (Table 1), by analytically
rotating the multipole moments. This suggests that the anarot
methodology could be used to determine the range of low-
energy crystal structures that could be adopted by a
nitroaromatic energetic molecule within the Ψmol approach
to crystal structure prediction88 and thus could improve the
prediction of crystal packing from the molecular diagram of
new energetic molecules.74 This method is suitable as an initial
approximation of the potential energy landscape, but the
relative energy differences in Table 1 are large in comparison
with the lattice energy differences between polymorphs, which
are usually much less than 5 kJ mol−1 for small molecules.89

The conclusion that analytical rotation does not reproduce
relative electrostatic energies well was also reached in the study
on the transferability of electrostatic models between
polypeptides.71 Thus, Table 1 shows that in the Ψmol approach,
it is necessary to use an accurate molecular charge distribution
for the refinement of CSP-generated crystal structures, or a
sufficiently accurate periodic electronic structure calculation, to
determine the relative lattice energies reliably and accurately

Table 1. Effect of Multipole Moment Rotation on Lattice Energy Minimaa

TNT TNB HNB

REFCODE ZZZMUC08 TNBENZ13 HNOBEN

UINT Uelst Udisp−rep UINT Uelst Udisp−rep UINT Uelst Udisp−rep

EoptexptNO2−ISA /kJ mol−1 −121.0 −46.4 −74.6 −104.7 −34.4 −70.3 −150.1 −45.1 −105.1

Eanarot−ISA/kJ mol−1 −123.2 −48.3 −74.9 −104.4 −34.2 −70.2 −150.8 −46.0 −104.9
ΔE/kJ mol−1 2.177 1.820 0.367 −0.334 −0.262 −0.073 0.710 0.910 −0.200
%↑ in a 0.270 −0.015 0.060
%↑ in b 0.259 −0.244 −0.050
%↑ in c −0.333 0.190 0.058
RMSD15/(optexptNO2) 0.246 0.166 0.235
RMSD15/(anarot) 0.218 0.162 0.237

aA comparison of the effect of ISA multipole moments calculated in the optexptNO2 conformation and those analytically rotated into the
optexptNO2 conformation (anarot), using ORIENT.70 Each experimental crystal structure has been minimized holding the molecules rigid in their
optextNO2 observed conformation, using the FIT potential80 and the defined set of atomic multipole moments to calculate the intermolecular
forces. The changes in each intermolecular energy contribution and % change in cell parameters are compared. The RMSD15 comparisons are with
the experimental crystal structure. More details on the effect of conformation on lattice energy minimizations, including using the optimized
molecular conformation and the experimental conformation, can be found in Tables S3 and S4.
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enough to know which of the generated crystal structures are
thermodynamically plausible polymorphs.88

The complexity of the processes that determine the impact
sensitivity and other key properties of the polymorphs of
energetic materials48 implies that multiscale modeling,
involving both periodic electronic structure calculations and
MD simulations, will be required. The MD codes will need to
use the best nonempirical models for the inter- and
intramolecular forces derived directly from the molecular
charge distribution. These models will be specific to the
molecule, as the charge distribution around the nitro groups is
clearly affected by changes in the rest of the molecule,
particularly the adjacent functional groups or with the presence
of an aromatic ring. This study implies that there will be a
significant loss in accuracy if novel intermolecular potentials do
not include a NO2 torsion angle dependence. It could be
possible to fit analytical models to changes in atomic
multipoles,90 as Figure 4 shows that the ISA atomic multipoles
change smoothly with NO2 torsion angle and therefore can be
modeled using splines, or other functions of low complexity.
However, while it is clear how these changes can be modeled
as a function of a single degree of freedom (single torsion), the
correlated conformational adjustments of neighboring groups
on the aromatic ring may pose a challenge. The changes in
multipole moments during the rotation of the methyl group in
TNT, let alone with changes in the aliphatic ring seen for RDX
(Figure S2), will not be represented by a simple Fourier series
term, and this will also apply to the conformational energy
penalty.91 Considering the polymorphs of energetic molecules
and CSP studies provide a good starting point for developing
the next generation of molecule-specific flexible force fields.
This, in turn, will help contribute to the development of
predictive computational modeling of their key physical
properties such as free energies, thermal expansion, and
other nonreactive properties.

■ CONCLUSIONS
The charge distributions of the nitro groups in TNB, TNT,
HNB, and RDX vary considerably depending on the bonded
and neighboring functional groups and also with the
conformational differences between their polymorphs and
their isolated molecular structures. The rigorous ISA
partitioning of high-quality molecular charge distributions
allows us to obtain the distributed multipole representation of
the atomic charge distribution, which has minimal sensitivity to
basis set, and hence, artifacts of conformational change are
minimized. We have shown, using ISA partitioning, that
variations in NO2 conformations that occur in crystal
structures cause sufficient changes in the molecular charge to
affect previously proposed empirical correlations between
impact sensitivity and molecular electrostatic properties.
The condensed-phase torsion angles observed for nitro

groups are a subtle balance between inter- and intramolecular
interactions. The charge distributions of the nitro groups, and
some neighboring atoms, can change significantly with the
NO2 torsion angle, reflecting the change in the bonding and
molecular charge distribution. This change is sufficiently large
that distributed multipole models, which form the basis of
nonempirical model intermolecular potentials, should be
calculated for each conformation if the potential is to be
accurate enough to model lattice energies to the accuracy
needed to predict polymorph relative stability. However,
analytically rotating the multipoles to reflect the change in

aromatic NO2 torsion angles is a reasonable approximation
that may be useful in performing fast crystal structure
prediction calculations. This study utilizes old and new
computational methodologies in a novel way to establish the
necessary assumptions about the transferability of charge
distribution in nitroaromatic explosives. These assumptions
will be instrumental in producing reliable nonempirical
potentials suitable for modeling possible polymorphs, partic-
ularly those crystallized under pressure.92
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