
Sequence Tolerance of a Single-Domain Antibody with a High
Thermal Stability: Comparison of Computational and Experimental
Fitness Profiles
Mark A. Olson,*,† Patricia M. Legler,‡ Daniel Zabetakis,‡ Kendrick B. Turner,‡ George P. Anderson,‡

and Ellen R. Goldman‡

†Systems and Structural Biology Division, USAMRIID, Frederick, Maryland 21702, United States
‡Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, District
of Columbia 20375, United States

*S Supporting Information

ABSTRACT: The sequence fitness of a llama single-domain
antibody with an unusually high thermal stability is explored
by a combined computational and experimental study. Starting
with the X-ray crystallographic structure, RosettaBackrub
simulations were applied to model sequence−structure
tolerance profiles and identify key substitution sites. From
the model calculations, an experimental site-directed muta-
genesis was used to produce a panel of mutants, and their
melting temperatures were determined by thermal denatura-
tion. The results reveal a sequence fitness of an excess stability
of approximately 12 °C, a value taken from a decrease in the
melting temperature of an electrostatic charge-reversal substitution in the CRD3 without a deleterious effect on the binding
affinity to the antigen. The tolerance for the disruption of antigen recognition without loss in the thermal stability was
demonstrated by the introduction of a proline in place of a tyrosine in the CDR2, producing a mutant that eliminated binding.
To further assist the sequence design and the selection of engineered single-domain antibodies, an assessment of different
computational strategies is provided of their accuracy in the detection of substitution “hot spots” in the sequence tolerance
landscape.

1. INTRODUCTION

A combinatorial optimization of amino acid sequences to fit a
topological protein fold takes place on comparability land-
scapes with the fitness measured by scaling factors.1 From an
experimental perspective, sequence−structure tolerance is
typically probed by site-directed mutagenesis studies, and the
landscape is thermal stability and conservation of function. A
common observation of mutational studies is the remarkable
plasticity of protein structures to amino acid changes and how
large the sequence envelope is for particular fold families.
A well-known class of protein folds that occupies a

superfamily of sequences is the N-terminal domains of both
the heavy and light chains of the variable region of antibodies.
A popular construct of the heavy chain is single-domain
antibody (sdAb) chains derived from camelids. The interest in
sdAbs lies in their biotechnological applications that require an
evaluated thermal stability and reversible folding as well as a
high affinity and singularity of molecular recognition.2−7

Typical sdAbs have melting transition temperatures (Tm) in
the range of 60−70 °C.2−5 An outlier is a llama sdAb specific
for Staphylococcus aureus enterotoxin B (SEB), which has a
reported Tm of 85 °C.2 The first available X-ray crystallo-
graphic structure of this unusually stable sdAb (designated as

A3) revealed an asymmetrical homodimeric assembly of
conformers displaying differences in the secondary structure
geometry and local connectivity.8 The fold topology of each
chain is the common assembly of two β sheets with a β-
sandwich arrangement. Structural alignment search with
Protein Data Bank (PDB) entries shows strong neighbors in
the fold space with high Z-score matches with other antibody
structures.
From a computational perspective, the effect of a mutation

on Tm can be calculated from all-atom simulations of the
thermodynamic folding−unfolding dynamics that govern the
heat capacity or melting curve.1,9−11 Alternatively, an
alchemical process of residue mutation can be modeled by
using the free energy perturbation theory applied to a cycle of
the folded and unfolded states to determine changes in the free
energy of the folding stability.12−14 Although both modeling
methods are rigorous, they are computationally prohibitive
when applied to a large set of mutants for proteins of moderate
size or larger. Because of this drawback, algorithms have been
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developed with energy functions specifically parameterized to
predict differences in the folding free energy due to point
mutations. Examples include Site-Directed Mutator (SDM),15

I-Mutant3.0,16 FoldX,17 PoPMuSiC,18 and PreTherMut,19

among others.20,21 Typically, these algorithms are empirically
weighted using the data obtained from protein engineering
experiments, and their predicted free energy changes are
correlated to experimental differences in the folding free
energy.
Here, this work presents a combined computational and

experimental study of identifying residue contributions that
govern the unusually high Tm of A3. Our earlier study reported
several alanine substitutions and their application in com-
parative modeling methods to assess predictions of the thermal
stability.22 The computational strategy here is different and is
based on RosettaBackrub simulations23,24 to model the
sequence−structure tolerance landscape and generate con-
formations for a set of amino acid substitutions including
nonalanine mutations. Ranking of the mutants and their
conformations is based on the application of the empirical
energy function Rosetta and an alternative all-atom statistical
potential. From our computational analysis, we apply site-
directed mutagenesis to generate a panel of mutants that
occupy structural regions identified as possible sequence “hot
spots” and to evaluate the accuracy of modeling stability. Each
mutant is experimentally characterized by their change in Tm
relative to the wild-type (WT) A3 monomer and, unlike
previous work,22 their binding affinity to the protein target SEB
is reported. The latter is important in understanding the
sequence tolerance of conserving protein function.
As a part of our computation design study of A3, we provide

an assessment of knowledge-based and empirical prediction
methods. Rather than the more conventional approach of
predicting the correlation between an energy function and
experimental folding free energies, we focus primarily on the
often occurring case where the only available experimental data
from protein engineering are Tm measurements for selected
mutations. The observed nature of constructing a relationship
between the Tm and the folding free energy (measured near or
below 300 K) is nicely illustrated by the experimental study on
the miniprotein Trp-cage with multiple sequence mutations.25

The relationship depends on the condition of unfolding−
folding reversibility, an observation derived from the intrinsic
physical properties of each protein under investigation as well
as the experimental conditions of the denaturation.
Although our assessment of computational prediction

schemes is not an exhaustive study, the analysis includes
several widely popular web-based methods for modeling
changes in the thermal stability and will be helpful to
researchers working on similar problems on designing sdAb
constructs. Included in our analysis is the rescoring of
structures generated by the RosettaBackrub simulations using
a highly benchmarked statistical potential function. Building
upon the conformational ensemble produced from the
RosettaBackrub, we also examine an approximation that
corrects the statistical potential for molecular electrostatics of
solvent interactions and their changes arising from the
mutations by the addition of a weighted implicit solvent
model. Taken together, our study of mutations of an sdAb
offers an excellent assessment of the benefits and limitations of
in silico methods applied to the rational design of antibody
fragments.

2. RESULTS AND DISCUSSION
2.1. Structural Features of A3. The X-ray crystallo-

graphic structure of the llama A3 sdAb in a homodimeric form
is illustrated in Figure 1. The structure displays an unusual

asymmetric assembly of two conformers (denoted as A and B
chains) that differ in their secondary structure and, as noted in
the published report, the dimerization has important
implications for conformational misfolding.8 Additional
crystallographic structures of A3 as monomeric chains have
been determined, and the set includes several site-specific
mutations.8 As reported in the crystallographic work, the
protein production of the homodimer as opposed to the
monomer is attributed to the cytoplasmic expression versus
periplasmic.8 Structural differences among the conformers are
centered primarily within the α-helical region containing
residue F29 of the highly variable complementarity determin-
ing region CDR1 and residues S50−Y60 of the region linking
the β-strands of the CDR2. The dimeric interface consists of
residues 113−121 of the CDR3 loop as well as E44 and R45 of
a variable β-hairpin and Y98 of the framework.
A structural alignment search of the A and B chains was

performed by the Dali algorithm26 to detect regions of the
structural and sequence divergence. The significance of these
regions is they offer substitution sites for exploring the
sequence fitness that underlie the high Tm. The choice of
applying chains from the dimeric assembly rather than a
monomer is to capture a wider range of conformational

Figure 1. X-ray crystallographic structure of the asymmetric
homodimeric A3 (PDB 4TYU) and structural neighbors from a
Dali search of the single-chain conformers of the assembly. (a)
Conformers of A3 where the color green denotes the A-chain and
blue color the B-chain. (b) Structure−structure alignment of the A-
chain with sdAbs 3STB and 1I3V, where on the left shows structural
differences and the right sequence differences. The color spectrum
runs from red to blue, where red designates structural and/or
sequence conservation, whereas blue shows divergence. (c) Align-
ments of the B-chain with sdAbs 3STB and 1I3V.
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plasticity among the crystallographic conformers. The search
finds, as anticipated from the large data set of known
immunoglobulins, greater than 1000 structural neighbors
with high Z-scores and sequence identities that span the
range from a high of 77% to a low 6%. Shown in Figure 1b,c
are the high Z-score ranking sdAb hits of PDB entries 3STB
and 1I3V with sequence identities of roughly 77 and 66%,
respectively. Among the multiple neighbors observed from
Dali, the pairwise alignments show a structural variability in the
length and placement of the α-helix for residues 26−32, β-turn
region centered at P55, and the loop region of roughly 98−
110.
To explore the relationship between the Dali search results

and the sequence fitness of structural regions to amino acid
substitutions, we calculated the sequence−tolerance profiles
that contribute to the fold stability of the conformers by the
RosettaBackrub simulation method.23,24 RosettaBackrub is a
structure-based modeling approach where the sequence
tolerance is depended on the structural details surrounding a
selected sequence location site. Unlike many coarse-grained
simulation strategies, the RosettaBackrub models the protein
chain at a resolution that detects local conformational
differences on the sequence fitness. Illustrated in Figure 2 is
a subset of the residue-specific profiles determined for the A
and B conformers taken from the dimer. Shown are regions
F29−M34, P55−Y60, and Y98−K104 that model the sequence

tolerance between the conformers near or within the CDRs.22

Additional profiles are shown in Figure 3 for an alternative
starting conformer and includes extended regions D102−
M111 and N112−Y118. The profiles report the ranking of
amino acids for each sequence position by a predicted
frequency of site population. Wild-type (WT) residues are
shown in red, and the dashed line indicates a cutoff of picking
the top five amino acid choices at each position.
The profiles show the variation between the conformers at

specific sequence sites where structural differences are most
evident. One example is the Y59−Y60 segment shown in
Figure 2, where the aromatic rings are less favorable in
population for the A-chain conformer and are located in an
unstructured topology, whereas a β-strand is found for the B-
chain. Similarly, Figure 3 shows Y59−Y60 to populate high-
frequency placements at their conformational positions along
the chain. Despite the structural differences between the
conformers, WT residues with high favorable ranking are
observed for many sites, suggesting a strong sequence-fold
comparability fitness. For example, the structural topology at
position F29 is a helical fold populated among the conformers
with the only exception being the dimeric A-chain, yet the WT
phenylalanine is nearly equivalent in the sequence ranking for
all chains. Conversely, the WT residue P55, which is located in
a β-turn region of the high structural divergence among the
Dali search results, shows low population frequency for both A

Figure 2. Selected sequence−tolerance profiles of the A-chain conformer (top graph) and B-chain conformer (bottom graph) of A3 determined by
the RosettaBackrub method. Sequences colored red denote the wild-type residue. The color spectrum of each profile designates the predicted
frequency of the sequence-site placement along the A- or B-chain conformers. The horizontal line is arbitrarily positioned to highlight the five top-
ranking sequences.
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and B conformers (Figure 2). Contrasting rankings are
observed for charged residues D102 and K104, where the
negative charge is among the top-ranked populations for the
set of conformers, whereas the positive charge varies in the
sequence ranking (Figures 2 and 3).
2.2. Experimental Site-Directed Mutagenesis. To test

the computed tolerance profiles and the effect of structural
variability observed from the Dali search results, a panel of
substitutions for experimental site-directed mutagenesis was
designed and included 18 mutations (listed in Table 1). The
criteria for which sites to select for substitution and the residue
type was based on the output of RosettaBackrub simulations of
evaluating an exhaustive number of substitutions. The final set
was down selected for exploring the following: (1)
destabilization of the helical-connecting region between S25
and F29 of CDR1; (2) conformational flexibility of CDR2
positioned at P55 and its poor tolerance score; (3) divergent
placement of Y59 in the A and B chains and overall rank; (4)
placement of charged and nonpolar groups in the largely
unstructured CDR3 of residues D102−V116; and (5) overall
sequence conservation. Although the mutants are nearly all
single-point substitutions, the selection provides a sufficient
probe into the sequence tolerance of function and stability.
Substitutions outside of the predicted profiles were modeled
from the crystallographic structures.

Thermal denaturation curves were determined for each
protein mutant along with their binding kinetics to SEB to

Figure 3. Sequence−tolerance profiles for an alternative single-chain conformer of A3 to further illustrate the effect of the variability arising from
different conformations. Added profile regions include D102−M111 and N112−Y118. The description is similar to that given in Figure 2.

Table 1. Measured Tm and KD for Wild-Type (WT) A3 and
Mutants

A3 clone Tm (°C) KD (nM) structural region

WT 85 0.23
S25I 85 0.19 CDR1
F29A 84 0.20 CDR1
F29L 85 0.18 CDR1
P55S 83 3.30 CDR2
Y59A 82 0.45 CDR2
Y59P 84 no binding CDR2
R70A 74 0.33 FR3
S74A 83 0.21 FR3
A75R 84 0.52 FR3
Y98A 75 0.34 FR3
D102A 84 0.09 CDR3
D102R 73 0.29 CDR3
K104G 78 0.21 CDR3
M111A 76 0.25 CDR3
M111T 76 0.50 CDR3
M111A/V107I 76 0.60 CDR3
V116A 80 0.14 CDR3
V116Y 79 0.13 CDR3
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ensure proper folding, as determined by their ability to
recognize the antigen. The WT and all mutant proteins were
produced as monomers, thus eliminating possible complica-
tions arising from the dimerization. Representative circular
dichroism (CD) and surface plasmon resonance (SPR) data
are shown in Figure 4 (see also the Supporting Information).

With the exception of the Y59P, all of the mutants retained
their binding function and most recognized SEB with near
wild-type affinities. The mutations at P55 and Y59 may affect
the conformation of CDR2 (see Figure 1), which was
previously shown to provide critical interactions between A3
and SEB.3 The melting transition temperatures were compared
to the WT form.
Although the tolerance profiles from RosettaBackrub are not

absolute in ranking sequence frequencies, it is of interest to
generally place the experimental measured results in the
context of the computed profiles and apply the ideas of protein
fitness.1 Among the mutants, an asymptotic margin or
threshold robustness of excess configurational stability can be
estimated from the substitutions which retained the functional
property of native-like binding to the antigen SEB. The most

remarkable outcome is the electrostatic charge-reversal D102R
in CDR3, which showed a significant drop of 12 °C in the Tm
compared to the WT form and demonstrated a native-like KD
(Table 1). The D102R Tm brings the stability excess near the
upper bound that is typical of other sdAbs. Additional mutants
with an excess stability of ∼10 °C include R70A and Y98A,
both positioned in FR3. In contrast to D102R, the elimination
of the atomic charge with D102A showed a negligible ΔTm and
binds with an equal affinity to the antigen, as observed with the
WT form. Figures 2 and 3 report that the WT residue of an
Asp at 102 is placed in the high-frequency selection for the
conformers, and the D102A mutant was predicted to be among
the top-ranked substitutions, although still susceptible to a loss
in the thermal stability (Table 1). The substitution D102 → R
was predicted to be outside the top-ranked frequency, and the
experimental data reports a more significant decrease in the
stability greater than anticipated from its ranking among
substitutions.
In contrast to D102R, the limit of conserving function from

sequence tolerance is observed by the introduction of a proline
in place of a tyrosine (Y59P) in CDR2, producing a mutant
where the binding was eliminated, whereas the thermal
stability remained near the WT form. Figure 2 shows that
the placement of a proline in the CDR2 is a rare occurrence in
the sequence landscape and is likely due to restraints in the
backbone torsional flexibility. The interplay of stability and
function of the CDR2 is further established by the P55S
mutant where the KD is significantly decreased and the loss in
stability is negligible. Overall, the low sequence consensus of
prolines in the CDRs is predicted by the RosettaBackrub.
The mutant Y98A with an experimental measurement of

−ΔTm ∼ 3 °C suggests the tolerance profile for the B-chain to
be more accurate in describing the configurational stability
than that of the A-chain, which is thought to be a kinetically
trapped chain in the dimeric form.8,27 A similar observation
can be made for mutants F29A, F29L, and K104G. Simulation
studies have been reported22 for comparing the WT B-
conformer with mutants F29A and Y98A and support the
ranking of residue substitutions given in Figure 2.

2.3. Assessment of Structure-Based Stability Predic-
tions. As an initial step in constructing an empirical
relationship between the experimental Tm and a predictive
model at the molecular level, RosettaBackrub simulations were
applied to calculate the effects of residue substitutions on
changes in the Rosetta scoring28 of conformers (denoted by a
free energy change ΔG). Figure 5a reports the correlation of
using both conformers A and B as input structures to calculate
conformational ensembles for each mutation. Although it is
important to note that the RosettaBackrub calculations only
model the folded conformations and do not reproduce the
thermodynamic co-existence between the folded and unfolded
states as in the experimental Tm, the correlation is nevertheless
of general interest to test whether simple models can detect
significant outliners in changes of the fold stability. The
computed Rosetta score is an average over the ensemble and is
relative to the WT form taken from the crystallographic
assembly. The calculated correlation coefficient of Figure 4a
for evaluating 18 mutants using either the A or B-conformer is
only r = ∼0.2.
Given the poor performance of approximating the observed

experimental changes, the conformational ensembles that were
generated by the RosettaBackrub for each mutation were
rescored using the statistical potential dDFIRE.29 The selection

Figure 4. Representative experimental data. The top graph shows
denaturation curves of A3 mutants F29L (blue) and Y98A (green).
Vertical lines have been drawn through the inflection points, dotted
for Y98A and solid for F29L. Middle and lower graphs are SPR data
for mutants P55S and D102R. The on rate, off rate and calculated
dissociation constant (KD) of A3 binding the target SEB are shown
above the data for these mutants.

ACS Omega Article

DOI: 10.1021/acsomega.9b00730
ACS Omega 2019, 4, 10444−10454

10448

http://pubs.acs.org/doi/suppl/10.1021/acsomega.9b00730/suppl_file/ao9b00730_si_001.pdf
http://dx.doi.org/10.1021/acsomega.9b00730


of dDFIRE rather than other popular statistical potentials (see,
e.g., RWplus35 and GOAP36) is based on previous simulation
studies of A3 and protein structure refinement studies.22,30−34

The results shown in Figure 5b report a correlation of r = 0.1
for the A conformer and 0.5 for the B-conformer. Although
calculations for the B-conformer yielded a slight improvement,
there are several significant outliers that unfavorably deter an
accurate correlation (e.g., F29A, D102R, and K104G). Rather
than using the ensemble of conformations in computing the
relative differences, the top scoring conformations determined
by dDFIRE were only analyzed. Figure 5c shows the
correlation r = ∼ 0 for the A conformer and r = 0.3 for the
B-conformer. For additional comparison purposes, the
application of the SDM server15 was applied to both
conformers. SDM is a two-state model calculation and uses a
statistical potential energy function that incorporates environ-
ment-specific amino acid substitution frequencies within
homologous protein families to calculate a stability score.
Figure 5d reports the SDM results and their relationship to
ΔTm. We find a correlation for the A conformer of r = 0.1 and
0.4 for the B-conformer.
Modeled structures for several mutants and their reorganiza-

tion from the WT B-chain conformer predicted by
RosettaBackrub simulations are highlighted in Figure 6. The
structure for F29A shows the distortion in the backbone
conformation from the WT form and disrupts the α-helix
formation for many of the ensemble. This modeling result
combined with sequence−tolerance profiles given in Figures 2
and 3 suggests that the helix is not a determinant of the
stability but rather a poor scoring by statistical potentials of the

generated conformations. Noticeable backbone displacements
are likewise observed for M111A, and to a lesser extent,
D102R. Overall, the examination of the predicted structures
proves difficult to resolve the differences between modeling
and experiments.

Figure 5. Scatter plots of scoring the effect of 18 residue substitutions relative to the wild-type structure and their relationship to the experimentally
determined changes in melting temperatures (ΔTm). To account for differences in physical units between the computed ΔG and the experimental
ΔTm, the free energy coordinate can be arbitrarily scaled by a “reference-state.” For illustrations (a)−(c), conformations were generated by the
RosettaBackrub simulation method24 starting with either the crystallographic A-chain conformer (denoted as green-colored circles) or the B-chain
conformer (blue triangles). The first two plots were computed as statistical averages over each modeled conformational ensemble. (a) Application
of the Rosetta 3.1 scoring function to the mutations, yielding linear regression correlation coefficients of r = 0.2 for both chains. (b) Scoring of the
generated ensemble by dDFIRE, yielding r = 0.1 for the A-chain and r = 0.5 for the B-chain. (c) The first-order rank conformer determined by
dDFIRE scoring for the two chains (r ∼ 0 for the A-chain and r = 0.3 for the B-chain). (d) Application of the SDM modeling method15 using the
starting crystallographic A-chain and B-chain conformers to calculate changes in free energies and their relationship to Tm (r ∼ 0 for A-chain and r
= 0.3 for the B-chain).

Figure 6. Molecular illustrations of the modeled folded structure of
the wild-type sdAb conformation and selected mutants determined by
RosettaBackrub simulations. The structures are (a) wild-type B-chain
conformer showing CDR1 (colored cyan), CDR2 (green), CDR3
(yellow) and several mutational sites; (b) mutant F29A; (c) D102R;
and (d) M111A. For figures (b)−(d), the wild-type conformation
surrounding a selected sequence position is shown in blue, the top-
rank-ordered dDFIRE structure from the generated ensemble is
shown in green, and the lowest-rank ordered dDFIRE conformation is
shown in red. Surrounding local side-chains are highlighted in the
respective colors.
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Figure 7 presents predictions from additional servers as a
part of the assessment of modeling methods. The servers
include mCSM,37 PoPMuSiC,18 and I-Mutant3.0.16 The
mCSM strategy is a complementary approach to SDM and
specifically applies a novel graph-based signature approach
which extends the concept of the interatomic distance patterns
to a residue-environment description for the modeling of
residue substitutions. The PoPMuSiC predictor uses statistical
potentials and is based on a formalism that models a linear
combination of energy functions, where proportionality
coefficients are fitted and vary with the solvent accessibility
of the mutated residue. The third web server is the I-
Mutant3.0, which is based on a support vector machine
algorithm and applies a statistical potential to score mutations.
Although the results from the three servers show poor

correlations to experimentally measured values of ΔTm, the
modeling strategies do detect one or two hot spots in the
sequence−tolerance landscape. The three top-ranked sub-
stitutions from mCSM and PoPMuSiC are Y98A, M111A/
V107I (or M111A), and F29A. From I-Mutant3.0, the three
are R70A, Y98A, and F29A. All three servers failed to detect
D102R and incorrectly modeled F29A as a false positive.
To help resolve why the charge-reversal D102R and several

hydrophobic substitutions are difficult to predict, a linear
scaling approximation was constructed as a model system to
explore if a more accurate solvent description can correct the
difficulties of modeling changes in polarization effects. The
model system is assembled by the addition to dDFIRE a
linearly weighted generalized Born implicit solvent model
(GBMV2).38 The GBMV2 model has been successfully
applied to modeling A3 for calculating thermal unfolding
profiles of the wild-type form and template-based homology
models22 and the conformational transition of A → B upon
unfolding.27

The linear scaling model is given by the following net sum

G G G

G

1/

1/
fold unfold fold unfold

dDFIRE
f fold

GB

u unfold
GB

ε

ε

ΔΔ = ΔΔ + Δ

− Δ
− −

(1)

where ΔΔGfold−unfold
dDFIRE is the energy difference between a mutant

conformation and the wild-type structure computed for both
the folded (RosettaBackrub) and unfolded (simulations) forms
using the dDFIRE potential function. The term ΔGfold

GB is the
GBMV2 solvent free energy for the folded conformation
computed as the difference between the mutant and WT form,
and similarly, ΔGunfold

GB is for the unfolded conformation.
Unfolded conformations are modeled chains with large
measures of the radius of gyration and overall lack of
secondary structure.22,27 The terms εf and εu are scaling
parameters determined from a linear fit to the experimentally
obtained ΔTm for each mutant.
Using only the B-chain conformer, Figure 7d reports the

linear scaling model with εf fitted to ∼20 and εu ∼ 10 for 18
mutants selected from the experimental data set. We find the
correlation coefficient to be r = ∼0.8, a significant improve-
ment from the routine application of simulations of modeling
only the folded state. We should note that merely including the
unfolded state scored by dDFIRE is not adequate to improve
the correlation, particularly that of D102R and K104G.
Conversely, the GBMV2 energies for charge deletions when
properly weighted contribute favorably to yielding a more
accurate correlation. In general, the importance of contribu-
tions from dDFIRE and GBMV2 depends on the change in the
solvent exposure at the substitution site of the native
conformation versus the unfolded form.
The reweighting of the solvent terms in predictive models is

not a new idea and has been the subject of many investigations
of continuum models for computing solvent energies of
protein structures.39−44 For the ideal model, εf = εu = 1, which
describes a condition suitable for modeling substitutions that
do not alter the ionization or induce significant conformational
changes of the surface polarity. For the work presented here,

Figure 7. Modeling 18 sequence substitutions of the B-chain conformer of A3. (a) mCSM server37 predictions showing r ∼ 0.5. (b) PoPMuSiC
server18 with r ∼ 0.3. (c) I-Mutant3.0 server16 predictions showing r ∼ 0.4. (d) Linear scaling approximation of scoring mutations by a combined
dDFIRE statistical potential and a weighted generalized Born (GB) implicit solvent model applied to a two-state model of the folded and unfolded
conformations; the linear regression correlation coefficient is r ∼ 0.8.
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the high value of εf reflects structural changes not adequately
captured when conformations generated by the RosettaBack-
rub simulations are introduced to the GBMV2 reaction field
for mutations that affect the dipolar reorganization. Likewise,
εu accounts for the lack of an extensive conformational
ensemble generated for the mutants.
From the plot of Figure 7d, achieving good universality in

the fitted parameters appears noticeably weak for several
single-point mutants, particularly the charge deletions R70A
and K104G. These two ion-pair breaking mutants are better
modeled by allowing the scaling parameters to account for
local environment-specific effects along the protein chain as
well as amino acid type and substitution, namely, the form of εf
→ εf(xi, α → β), where xi is the spatial location of the residue i
of type α to be mutated to type β. To test this idea, we
increased the contribution of ΔGfold

GB by setting εf = 12. The net
result improves −ΔTm predictions for R70A ∼ 10 °C and
K104G ∼ 8 °C, suggesting that the fitting accuracy of mutants
that alter ion-pairs should be treated differently in a structure-
based approach.
The last set of calculations is from the published strategy

developed by Rooman and co-workers45 and is designated as
HoTMuSiC. This method applies statistical potentials and
unlike the empirical relationship given above of modeling the
linear correspondence between the experimentally measured
ΔTm versus the predicted ΔΔG, the method HoTMuSiC
allows a direct comparison between ΔTm values from
measurements and predictions. Using the HoTMuSiC web
server,45 Figure 8 reports a scatter plot of the experimental

ΔTm versus predicted ΔTm and shows an r = 0.4. Similar to the
other predictions, HoTMuSiC detects correctly hot spots at
positions Y98 and M111, however showing a false positive for
F29A. Also, as observed with other web-based predictions, the
method fails to detect D102R and R70A as outliers.

3. CONCLUSIONS
The sequence tolerance of the sdAb A3 with an unusually high
thermal stability was investigated by a combined computa-
tional and experimental study. The experimental results
demonstrated several hot spots in the sequence fitness
landscape of A3 and provided insights into why this particular
sequence mapped onto an sdAb scaffold is highly stable in the
folded conformation. Complementary to the experimental
study, the mutagenesis results provide a data set for evaluating
different computational strategies aimed at the structure-based
design of single-domain antibodies. Toward this end, an

assessment of prediction methods was provided in determining
a relationship between calculations and experimental changes
in melting temperatures. The analysis showed that different
methods were able to detect outliers in fitness space; however,
the predictions generally suffered in accuracy when modeling a
selective set of electrostatic and hydrophobic mutations. To
understand the limitations in applying statistical potentials and
knowledge-based scoring functions in ranking mutations, a
computational model was tested of combining an all-atom
statistical potential with a scaled implicit solvent model to
calculate the net contribution from the two-state model of
folded and unfolded conformations. The results showed that
integrating a weighted contribution of solvent molecular
electrostatics with a statistical potential function may offer
improvements in the rank order of sequence substitutions. As
with any scaling function, a poor universality in the fitted
constants for different protein systems may arise and require a
readjustment for an optimal fit. Relative to the computationally
fast empirical methods, the proposed model requires an
increase in the computational demand due to the sampling of
conformational space (folded and unfolded) and the scoring of
structures with a physics-based implicit solvent model. For
future protein designs of sdAbs, a hybrid approach is likely the
best strategy of applying the scaling model as a refinement tool
for modeling charge deletions and/or substitutions that lack
consensus among the available empirical models.

4. COMPUTATIONAL AND EXPERIMENTAL
METHODS
4.1. Computational Approach. Starting conformations

for modeling were taken from the recently reported crystallo-
graphic structure of the A3 sdAb determined to a resolution of
2.13 Å (PDB 4TYU).8 The structure is a dimeric assembly of
two distinctive chains, one denoted as the A conformer and the
other the B-conformer. Because of the lack of a fully formed
disulfide bond in the electron density maps of each chain, the
S−S bond was modeled. Other modeled A3 conformations
were taken from the crystallographic structures PDB 4W70,
4TYU, 4U7S, 4W68, 4W81, and 4U05. Sequence tolerance
profiles for each conformer were generated by the
RosettaBackrub simulation method developed by Smith and
Kortemme.23 The RosettaBackrub protocol consisted of
Monte Carlo simulations of a flexible backbone, and the
side-chain moves in the Rosetta modeling program. The
simulations were followed by a combination of simulated
annealing and genetic algorithm optimization methods in the
RosettaBackrub to enrich for low-energy sequences.
For the application presented here, we selected to model the

sequence−fitness profiles for regions F29−M34, P55−Y60,
Y98−K104, D102−M111, and N112−Y118, where amino
acids were ranked individually for each sequence position by a
predicted frequency of tolerance.23 The regions were selected
to model the sequence and structurally variability of the CDRs.
It should be noted that the number of residues in a sampling
window for computing a tolerance profile is limited due to the
computational task of modeling sequence permutations. The
generalized Rosetta modeling version26 was applied, and the
number of generated conformations was set to 20 for each
residue position, the Boltzmann factor set to 0.228, and the
fitness score reweighting was given a value of 0.4.24 Sampling
convergence from RosettaBackrub was established by noting a
little change from increasing the number of generated
conformations to 50 for a selected set of mutations. Simulation

Figure 8. Modeling sequence substitutions of the B-chain conformer
of A3 using the server HoTMuSiC.45 Comparison is presented of
experimental measurements ΔTm vs predictions. The linear regression
correlation coefficient is r = 0.4.
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parameters were set similar to that of computing the
sequence−fitness profiles. Two scoring functions were applied
to the generated ensembles and consisted of the Rosetta 3.1
energy function28 and the statistical potential dDFIRE.29

The set of 20 folded conformations generated from the
RosettaBackrub (WT and mutants) plus the corresponding X-
ray crystal structures were subjected to the energy
minimization by the method of steepest descent minimization
for 50 steps using the CHARMM22 + CMAP potential energy
function46 combined with the GBMV2 implicit solvent model.
For generating the unfolded states of the WT form, parallel-
tempering simulations were carried out by using the self-
guided Langevin dynamics (SGLD) simulation method to
sample the conformational space.47 A set of conformations
were extracted at the upper bound ensemble temperature of
475 K with the selection criteria of satisfying large values of
radius of gyration and having minimum residual secondary
structure content.22 An integration time step of 2 fs was used
for all simulations. The GBMV2 parameters for the simulations
and all scoring were set to values of β = −12 and P3 = 0.65 to
smooth the energy surface. The hydrophobic cavitation term
was modeled by applying the solvent-exposed surface area of
the protein solute with a surface tension coefficient set to a
value of 0.015 kcal/(mol Å2).
SGLD parameters of the friction constant were set to γ of 1

ps−1 for all heavy atoms, the guiding factor λ set to a value of 1,
and the averaging time tL was set to 1 ps. The selection of these
values was taken from previous studies of the SGLD
model.22,27,32 Nonbonded interaction cutoff parameters for
electrostatics and van der Waals terms were set at a radius of
22 Å with a 2 Å potential switching function. Covalent bonds
between the heavy atoms and hydrogen atoms were con-
strained by the SHAKE algorithm.48 Simulations were
performed using the Multiscale Modeling Tools for Structural
Biology49 and the CHARMM simulation program50 (version
c35b2). Simulations were carried out using 32 replica clients,
and the frequency of exchanges was set to every 1 ps of
simulation.
For generating the mutants in the unfolded conformations,

side-chains of the WT unfolded conformations were replaced
in the ensemble by using the SCWRL modeling program51 and
were subjected to energy minimization using the same
CHARMM22/GBMV2 force field. All ensembles were
eventually scored with dDFIRE and GBMV2 for final analysis.
4.2. Mutagenesis and Characterization Methods. Site-

directed mutagenesis for the construction of 18 mutants of the
A3 sdAb was performed using the QuikChange site-directed
mutagenesis kit (Agilent); mutations were confirmed by
sequencing (Operon). Protein was expressed and purified
from the periplasm as a monomer using a combination of
osmotic shock, immobilized metal affinity chromatography,
and size exclusion chromatography, as described previously.2,4

The purified protein used for all experiments was in a
monomeric form. The protein concentration was determined
based on the absorbance at 280 nm using a nanodrop 1000
spectropolarimeter (ThermoFisher). Samples were stored
refrigerated in phosphate-buffered saline until characterization.
The Tm of each mutant was measured by CD using a Jasco J-

815 CD Spectropolarimeter equipped with a PTC-423S Peltier
for temperature control, as previously described.3,4 The CD
measurements were done at least in duplicate, often with
several different preparations of the protein. The Tm values

estimated from replicate measurements made by CD were all
within less than a half degree of each other.
Surface plasmon resonance utilizing a ProteOn XPR36 (Bio-

Rad) was employed to determine the binding of each mutant
to surface-immobilized SEB antigen.2,4 All SPR measurements
were done at least in duplicate, often with several different
preparations of each mutant as a monomer. The KD
determined by SPR for replicates agreed within at least a
factor of 3. Other than the mutants at P55, the KD values were
considered to be essentially equivalent to wild-type, as KD
determinations can be problematic when off rates are so slow.
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