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ABSTRACT: The direct synthesis of complex chemicals
from simple precursors (such as syngas) is one of the main
objectives of current research in heterogeneous catalysis. To
rationally design catalytic materials for this purpose, it is
essential to identify the critical elementary reaction steps that
ultimately determine a catalyst’s activity and selectivity with
respect to a desired product. Unfortunately, the number of
potentially relevant elementary steps is in the thousands, even
for relatively simple target species like ethanol. The challenge
of identifying the critical steps is thus akin to finding the
proverbial needle in a haystack. Recently, a model-reduction
scheme has been proposed, which tackles this problem by
prescreening the barriers of all potential reactions with
computationally inexpensive approximations. Although this route appears highly promising, it raises the question of how the
starting point of the model-reduction process can be determined. In this contribution, we present a systematic method for
enumerating all intermediates and elementary reactions relevant to a chemical process of interest. Using this approach, we
construct reaction networks for C,H,O-containing systems consisting of up to four non-hydrogen atoms (more than 1 million
reactions). Importantly, the scheme goes beyond simple bond-breaking reactions and allows considering rearrangement and
transfer reactions as well. The presented reaction networks thus cover the chemistry of syngas-based processes (and beyond) to
an unprecedented scale.

■ INTRODUCTION

Microscopic understanding of the mechanisms of chemical
processes in terms of elementary reaction steps and
intermediates is a prerequisite for the rational design of
heterogeneous catalysts. Although the experimental and
theoretical study of real catalysts in situ is still in its infancy,
much progress has been made by studying model catalysts,
such as single crystal surfaces. The state-of-the-art computa-
tional approach to this problem is the use of DFT calculations
for determining the kinetics of elementary reactions, which are
then fed into microkinetic models (e.g., mean field or kinetic
Monte Carlo, kMC, simulations).1 In particular, great effort
has been devoted to the study of heterogeneous transition
metal (TM) catalysts for such essential processes as ammonia
synthesis, CO methanation, or the water−gas shift reac-
tion.2−13

Catalyst material design is a highly complex optimization
problem.14 On the one hand, the search space of potential
catalysts is huge. Even when only considering TMs, numerous
surface terminations and orientations, active sites, and alloy
compositions need to be taken into account.15,16 On the other
hand, there are multiple relevant objectives to aim for, ranging
from catalyst turnover frequency and selectivity to other
economic considerations such as material cost, processability,

and stability.17 Finding the optimal catalyst is therefore only
possible if thousands of potential candidates can be screened
effectively.
The first-principles (1p) microkinetic approach mentioned

above is, unfortunately, far too computationally demanding to
be applied in this context. This is mainly due to the large
computational effort required for determining activation
barriers (and consequently reaction rates) using chain-of-states
methods such as the nudged elastic band.18−20 Following the
pioneering work by Nørskov and co-workers, it has therefore
become common to focus on a single rate-limiting step in
screening studies, greatly reducing the number of barriers that
need to be calculated (and assuming that the mechanism of the
process does not change for different catalysts or con-
ditions).11,21,22

Even for this elementary step of interest, the barrier is
typically not calculated explicitly for each catalyst in a
screening study. Instead, the Brønsted−Evans−Polanyi princi-
ple is used, which postulates a linear relationship between the
reaction and activation energies.23,24 Furthermore, similar
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linear scaling relationships exist between atomic and molecular
adsorption energies and between atomic adsorption energies
and electronic properties of the metal surface (most
prominently, the d-band center of TMs).2,25−28 When
combining these scaling relations, the turnover frequency of
a complex process can often be related to one or two molecular
adsorption energies. This makes the large-scale screening of
catalysts possible.5,6,21,26,29

The strategies outlined above can be summarized under the
label “model reduction”. In principle, the kinetics of a chemical
process depends on a number of coupled elementary steps (the
reaction network), but the full complexity does not need to be
taken into account to make predictions. Model reduction
generally becomes possible if a process is simple enough so
that the full model can be studied on (at least) one
representative catalyst. The essential features of the full
model can then be extracted using sensitivity analysis or rate
limitation arguments.30−34

For more complex processes (e.g., the synthesis of higher
alcohols from syngas), solving the full model, however,
becomes prohibitively expensive. Consequently, model reduc-
tion is even more desirable for these cases, but there is no clear
prescription on how it can be achieved systematically. Most
commonly, a fairly large but still tractable reaction network is
postulated as a starting point.35,36 This is somewhat
unsatisfactory, however, as the initial reaction network is
then biased by the chemical intuition of the researcher and
important steps may be missing.
It should be noted that, although surface catalysis is our

main motivation, the above discussion also pertains to other
fields where kinetic modeling is performed, for example, in
combustion or solution chemistry.37,38 The main difference is
that gas-phase chemistry tends to be more complex (i.e., the
reaction networks are larger) than surface chemistry, whereas
the individual calculations of reaction energetics are signifi-
cantly less expensive. Meanwhile, the basic workflow of
identifying a reaction network, determining rates, and running
microkinetic simulations is the same.
In principle, an unbiased and automatic construction of

reaction networks is possible by exploring a high-dimensional
potential energy surface using the electronic structure theory.
In the gas phase, this has, for example, been applied for
predicting fragmentation in electron-impact mass spectrome-
try.39,40 Similarly, reaction mechanisms in solution have been
explored, often using implicit solvation models for a simplified
treatment of the solvent environment.41−43 At the core, all of
these methods rely on a large number of electronic structure
calculations, either to drive (biased) molecular dynamics
simulations or to find minimum energy paths. As an example,
the “context-driven” exploration algorithm of Simm and Reiher
required more than 80000 geometry optimizations and ca.
10000 transition-state searches to unravel the first steps of the
formose reaction.41 This is clearly prohibitive for calculations
on extended surfaces.
To deal with more complex chemistries and environments,

several knowledge-driven approaches have been proposed in
the chemical engineering literature, such as the reaction
mechanism generator and the reaction description lan-
guage.38,44−49 Here, all elementary reaction types that are
expected to occur under the given conditions are encoded into
heuristics, so-called “reaction rules”. Such approaches are
extremely powerful, because they allow constructing chemically
meaningful reaction networks without running expensive

quantum mechanical calculations a priori. Furthermore, the
differentiation of elementary steps into reaction types allows
the use of reasonably accurate empirical expressions for
reaction rates and thermochemistry.44,50 In this way, a starting
point for microkinetic simulations can be obtained, and the
most important rates can subsequently be refined with
electronic structure calculations.37

Both the electronic structure and rule-based approaches
have something in common that the reaction network is
generated in a stepwise fashion, focusing on the most
important steps between the educt and product. In a recent
paper, Ulissi et al. took an inverse approach to this problem by
starting from a large set of possible elementary reaction steps.51

The key feature of their method is that reaction energies and
rates are estimated with inexpensive approximations using
machine learning and scaling relations, whereas the most
important steps are initially identified via simple rate limitation
arguments. For these steps, rates are subsequently determined
through DFT calculations, whose results are in turn used to
refine the machine-learning model. In this way, the size of the
model is continually reduced, whereas the accuracy for the
most relevant steps is increased. Once the most important
subnetwork is found with the desired accuracy, a full (mean-
field) microkinetic simulation can be performed.
In our view, this is an extremely promising route for

understanding complex chemical reactions on catalyst surfaces.
There remains, however, some bias in how the set of possible
fragments and elementary reactions is initially defined. In the
case of ref 51, only simple bond-breaking reactions were
considered. Rule-based approaches can include more complex
reactions, but this still leads to bias in the selection of the
reaction rules that are to be included.
The goal of this publication is therefore twofold. First, an

algorithm for the systematic and unbiased enumeration of
elementary reaction steps is provided, focusing on reactions of
organic molecules. Second, this method is used to generate
reaction networks for carbon-, hydrogen-, and oxygen-
containing molecules. The largest data set reported contains
more than 1 million reactions and thus represents an
unprecedentedly complete view of the fundamental building
blocks of reaction mechanisms in heterogeneous catalysis. A
particularly interesting aspect is the richness of more complex
elementary reactions (e.g., rearrangements or transfer reac-
tions) that emerges from this analysis.
In contrast to most previous approaches to the automatic

generation of reaction networks, we do not focus on a given set
of educts (or a desired product). Instead, our objective is to
construct a reaction network connecting all fragments within a
given subset of chemical space (bounded, e.g., by molecular
size and composition). Consequently, the presented algorithm
consists of (1) the enumeration of all fragments within a
chemical subspace and (2) finding all elementary reactions that
connect them. In this sense, our work is more in the spirit of
previous effort directed at enumerating molecules in chemical
space (see, e.g., the GDB databases of Reymond and co-
workers).52,53 We hope that the fragment and reaction
databases presented in this paper can become similarly useful
to researchers in both chemical and data-driven research, as the
GDB data sets of closed-shell molecules already are.54−56

■ RESULTS AND DISCUSSION
Enumeration of Complete Chemical Subspaces. We

begin with some definitions. The “size” of a molecule is
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designated by the number of non-hydrogen atoms it contains
(i.e., its heavy atom count). Chemical subspaces are defined by
the elements included and the size of the largest molecules.
[CHO]4 thus refers to the set of all molecules containing at
least one C, H, or O atom and at most four C and/or O atoms.
A complete chemical subspace is defined as a set of molecules,
where breaking any bond in any molecule creates fragments
that are also part of the subspace (see Figure 1). Note that this
definition of completeness does not preclude additional
boundary conditions, for example, regarding the number of
heteroatoms in a molecule or the number of (fused) rings (see
below). In the following, we will use [CHO]n subspaces to
illustrate the concept. The generalization to more elements and
larger subspaces (within the realm of organic chemistry) is
trivial.
A molecule is defined by its connectivity, that is, by the

number and types of atoms it contains and whether they are
connected by a chemical bond (regardless of bond order). As a
consequence, different resonance structures or stereoisomers
are counted as a single species (see below). Throughout,
simple valence rules are enforced, for example, that all carbon
atoms are at most connected to four other atoms. In other
words, bond orders are used as an auxiliary quantity to enforce
valence rules, but they are disregarded when comparing
whether two molecules are identical. Molecular information
(e.g., composition, connectivity, and bond order) is stored and

manipulated using the RDKit package.57 A flowchart depicting
the enumeration algorithm is shown in Figure 1a.
The algorithm starts with a list including the simplest closed-

shell molecules within the targeted chemical space (i.e., H2,
CH4, and H2O in [CHO]n spaces). This list is iteratively
enlarged. In step 1, all saturated molecules up to a given size
are constructed. This is achieved by incrementally replacing all
hydrogen atoms with −CH3 and −OH groups until the
maximum size is reached. In step 2, rings are introduced by
connecting atoms that are separated by at least one other atom.
In step 3, bond orders are incremented wherever the valence of
the adjacent atoms allows it. Up to this point, the canonical
SMILES format in RDKit is used to avoid duplication of
molecules due to, for example, atom ordering or resonance
structures. Furthermore, implicit hydrogen atoms are assumed
to saturate all free valences. In step 4, open-shell (poly)radicals
are then introduced by iteratively removing these hydrogen
atoms. Exemplary structures added at each step are shown in
Figure 2a.
Because of the presence of open-shell systems, additional

precaution needs to be taken to avoid duplication. For
example, neighboring radicals connected by single or double
bonds are equivalent to the corresponding closed-shell species
with the next higher bond order and therefore excluded. There
are also more subtle equivalencies, in particular resonance
structures. Consequently, in the final step 5, all such redundant

Figure 1. (a) Algorithm for the generation of complete chemical subspaces. The numbering of the sections refers to the explanations in full text. In
the “Sanitize” step, implicit hydrogen atoms are added or removed where necessary and duplicate molecules are removed from the list. The “Found
new?” step checks whether new structures have been added to the database in the previous iteration of the current section. (b) The complete
[CHO]2 subspace. Breaking any bond in any of the depicted molecules creates fragments that are also part of the subspace.
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molecules are excluded, so that only molecules with unique
graphs remain in the list. Examples of redundant structures are
shown in Figure 2b. The canonical SMILES format in RDKit
does not map such structures to the same string and
consequently cannot be used to check for isomorphism in
these cases. A Python function that can be used to this end is
provided in the Supporting Information.
The subspaces generated in this manner can be subjected to

additional boundary conditions (filters), regarding composi-
tion or structural motives. It is important to reemphasize that
this does not compromise the completeness of the space as
defined above. Although not strictly necessary, filtering the
chemical space is very beneficial for excluding uninteresting
but combinatorically frequent structural motifs.53 What is
deemed interesting obviously depends on the application.
In the present work, only systems with a single ring are

considered, and systems with more than two heteroatoms (i.e.,
oxygen) are excluded. Additionally, triple bonds in rings are
excluded. For the chemical spaces considered (up to n = 4),
these are reasonable choices, as this allows excluding
frameworks with fused three-membered rings and oxygen
chains, which are almost universally unstable. However, such
boundary conditions should only be adopted after careful
consideration. Note, for example, that through the present
choices ozone is excluded, which could be a relevant chemical
under certain conditions. Also, for larger molecules, multiple
rings and heteroatoms are certainly reasonable, and the filters
should accordingly be adapted. In the following, we always
refer to chemical subspaces subject to the above filters. These
are designated as [CHO]n

F, to distinguish them from the
unfiltered sets. Note that the filters do not apply to the smaller
spaces (n = 1, 2), as there are no two-membered rings and
there cannot be more than two heteroatoms in these spaces.
Throughout this manuscript, all molecules are depicted in

their charge neutral state. This corresponds to the situation
expected on a TM surface (where additionally any spin
polarization is generally assumed to be quenched) or in the gas

phase but certainly not in (polar) solution or on an oxide
surface. For our purposes, the distinction is irrelevant, as the
elementary reactions for charged and uncharged species are
identical. Similarly, the possible elementary reactions for
different stereoisomers are the same (though the reaction
energetics will in general be different). This also applies to the
equivalencies shown in Figure 2b. The “correct” Lewis
structure is to some extent a matter of perspective, and we
do not intend to judge which representation is more physically
meaningful. Although it can be interesting to, for example,
debate the correct bond order of C2, this question is not
relevant for the present work.58,59

Enumeration of Elementary Reactions. Mathematically,
a reaction network can be seen as a directed bipartite graph G
with two types of nodes, representing molecules and reactions
(see Figure 3a).60−62 Molecule nodes are connected to
reaction nodes via directed edges, but molecules are not
directly connected to each other. This is similar to the “virtual
flask” concept used by Simm and Reiher.41 The directions of
the edges in Figure 3 should not be misunderstood as imposing

Figure 2. (a) Illustration of exemplary structures added at each step of
the algorithm in Figure 1. After step 1, the set consists of acyclic
saturated molecules. In step 2, intramolecular bonds are added to
form cyclic saturated structures. In step 3, bond orders are
incremented to form unsaturated molecules. In step 4, hydrogen
atoms are removed to form open-shell systems. (b) Examples of
redundant structures filtered by the algorithm in step 5.

Figure 3. (a) Simple reaction network as a directed bipartite graph.
Large nodes represent molecules, and small nodes represent reactions.
(b) Transfer reactions can be derived from combinations of bond-
breaking reactions. In this case, the dissociation of methane into the
methyl radical and atomic hydrogen (A) and the dissociation of water
into the hydroxyl radical and atomic hydrogen (B) are combined to
define a new reaction (C), in which methane reacts with the hydroxyl
radical to form the methyl radical and water. (c) Derivation of
rearrangement reactions from G0. Both the oxygen-centered methoxy
radical and the carbon-centered methanol radical can dissociate into
formaldehyde and atomic hydrogen (reactions A and B, respectively).
As reactions A and B share both products, a new reaction (C) can be
defined, in which the methoxy radical rearranges to the (carbon-
centered) methanol radical.
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a directionality on the reaction. Indeed, all reactions are
assumed to be reversible. The directed edges instead
differentiate the molecule nodes connected to a given reaction
node into two sets. The molecules belonging to each set can be
both products and educts in the reaction, but molecules from
the two sets cannot react with each other. Consequently, the
directions shown in the figures are arbitrary, in the sense that
the graph is equally valid if all edges connected to a reaction
node are reversed. This representation can in principle treat
reactions with an arbitrary number of educts and products.
The goal of this work is the enumeration of the elementary

reactions in a chemical subspace, that is, all reactions that can
take place in a single step. However, there is no rigorous
definition of what makes a specific reaction elementary, based
solely on structural information. To circumvent this problem,
we propose a hierarchical method of deriving increasingly
complex reactions.
We begin with the simplest possible reaction type, namely,

the dissociation of a bond in a molecule:

A B C⇋ + (1)

Thanks to the completeness of the subspaces considered
herein, all nodes of this simple reaction network are known
from the outset. To construct the corresponding graph G0, we
simply need to break each bond in each molecule and connect
the original molecule and its fragments via a reaction node. We
refer to this graph as the “Generation 0” (G0) network in the
following.
From G0, we can derive the next more complex set of

reactions. This is done by analyzing which of the reactions in
G0 share one or more products. In general, it holds that given
two reactions

A B C⇋ + (2)

D B E⇋ + (3)

a new bimolecular reaction can be defined as:

A E D C+ ⇋ + (4)

This new reaction is characterized by the simultaneous
dissociation of one bond and the formation of another. Such
reactions, for example, include transfer reactions, as shown in
Figure 3b.
Similarly, given the reactions

A B C⇋ + (5)

D B C⇋ + (6)

a new reaction can be defined as:

A D⇋ (7)

Again, a bond is dissociated and another is formed, with the
difference that the reaction is a unimolecular rearrangement
(see Figure 3c).
In this manner, a new “Generation 1” graph G1 that contains

all nodes and edges of G0 and the new nodes and edges
corresponding to these rearrangement and transfer reactions
can be defined. The same procedure can now be applied to G1,
to form the next more complex graph G2, and so forth.
It should be noted that this procedure increases the

complexity of reactions both in terms of the number of
bonds that are broken/formed and of their molecularity. As an
example, consider two reactions in G1:

H O H OH2 ⇋ + (8)

CH H O CH OH OH3 2 2 3+ ⇋ + (9)

The reactions share a reactant (OH) and can therefore be
combined to a new reaction:

CH H O H CH OH H O3 2 2 3 2+ + ⇋ + (10)

Reaction 10 is now trimolecular and can be interpreted as a
hydrogen-mediated version of reaction 9. In principle, G2 will
contain a very large number of such reactions, which would not
in general be considered elementary. Indeed, higher than
bimolecular reactions are usually excluded on entropic grounds
in microkinetic studies of surface reactions.63

In the present work, we therefore only consider uni- or
bimolecular reactions. Still, it is important to note that the
framework is general enough to derive reactions with higher
molecularity. A special case where this becomes relevant is
reactions in which solvent molecules (e.g., water) participate,
for example, in electrochemical processes. As solvent molecules
are available in extremely high concentration, the entropic
argument does not hold in this case. It could then be advisable
to include trimolecular reactions with water. Similarly, effects
of acid or base catalysis (assuming high concentrations of H+

or OH−) can be included in this way.
Properties of [CHO]n

F Subspaces. Using the above
method, [CHO]n

F subspaces with n = 1−4 were constructed.
The corresponding data sets (SMILES strings) are hosted
online at the reaction network repository (http://rnet.theo.ch.
tum.de).64 Unsurprisingly, the complete spaces are much larger
than the corresponding sets of closed-shell molecules (see
Table 1). For example, [CHO]4

F contains 679 species, of

which only 99 are simple closed-shell molecules as included in
other enumerated databases, such as the GDB-17 database or
the derived QM-7 set.53,54 The data set presented here
therefore includes parts of chemical space that are unexplored
to date. Beyond the application at hand (constructing chemical
reaction networks for surface catalysis), we therefore expect the
presented data to be highly valuable for training and validating
machine-learning methods.
It also becomes clear from the table that filtering redundant

molecules is absolutely essential, as these structures become
very abundant for larger subspaces (e.g., 236 for [CHO]4

F). In
Figure 4, the molecular weight distribution of the chemical
subspaces is shown. This reflects the exponential growth of
chemical subspaces with increasing molecular size.
An interesting feature of the [CHO]n

F subspaces is that they
contain a large number of constitutional isomers for some
compositions. For example, there are 48 isomers with the
composition C3H4O in [CHO]4

F. Of these, 12 are common
closed-shell molecules (e.g., acrolein and cyclopropanone),
whereas the rest are open-shell species (see Figure 5).
Although many of the latter may seem rather exotic, they are

Table 1. Statistics of Chemical Subspace Generation

subspace

acyclic,
saturated
backbones

all
saturated
backbones

closed-
shell

molecules
all

fragmentsa
redundant
structures

[CHO]1
F 2 2 2 9 0

[CHO]2
F 5 5 9 31 0

[CHO]3
F 10 13 28 131 23

[CHO]4
F 20 32 99 679 236

aRedundant (e.g., resonance) structures are not included in this
number.
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absolutely essential for our purposes. On the one hand, they
can represent important (even if short-lived) intermediates in a
reaction network. On the other hand, even if that is not the
case, a molecule can be part of an elementary dissociation
reaction that is used to construct an important higher-level
rearrangement or transfer reaction (see above), without itself
being included in the final reaction network.
Compositions with high isomeric abundance may play an

important role in the selectivity of complex processes. All the
isomers in Figure 5 can in principle rearrange into each other
(though not all such rearrangements are kinetically feasible).
Specifically, this will be the case if the internal rearrangement
kinetics of the transiently formed species can compete with the
kinetics of its bimolecular decay reaction. Among other things,
this depends on the concentration of reaction partners. If the
coreactant is abundant, the rearrangement kinetics may be too
slow to influence the outcome of the reaction, whereas the
(unimolecular) rearrangement will dominate if the coreactant
concentration is low. Where these regimes actually lie in terms
of realistic reaction conditions is obviously dependent on the
process. As microkinetic models of surface reactions generally
do not consider rearrangement reactions at all (or assume that
they are equilibrated), their role may have been overlooked in
some cases (see below).
Properties of [CHO]n

F Reaction Networks. The sizes of
the zeroth and first generation reaction networks derived for
[CHO]1−4

F are shown in Table 2. The number of reactions for
both G0 and G1 increases exponentially with the size of the
largest molecule in the subspace. Even for relatively small sets,
the number of reactions in G1 is very large. Specifically, there
are more than 20000 reactions for [CHO]3

F and more than 1
million for [CHO]4

F.
To understand the structure and composition of these

networks, it is instructive to consider the simplest case of the
[CHO]1 graphs. The corresponding G0 graph is shown in
Figure 6a. As the subspace only contains methane, water, and
the corresponding radicals, the only elementary reactions in G0
are dehydrogenations. Accordingly, H is at the center of the
graph and connected to reactions with all other species
arranged at the periphery. Furthermore, there is no reaction
connecting carbon- and oxygen-containing molecules, effec-
tively splitting the network into two sides.
This changes for the G1 network (see Figure 6b). Here,

multiple new transfer reactions are included both among and
between species from both sides. Because of the simplicity of

the subspace, these are all hydrogen transfer reactions. For
example, there are a number of disproportionation reactions
(e.g., OH + OH → H2O + O), as well as regular transfer
reactions (e.g., H2O + CH3 → OH + CH4).
For larger subspaces, such graph representations become

increasingly complex, and their visual inspection has few
benefits (beyond aesthetics). It is however interesting to note
that the qualitative topology of the G0 network for [CHO]3

F

(see Figure 6c) resembles the one for [CHO]1. In both cases,
the hydrogen atom is at the center and connected to reactions
with almost all species, whereas some molecules are at the
periphery and only connect to very few reactions.
Going beyond the first generation of derived reactions, the

complexity of the individual reactions further increases but not
necessarily their number. This is because the reaction
derivation scheme is self-terminating. There are a finite
number of combinatorically feasible reactions of the type A
+ B → C + D for each subspace. For [CHO]1, these are
completely enumerated within two generations (with only four
additional reactions in G2).
However, enumeration for the next larger subspace

([CHO]2) only terminates after four generations, with more
than 600 reactions in G2. This trend continues for larger
subspaces, so that complete enumeration of all reactions
quickly becomes unfeasible. Of course, the point of the
hierarchical enumeration scheme is not to enumerate all
combinatorically possible reactions65 but to exhaustively
enumerate only the ones that are simple enough to occur in
a single step. To this end, it is instructive to look at the
chemistry of the respective reactions.
The G0 reactions by construction only consist of simple

bond-breaking steps, whereas later generations can be
decomposed into combinations of bond-breaking and
formation steps. Examples of reactions from G0, G1, and G2
are shown in Figure 6d. It becomes clear that G2 reactions are
already quite complex. In the example shown, two bonds are
broken and two are formed. It can be assumed that the
reaction is very unlikely to occur in a single step. Here, it is
important to reemphasize that throughout this manuscript,
“bond breaking” refers to changes in connectivity, not to
changes in the bond order or hybridization. Accordingly,
concerted shifts of electron pairs, as they are commonly
postulated in physical organic chemistry, do not affect the
complexity of reactions in our scheme.
The purpose of this paper is to define reaction networks for

surface reactions, particularly on TM catalysts. From this
perspective, we argue that reactions in G2 and beyond should
not be considered elementary. Indeed, reaction networks
postulated in the literature typically almost exclusively consist
of G0 reactions, in addition to surface adsorption/desorption
and (if explicitly resolved, for instance, in kMC simulations)1

diffusion steps.
The comparatively large reaction network [for acetaldehyde

and ethanol synthesis on Rh(111)] used as the starting point
by Ulissi et al. consists, for instance, of 249 bond-breaking
reactions and 8 adsorption/desorption reactions (for H2, CO,
H2O, CO2, methane, methanol, ethanol, and acetaldehyde).51

This network was constructed from initially 99 intermediates
with up to 4 non-hydrogen atoms. In contrast, the [CHO]3

F

subspace (which is the smallest complete set that includes
ethanol) is significantly larger, containing 131 intermediates
and 387 bond-breaking reactions. Additionally, several OCCO
species are considered in ref 51, though they were not found to

Figure 4. Molecular weight distributions in the [CHO]n
F subspaces.

The histograms use a bin size of 5 Da.
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be relevant in the final mechanism. The [CHO]4
F subspace

(which includes these species) contains 679 intermediates and
3149 bond-breaking reactions.
These G0 reaction networks thus represent an unprecedent-

edly complete starting point for model reduction studies of this
type. Beyond this, the [CHO]3

F G1 reaction network also
contains more than 20000 transfer (Figure 3b) and rearrange-
ment reactions (Figure 3c), which are entirely absent in most
literature-reported reaction networks. This absence can be
attributed to several factors.

Figure 5. Isomeric structures with the composition C3H4O contained in the [CHO]4
F subspace.

Table 2. Sizes of Zeroth- and First-Generation Reaction
Networks Derived for [CHO]n

F Subspaces

n G0 reaction G1 reaction

1 6 15
2 52 555
3 387 21006
4 3149 1134592
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First, reaction networks are often based on the (implicit or
explicit) assumption that most intermediates are only formed
transiently and do not persist long enough to react with each
other. This assumption would exclude a large share of the
above transfer reactions. However, some intermediates must
react with each other to form more complex chemical
structures, so a part of the 20000 reactions could still be a
part of these reaction networks. Furthermore, this argument
does not apply to the rearrangement reactions, which are all
unimolecular.
Second, it could be argued that the barriers of these

reactions are simply too high for them to play a role, although
transfer and rearrangement reactions do frequently occur in
solution and gas-phase chemistry. To the best of our
knowledge, there is little data on how TM surfaces affect the
barriers of these reactions. This is currently being investigated
by our group.
Third, there is a technical reason why such reactions are

typically disregarded, namely, their sheer number. As long as
there is little data on which reactions are likely and cannot be
disregarded, it is hard to justify why some reactions should be
included and thousands of others should be excluded. Ideally, a
quantitative study of the reaction energies and barriers of G1
reactions on TM surfaces can uncover trends that allow
defining a useful rule of thumb with respect to which reactions
are important.

■ CONCLUSIONS

In this paper, algorithms that allow the systematic enumeration
of reaction intermediates and elementary reaction steps likely

to occur in surface catalysis were presented. Some formal
aspects of the graph theoretical nature of reaction networks
were discussed, from which a hierarchy of increasingly complex
reactions was derived. We believe that the presented data sets
of fragments and elementary reactions (available at http://
rnet.theo.tum.de) will prove to be a valuable resource for the
catalysis community.
It should be emphasized that the focus of this work is on the

enumeration of all elementary reactions within a chemical
subspace, not on the elucidation of the reaction mechanism of
a specific process (which is the goal of most approaches cited
in the Introduction). Furthermore, the elementary reactions
are derived exclusively from considering how complex a
chemical transformation is in terms of changing the molecular
graph. In this sense, the approach is neither biased by (nor
does it profit from) chemical knowledge in the traditional
sense.
The presented work provides a solid basis for future model

reduction studies, aiming to extract the most relevant
elementary steps that contribute to a process of interest. In
this context, it will be interesting to explore how path-search
algorithms can be used to help in preselecting relevant subsets.
Predicting the selectivity of a catalyst toward a given product
from 1p studies is proving very challenging for complex
processes. It is likely that this is not just due to inadequacies of
the theoretical description (e.g., errors in density functional
approximations) but rather because important elementary
steps are missing from the reaction network.66

Figure 6. (a) Generation 0 (G0) reaction network for [CHO]1. (b) Generation 1 (G1) reaction network for [CHO]1. (c) Generation 0 (G0)
reaction network for [CHO]3

F. (d) Exemplary reactions from G0, G1, and G2 for [CHO]3
F, where curved arrows on the educt side indicate bond

formation and bold red bonds indicate bond breaking.
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