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ABSTRACT: The binding between two biomolecules is one of the
most critical factors controlling many bioprocesses. Therefore, it is
of great interest to derive a reliable method to calculate the free
binding energy between two biomolecules. In this work, we have
demonstrated that the binding affinity of ligands to proteins can be
determined through biased sampling simulations. The umbrella
sampling (US) method was applied on 20 protein−ligand
complexes, including the cathepsin K (CTSK), type II dehydroqui-
nase (DHQase), heat shock protein 90 (HSP90), and factor Xa
(FXa) systems. The ligand-binding affinity was evaluated as the
difference between the largest and smallest values of the free-energy
curve, which was obtained via a potential of mean force analysis. The
calculated affinities differ sizably from the previously reported
experimental values, with an average difference of ∼3.14 kcal/mol.
However, the calculated results are in good correlation with the experimental data, with correlation coefficients of 0.76, 0.87,
0.96, and 0.97 for CTSK, DHQase, HSP90, and FXa, respectively. Thus, the binding free energy of a new ligand can be reliably
estimated using our US approach. Furthermore, the root-mean-square errors (RMSEs) of binding affinity of these systems are
1.13, 0.90, 0.37, and 0.25 kcal/mol, for CTSK, DHQase, HSP90, and FXa, respectively. The small RMSE values indicate the
good precision of the biased sampling method that can distinguish the ligands exhibiting similar binding affinities.

■ INTRODUCTION

A large number of biological processes involve the binding of
two or more biomolecules, which is often evaluated through
Gibbs free-energy difference.1 The accurate determination or
ranking of the binding affinity is a prerequisite for the synthesis
of potential inhibitors that would allow for the reduction of
therapeutic development and medication cost.2 Several
schemes have been developed, including molecular docking,3−6

quantitative structure−activity relationship,7−10 linear inter-
action energy,11,12 molecular mechanism/Poisson−Boltzmann
surface area (MM-PBSA),13−15 fast pulling of ligand,16,17 free-
energy perturbation,18,19 thermodynamic integration,20,21 and
nonequilibrium molecular dynamics (MD) simulations.22

Many studies in this area have been published in recent
years.23−26 Nevertheless, precise prediction of binding affinity
yet remains elusive.
The biased sampling method has emerged as a promising

approach for the determination of the binding free energy of
protein−ligand complexes27−29 or protein−protein com-
plexes.23,30 Furthermore, the free-energy permeation of an
ion across a channel has been also investigated using this
approach.31 The ligand is normally forced to move out of an
enzyme active site by an external force. The movement of the
ligand is tracked and recorded along the reaction coordinate

(ξ), and then the obtained conformations were subjected to
umbrella sampling (US) simulations. The free-energy barrier
between smallest and largest values extracted from the
potential of mean force (PMF) during US simulations can
be used for the prediction of the binding affinity.30 Here, the
PMF values are determined using the weighted histogram
analysis method (WHAM)32 calculation.
In this work, the US method was applied to 20 protein−

ligand complexes with solvent-exposed binding sites, including
cathepsin K (CTSK), type II dehydroquinase (DHQase), heat
shock protein 90 (HSP90), and factor Xa (FXa) systems.
CTSK is a protease associating with a number of biological
problems. The weakening of bone and cartilage is related to
the action of CTSK on the catabolization of collagen, elastin,
and gelatin. The CTSK inhibitors have thus been developed to
prevent osteoporosis.33 Moreover, the enzyme was also shown
to be involved in human breast cancers34 and overexpressed in
glioblastoma.35 DHQase is known to be linked with the
shikimic acid pathway. Inhibiting DHQase is a potential
method to treat malaria, a parasitic infection causing more than
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a million deaths every year.36 HSP90 is a chaperone protein
that helps to stabilize other proteins under the effect of
irregular temperature.37 The protein also aids the protein
folding and degradation processes.37 As HSP90 stabilizes
proteins needed for tumor growth, HSP90 inhibitors have been
screened for anticancer therapy development.38 FXa is an
enzyme involved in the coagulation cascade.39 FXa inhibitors
have been developed to prevent the venous thromboembo-
lism.40 Our obtained results are well correlated with previously
reported experimental data with high relation coefficients, on
the basis of which the experimental binding free energy of a
new ligand can be reliably calculated. The method is also
demonstrated to be precise with a relatively small root-mean-
square error (RMSE).

■ RESULTS AND DISCUSSION

Selected Model and Generated Conformation for
Umbrella Sampling Simulation. Many enzymes and
proteins contain sophisticated ligand-binding sites, which
require significant protein conformational changes upon ligand
binding or dissociation. The binding affinity estimation for
these proteins requires simultaneous calculations of both free
energy and the kinetics of protein folding, which requires a
tremendous amount of computational processing time. The
biased sampling method used in our work may not be suitable
for these proteins. Many other proteins, however, contain
solvent-exposed ligand-binding sites, which allows their ligands
to easily move in/out without substantial protein conforma-
tional changes. Thus, for the complexes of these proteins, the
ligand-binding affinity can be rapidly determined through US
computation, as mentioned in Materials and Methods section.
The structure of the protein could be restrained using a
harmonic potential applied on the Cα atoms during the
simulations. In this work, initially, the compound is forced to
mobilize out of the binding site onward the unbinding pathway
by an external harmonic force with a constant velocity as
described above, according to a previous work.16 Although the
slower pulling speeds provided better results, the efficient gain
is not significant.16,30 The forms of recorded pulling forces are
consistent with the previous works (Figure S1).41 The
coordination of the ligand center of mass and applied force
value is recorded every 0.1 ps over FPL simulations, as shown
in Figure S2. The value was employed to estimate the initial
conformations of biasing sampling simulations, as mentioned
above.
Free-Energy Calculation. The free-energy profile along

the reaction coordinate (ξ) was analyzed using the “gmx
wham” tools. The obtained PMF value of each studied system
is shown as a function of the reaction coordinates (ξ) in Figure
1. These PMF curves show similar trends and are in good
agreement with a previous study.42 The free energy starts at
zero value, then drops to a minimum value, and finally
increases to a stable value when ξ reaches 1.0−1.2 nm (Figure
1). This range corresponds to the state where the noncovalent
interaction between the protein and the ligand is broken. The
calculated binding free energy ΔGUS can be determined as the
difference between the largest and smallest values of PMF
curves, which is described in Figure 4C. The binding affinities
calculated for the complexes of CTSK, DHQ, HSP90, and FXa
are provided in Table 1. The computational error of the
binding free energy was estimated using bootstrapping analysis
with 100 rounds of computations.43

The calculated binding free energies (ΔGUS) of the HSP90,
DHQase, and FXa systems are larger than the corresponding
experimental values (ΔGEXP), with average differences of
∼3.11, 5.37, and 5.43 kcal/mol, respectively. In contrast, the
average ΔGUS of the CTSK system is slightly (1.24 kcal/mol)
smaller than the experimental value. The larger calculated
binding free energy likely resulted from the inaccuracy of
mimicking the interaction among constituent molecules,
including protein, ligand, and water molecules.44,45 The
differences ΔGUS and ΔGEXP are similar to the difference
obtained with an alchemical binding free-energy calculation
described in previous studies.46,47 In some cases, the difference
is more than 10 kcal/mol (Table 1). Nevertheless, there is a
good correlation between ΔGUS and ΔGEXP in each studied

Figure 1. PMF curves obtained from WHAM analysis for CTSK
systems (A), DHQase complexes (B), HSP90 systems (C), and FXa
systems (D). The errors were evaluated over 100 rounds of
bootstrapping analysis.43

Table 1. Free-Energy Values Obtained from US
Simulationsa

complexes protein ΔGUS ΔGEXP

1AU0 CTSK −9.05 ± 0.36 −10.51
1AU2 CTSK −8.47 ± 0.70 −10.82
1MEM CTSK −11.54 ± 0.57 −10.90
1NLJ CTSK −12.74 ± 0.23 −13.45
2FTD CTSK −11.91 ± 0.69 −14.26
1GU1 DHQase −6.83 ± 0.63 −6.21
2C4W DHQase −9.84 ± 0.51 −6.45
2XD9 DHQase −16.21 ± 1.07 −8.86
2Y71 DHQase −22.25 ± 0.77 −10.12
4B6O DHQase −12.96 ± 0.55 −9.61
3K99 HSP90 −12.56 ± 1.01 −9.91
3QDD HSP90 −20.62 ± 1.38 −12.04
3R4M HSP90 −7.17 ± 0.44 −8.13
3R4N HSP90 −9.27 ± 0.66 −9.45
3RLQ HSP90 −15.61 ± 0.94 −10.15
1F0R FXa −12.65 ± 0.55 −10.51
1KSN FXa −24.45 ± 0.52 −12.90
1NFU FXa −15.43 ± 0.97 −10.63
2J34 FXa −16.06 ± 0.28 −10.74
1FJS FXa −13.48 ± 0.77 −10.14

aThe errors were evaluated over 100 rounds of bootstrapping
analysis.43 The unit of free energy is kcal/mol.
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system, especially in the case of HSP90 and FXa (Figure 2).
The regression equations obtained for the studied systems are

G G0.713 4.339EXP
CTSK

US
CTSKΔ = × Δ − (1)

G G0.264 4.659EXP
DHQase

US
DHQaseΔ = × Δ − (2)

G G0.257 6.594EXP
HSP90

US
HSP90Δ = × Δ − (3)

G G0.227 7.270EXP
FXa

US
FXaΔ = × Δ − (4)

Using these equations and our US approach described herein,
the binding affinity of a new ligand to these proteins can be
reliably calculated.
In addition, the errors of calculations are small (Table 1).

The computed errors (δ) obtained for CTSK, DHQase,
HSP90, and FXa systems are ca. 5, 5, 7, and 4%, respectively.
These values are significantly smaller than those obtained from
other methods, such as FPL (∼7−15%16,48) and MM-PBSA
(∼20%49,50). It is generally difficult to select the dielectric
constant for polar solvation calculation as the ligand is partially
solvent-exposed, resulting in poor precision in the MM-PBSA
method.50 Furthermore, the polar solvation free energy is also
dependent on the calculating approach, which are Poisson−
Boltzmann (PB) or generalized Born (GB) schemes. Many
studies indicated that the obtained results strongly depend on
the studied system.50 The PB method provides better results in
some cases,51 whereas the GB method is more accurate/
precise in some other cases.52 In addition, the lower precision
of the FPL method in comparison with the US method is
probably caused by the fewer number of ligand samples over
the unbinding pathway. Furthermore, the binding affinity
estimation using the FPL method is relatively simple wherein it
scores the ligand affinity using recorded rupture force41 or
pulling work.16 Absolutely, these metrics do not consider the
contribution of entropic conformation, resulting in reducing
the precision of the calculation. Moreover, the RMSE analysis
indicates that the computational study would predict the
experimental value with the precisions of RMSECTSK = 1.13,
RMSEDHQase = 0.90, RMSEHSP90 = 0.37, and RMSEFXa = 0.25
kcal/mol. The estimation with high precision would definitely
distinguish the ligands with similar binding affinities.

The better results obtained with the US method compared
with the FPL scheme16,48 come at the cost of computational
resources, although. In the FPL scheme, one calculation
requires ca. 0.7 ns whereas the total molecular dynamics (MD)
simulation time in the US method is ca. 120.7 ns (including
FPL simulation as well). Fortunately, recent developments in
GPU computing help remarkably speeding up the US
simulation studies. One compute node with dual Xeon E5-
2670V3 and GTX 1070 GPU can approximately produce one
US calculation per day. It is noteworthy that the computing
resource required for US calculation is similar to that found for
the MM-PBSA method, which required several nanoseconds of
MD simulation to generate equilibrium snapshots for the free-
energy calculation.50 The MM-PBSA method would take a
much longer CPU time to evaluate the contribution of
conformational entropy for a large complex consisting of more
than 4000 atoms. Hence, for large systems, the US
computation has great advantages over the MM-PBSA method.

■ CONCLUSIONS

In this work, we have demonstrated that biased sampling
simulation is a highly appropriate approach for ranking the
affinity between ligand and enzyme for the CTSK, DHQase,
HSP90, and FXa complexes. The computational binding
affinity of the inhibitor was evaluated as the difference between
the largest and smallest values of the free-energy curve
obtained with PMF calculation. The calculated binding
affinities sizably differ from the corresponding experimental
values, with an average difference of of 3.14 kcal/mol (some
values >10 kcal/mol).53 To decrease the difference, more
advanced methods, such as the combination of free-energy
perturbation and US simulations, should be employed.53

However, it is very time consuming to evaluate the absolute
binding free energy of a ligand. The calculated binding free
energy highly correlates with the experimental values, with
correlation coefficients ranging from R = 0.76−0.97, which
allows for the reliable estimation of the binding affinity of new
ligands. Furthermore, the high precision, which is observed
with the values ranging from RMSE = 1.13−0.25 kcal/mol,
would easily categorize the ligands with similar binding
affinities. Using the US method, both the accuracy and
precision are significantly increased in comparison with FPL
and MM-PBSA methods.16,48−50 Besides, the computational
processing time required in the US method is acceptable,
compared to that in the MM-PBSA method. Especially, when
simulating large systems, the US computation would require
much lesser CPU time than the MM-PBSA method.

■ MATERIALS AND METHODS

Target Complexes. Three-dimensional structures of
complexes were obtained from the protein data bank (PDB).
The PDB IDs of the CTSK complexes are 1AU0,54 1AU2,54

1MEM,55 1NLJ,56 and 2FTD.57 The IDs of the DHQase
complexes are 1GU1,58 2C4W,59 2XD9,60 2Y71,61 and
4B6O.62 The IDs of HSP90 complexes are 3K99,63 3QDD,64

3R4M,65 3R4N,65 and 3RLQ.66 The IDs of FXa complexes are
1F0R,67 1FJS,68 1KSN,69 1NFU,70 and 2J34.71 The structures
of the ligands are described in Table S1. The ligand was forced
to move out of the cavity of the enzyme along an unbinding
pathway, which was predicted using the Caver program,72 as
described in previous works.16 The complexes were rotated to

Figure 2. Correlation between computed and experimental binding
free energies of CTSK complexes (A), DHQase complexes (B),
HSP90 complexes (C), and FXa complexes (D).
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fit the unbinding pathway along Z axis. A representative model
with the unbinding direction is shown in Figure 3.

Atomistic Simulations. GROMACS 5.1.3 was used to
simulate the soluble complexes.75 The proteins were para-
meterized using the Amber99SB-ILDN force field.76 The
ligands were represented using the general Amber force field.77

Charges were obtained by employing the restrained electro-
static potential method78 using quantum chemical calculation
at MP2 level with 6-31G(d,p) basis set. Each protein−ligand
complex was inserted into a rectangular box with periodic
boundary conditions (Figure 3). The dimensions of the boxes
for CTSK, DHQase, HSP90, and FXa are 4.92 × 5.67 × 7.19,
5.23 × 6.68 × 8.02, 5.52 × 6.13 × 8.72, and 6.08 × 6.40 × 8.50
nm3, respectively. The simulation parameters were referred
from previous studies.79 van der Waals interaction cutoff was
set at 0.9 nm, and the particle mesh Ewald method80 is used to
treat the electrostatic interaction with a radius of 0.9 nm.
Initially, the solvated systems were energy-minimized using the
steepest descent method. The complexes were then relaxed
during NVT and NPT simulations at 300 K for 100 ps. During
relaxed simulations, the Cα atoms of the proteins were
restrained by a small harmonic force.
The last conformations of NPT simulations were used as the

starting structures of ligand unbinding simulation using the
FPL method.16,17 An external harmonic force was applied to
dissociate the ligands along the pulling orientation (Figure 3).
The Cα atoms of the proteins were restrained over the steered-
molecular dynamic (SMD) simulations by a small harmonic
potential. The ligands were thus dissociated utilizing a
harmonic force with the cantilever spring constant of k =
600 kJ/mol/nm2 along the reaction coordinate (ξ). The
pulling speed was chosen as ν = 0.005 nm/ps according to
previous studies.16,48 The length of the SMD simulations was
ca. 500 ps. During the FPL process, the pulling force and the
coordination of the ligand center of mass were recorded every
0.1 ps.
The initial structures of biased sampling simulations were

extracted from the unbinding trajectory with the spacing of the
center of mass of the ligand shown in Figure 4A. During the
FPL process, the conformation of the solvated complexes was

recorded at every step of ∼0.2 nm and then used as the initial
conformation for the US simulations.30 Eleven snapshots were
extracted from bound to unbound states along the reaction
coordinate (ξ). However, because the ligand narrowly diffuses
in the bound state, as shown in the histograms of simulations
(Figure 4B), an additional conformation was taken, resulting in
the spacing of 0.1 nm between the first three windows (Figure
4A). Totally, 12 conformations along the reaction coordinate
were obtained during FPL simulations. These conformations
were subjected to US simulations over 10 ns. Therefore, there
are totally 120 ns of MD simulations used for US simulations.
To avoid initial fluctuation, the first 0.5 ns duration was
removed from the analysis. The weighted histogram analysis
method (WHAM)32 was used to evaluate a potential of the
mean force (PMF) along the reaction coordinate (ξ),
following the gmx wham protocol.81 The WHAM equations
can be expressed as follows81

P
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in which
k T

1

B
β = with temperature T and Boltzmann constant

kB, hj is the histogram with total number of values nj, gi = 1 +
2τi is the statistical inefficiency with autocorrelated time τi

Figure 3. Representation of the initial simulation setup. The ligand
(green) is pulled along the unbinding direction (Z axis) using a
harmonic force with a cantilever spring constant of 600 kJ/mol/nm2

and a pulling speed of ν = 0.005 nm/ps, as described in previous
studies.73,74

Figure 4. Computational scheme. (A) Initial windows of US
simulations with indications of displacement of the center of mass
of the ligand; (B) the representative histograms of US simulations;
(C) the binding free energy is estimated as the difference between the
maximum and minimum values of the PMF curve provided from the
US simulations.30 Shown in (C) is the calculation result of the 1AUO
system. The error of computations was evaluated over 100 rounds of
bootstrapping analysis.43
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corresponding to umbrella sampling i; and P(ξ) corresponds to
the unbiased probability distribution relating to PMF throughÄ

Ç
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ξ = −

β
ξ
ξ

where ξ0 corresponds to W(ξ0) = 0. The

binding free energy ΔG is simply evaluated as the difference
between the largest and smallest values of the PMF curve
(Figure 4C).30 The error of computations was evaluated over
100 rounds of bootstrapping analysis.43
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