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Abstract

The etiology of many complex diseases involves both environmental exposures and inherited 

genetic predisposition as well as interactions between them. Gene-environment-wide interaction 

studies (GEWIS) provide a means to identify the interactions between genetic variation and 

environmental exposures that underlie disease risk. However, current GEWIS methods lack the 

capability to adjust for the potentially complex correlations in studies with varying degrees of 

relationships (both known and unknown) among individuals in admixed populations. We 

developed novel generalized estimating equation (GEE) based methods - GEE-adaptive and GEE-

joint - to account for phenotypic correlations due to kinship while accounting for covariates, 

including measures of genome-wide ancestry. In simulation studies of admixed individuals, both 

methods controlled family-wise error rates, an advantage over the case-only approach. They 

demonstrated higher power than traditional case-control methods across a wide range of 

underlying alternative hypotheses, especially where both marginal and interaction effects were 

present. We applied the proposed method to conduct a GEWIS of a known sarcoidosis risk factor 

(insecticide exposure) and risk of sarcoidosis in African Americans and identified two novel loci 

with suggestive evidence of GxE interaction.
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Introduction

The presence of gene-by-environment interactions (GxE) has been confirmed for several 

traits (Hunter, 2005; Rothman et al., 2010), and gene-environment-wide interaction studies 

(GEWIS) are considered an important approach to identify GxE (Khoury & Wacholder, 

2009; D. Thomas, 2010). For example, insecticide exposure has been previously shown to be 

associated with sarcoidosis risk both independently (Newman et al., 2004; Rossman et al., 

2008) and through G×E (J. Li et al., 2014) in the Ancestry Mapping of African genes of 

Sarcoidosis Susceptibility (AMASS) study (Rybicki et al., 2011). The AMASS study 

consists of samples from both unrelated case-control and family-based study designs. Such 

samples present analytic challenges due to varying degrees of correlation between 

individuals. In addition to the complexity of genetic relatedness, African Americans are an 

admixed population, with genetic contributions from two ancestral populations. Therefore, it 

is also necessary to be able to adequately account for potential differences in population 

substructure between those with and without the disease in GxE interaction studies. Despite 

the recent development of methods to improve power to identify GxE interactions, current 

methods for GEWIS have not adequately addressed the analysis of studies with admixed and 

related individuals.

Generally, GxE methods have been largely limited to case-control designs of unrelated 

individuals and motivated by the known low power attributable to modeling the interaction 

with a multiplicative GxE term in logistic regression (Mukherjee, Ahn, Gruber, & 

Chatterjee, 2012). The case-only approach (Piegorsch, Weinberg, & Taylor, 1994) can 

provide substantial improvements in power (Yang, Khoury, & Flanders, 1997), but it can 

have an unacceptably high false positive rate if the independence assumption between the 

genetic and environmental factors are violated (Mukherjee et al., 2012). To address these 

challenges, researchers have proposed different approaches to provide greater power than the 

conventional methods for a standard case-control study of unrelated individuals, while 

controlling the type-1 error. These approaches fall into two main groups. The first is the two-

step method, which combines both screening and testing steps (Hsu et al., 2012; Kooperberg 

& LeBlanc, 2008; Murcray, Lewinger, & Gauderman, 2009). This method improves power 

through the independence between the two-steps and the resulting reduction in the number 

of GxE tests in the second step. The second is Bayesian that includes empirical Bayes 

(Mukherjee & Chatterjee, 2008) and Bayes model averaging(Li & Conti, 2009) approaches. 

However, current methods have not identified optimal GEWIS strategies in studies with 

varying degrees of relatedness among individuals.

Additionally, it has been well established that differences in population substructure between 

those with and without a disease can lead to a biased finding in both genetic association 

(Freedman et al., 2004; Marchini, Cardon, Phillips, & Donnelly, 2004; D. C. Thomas, Haile, 

& Duggan, 2005) and GxE (Dudbridge & Fletcher, 2014; Sul et al., 2016; Wang, Localio, & 

Rebbeck, 2006) studies. However, methods for GEWIS with admixed individuals in the 

presence of familial relationships have largely not been developed. To test for genetic 

association while accounting for the relatedness in families, several methods exist that 

employ generalized estimating equation (GEE) or mixed effect models. Wang et al. (2013) 

developed the GEE–based–kernel association (GSKAT) test with a working covariance 
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matrix that reflects the cluster dependencies within known pedigree structures(Wang, Lee, 

Zhu, Redline, & Lin, 2013). Lin et al. (2014) proposed a weighted version of GEE (W-PS), 

to account for unequal inclusion probabilities and family relationships(Lin et al., 2014). The 

generalized mixed model association test (GMMAT)(Chen et al., 2016) utilized logistic 

mixed models which can properly account for the sample relatedness and population 

structure. Zhou et al. (2018) provided a more accurate p-value calculation to control for 

case-control imbalance using the saddlepoint approximation method on the score statistic 

(SAIGE)(Zhou et al., 2018). However, these methods have not been extended for testing 

GxE interactions. Previously, we (Li et al., 2014) developed an extended generalized least 

squares (GLX) approach by incorporating empirical kinship in the covariance matrix to 

perform GEWIS of individuals with varying degrees of relatedness. However, this method 

was intended for categorical data and cannot adjust for other continuous covariates, 

including genetic ancestry. To address these additional complexities, we developed two 

strategies utilizing GEEbased methods for GEWIS, GEE-adaptive and GEE-joint. These 

methods integrate the p-values for testing marginal genetic and/or GxE interaction effects 

sequentially or simultaneously. These GEE models use the empirical kinship matrix to 

account for correlation between known or cryptically related individuals and allow for 

adjustment for population substructure that may bias GxE estimates in admixed populations. 

We first detail the theoretical development of the GEE-adaptive and GEE-joint methods. We 

also present simulation results comparing findings from these extended methods with those 

from the GEE model using standard case-control and case-only analysis approaches. Finally, 

we apply the proposed methods to genetic and environmental data from combined family 

and case-control studies of sarcoidosis (Rybicki et al., 2011).

Methods

Conceptual Models

Figure 1 shows several conceptual models for the interaction of genetic and environmental 

factors to demonstrate the rationale of our proposed methods. Figure 1A – 1C identify 

scenarios where carrying a particular genotype is associated with a higher trait value. The 

scenario in Figure 1A indicates that both genetic and environmental main effects exist, but 

there is no interaction between them. On the other hand, a quantitative interaction is depicted 

in Figures 1B and 1C. Figures 1D and 1E represent opposite genetic effects in the context of 

environmental exposures. However, the scenario in Figure 1D demonstrates underlying 

marginal effects while the scenario in Figure 1E does not. These five GxE interaction 

scenarios represent a wide range of possible GxE. Genetic variants or single-nucleotide 

polymorphisms (SNPs) with an interaction effect and/or a marginal effect are of particular 

interest for the GxE analysis. Therefore, we propose GEE-adaptive and GEE-joint methods 

to determine SNPs that have a marginal effect, an interaction effect with an environmental 

exposure, or both.

General Model Notation

To model GxE interactions in studies containing familial relationships, a modeling 

framework is arranged where j and i indicate the jth individual in the ith family, and q is the 

total sample size. Different matrices are then set up for the phenotype 
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Y = Y i j1, Y i j2, …, Y i jq
T

, genetic variant G = Gi j1, Gi j2, …, Gi jq
T

, environmental variable 

E = Ei j1, Ei j2, …, Ei jq
T

, and q×1 vector of confounding variables X = xi j1, xi j2, …, xi jq
T

. 

Yij is a binary phenotype for each sample, Gi j is the genotype of a SNP in a sample (coded 

as additive, dominant, or recessive), and Ei j is the environmental exposure, either binary or 

continuous measures. To detect a GxE effect, the following two logistic regression models 

for a given SNP are considered:

logit Pr (Y G, X) = γ0 + γ1G + γ2X, (1)

where γ0 is the population mean and γ1 is the marginal effect of G, and

logit(Pr Y G, E, X = β0 + β1G + β2E + β3GxE + β4X, (2)

where β0 is the population mean, β1 is the additive effect for a SNP, β2 is the environmental 

main effect, and β3 is the interaction effect between G and E The parameters γ and β are 

estimated by GEE:

∑i = 1
K Di

TV i
−1 Y i − μi = 0, (3)

where K is the total number of families, and Di = ∂μi θ / ∂θ, and V i is the working 

covariance matrix of Y i. V i can be expressed in terms of a working correlation matrix Ri, 

V i = Ai
1/2RiAi

1/2 where Ai is a diagonal marginal variance matrix, and Ri accounts for 

relatedness between individuals. Ri can be further parameterized into δ ∅i js, where ∅i js is 

the empirical kinship between individuals j and s in the ith family, and δ is a scale parameter. 

The empirical kinship is calculated using the genome-wide SNP genotype data and has been 

shown to be robust in the estimation of relatedness for both family-based studies and in 

structured populations with genetic contributions from two or more ancestral populations 

(Manichaikul et al., 2010; Thornton et al., 2012). The covariance matrix of θ  can be 

estimated by a “sandwich estimator” (Huber, 1967):

∑i = 1
K Di

TV i
−1Di

−1∑i = 1
K Di

TV i
−1var Y i V i

−1Di ∑i = 1
K Di

TV i
−1Di

−1
. (4)

The quantity of β3 from model (2) is the natural logarithm of the GxE interaction odds ratio 

(OR). Testing the null hypothesis H0: β3 = 0 for each SNP is a common practice to test GxE 

effects; however, this approach suffers from low power in the context of GEWIS (Mukherjee 

et al., 2012). We propose two additional methods based on models (1) and (2): GEE-
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adaptive and GEE-joint. Let pmarginal represent the p-value for testing H0:γ1 = 0 and 

pinteraction indicates the p-value for testing H0:β3 = 0.

GEE-adaptive

The GEE-adaptive method consists of two steps. In Step 1, pmarginal is used at a significance 

level α1 to screen genetic associations with the outcome. In Step 2, pinteraction is utilized for 

the subset of m SNPs advancing from Step 1, with a Bonferroni-corrected significance level 

of α2/m, as proposed by Kooperberg and LeBlanc (Kooperberg & LeBlanc, 2008).

Assuming that the working correlation matrix is correctly specified, γ1 and β3 can be shown 

to be asymptotically independent (see Appendix). Therefore, for the proposed method, the 

theorem presented by Dai et al (Dai, Kooperberg, Leblanc, & Prentice, 2012) guarantees 

control of the family-wise type I error. If the correlation is misspecified, γ1 will not be 

asymptotically independent of β3 . In simulation studies, this dependence between γ1 and β3
is sufficiently small that the proposed adaptive method reasonably controlled the family-

wise error rate (FWER).

GEE-joint

In contrast, GEE-joint combines both pmarginal and pinteraction to derive a joint test statistic: 

T = − 2log pmarginal − 2log pintearction  Assuming the independence of these p-values, the 

test statistic T follows a Chi-square distribution with four degrees of freedom under the null 

hypothesis of no marginal and no interaction effects. In reality, the statistics are not 

independent, and the test based on the Chi-square distribution with four degrees of freedom 

tends to be liberal. Brown (Brown, 1975) and Yang (Yang, 2010) have shown that if these p-

values are correlated, the distribution of the T statistic approximates a gamma distribution 

with the shape parameter v/2 and the scale parameter 2γ under the null hypothesis. Yang et 

al. (Yang, Li, Williams, & Buu, 2016) further extended the T statistic to a two-sided test for 

testing pleiotropic effects. For the proposed GEE-joint test, the T statistic follows a gamma 

distribution with a mean of 4 and a variance of 4 + δ, where 

δ = cov −2log pmarginal , − 2log pinteraction  is a function of the correlation between γ1 and 

β3 − ρ . Therefore, it can be approximated by a tenth-order polynomial of ρ . ρ is estimated 

by the bias-corrected sample correlation between γ1 and β3 (Yang et al., 2016).

Note that rejecting the null hypothesis indicates a marginal and/or an interaction effect. As 

indicated in Figure 1, some of the interaction effects are accompanied by a marginal gene 

effect. The test is more powerful than testing the interaction effect alone when the marginal 

effect is present. The individual p-values, pmarginal and pinteraction, can be parsed out of the T 

test statistic to separate out marginal gene and GxE effects.
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Simulation Studies

The FWER and power of the proposed estimators were evaluated in simulated pedigrees 

with simple and complex structures to mimic the AMASS study (Rybicki et al., 2011) and 

the Framingham Heart Study (Govindaraju et al., 2008), respectively. For the simple 

pedigrees, we simulated 1,877 individuals. A total of 1,283 individuals were part of 475 

pedigrees that comprised 277 sibships, from size two to six. The remaining 594 individuals 

were singleton cases and controls. For the complex pedigree structure, we randomly 

generated 570 families of differing size and number of generations and singletons, with the 

largest family size of 15 individuals with pedigree sizes ranging from 2 to 296 individuals.

Using each pedigree structure, we simulated 1,000 datasets of genotype “G” data through 

gene dropping from simulated admixed founders, varying the minor allele frequency from 

0.1 to 0.5. Admixed founders were simulated based on the Balding-Nichols model (Balding 

& Nichols, 2008) with two admixed populations. The ancestral minor allele frequency at a 

SNP, ps, followed a uniform distribution from 0.1 to 0.5. The allele frequency of SNPs in 

subpopulation k is denoted as qk
s and:

qk
s = beta(

ps 1 − f k
f k

,
(1 − ps) 1 − f k

f k
) , and k ∈ 1, 2 , (5)

where fK can be treated as Wright’s standardized measure of variation (Weir & Cockerham, 

1984) and set at 0.01. The ancestral proportion for an admixed individual j is p j1, p j2 , 

where p j1 + p j2 = 1. The expected allele frequency at SNPs of admixed individual j is:

qa . j
s = q1

s * p j1 + q2
s * p j2 . (6)

Each dataset consisted of 10,000 SNPs (M=10,000) in linkage equilibrium and assumed to 

be evenly distributed across the genome. For each dataset, a single SNP was chosen to be a 

disease locus interacting with E, with a minor allele frequency of 0.3. The probability of 

each SNP associated with E at the population level was denoted as pge, and the simulated 

values were 0.0001, 0.001 and 0.01. The environmental exposure of individual j in family i

was generated by Ei j = a0 + ∑
s

asG js + ri + ei j, where G js is a SNP s for individual j that is 

associated with E . αs represents the natural logarithm of the OR for the association of each 

SNP with E, which was randomly generated from the Beta distribution. To allow for 

correlation between phenotypes within each family,ri is a random family effect that follows a 

multivariate normal distribution N(0, σ f
2 Φi ) where the elements of Φi denote the correlation 

coefficient between individuals in family i. Dichotomous E were then generated from the 

Bernoulli distribution with probability logit−1(Ei j). The phenotype of individual j in family i 

has the following linear relationship to underlying genetic (G) and environmental (E) factors,
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Yi j = β0 + β1G + β2E + β3G × E + ri + ei j,

where β0 is the population mean, β1 is the additive effect for a SNP, β2 is the environmental 

main effect, and β3 is the interaction effect between G and E. Dichotomous phenotypes were 

generated from the Bernoulli distribution with logit‐1(Y i j). The baseline disease prevalence pd

and the exposure prevalence for E, pe, were both set at 10%. Finally, three possible values 

for β1, β2 and β3 corresponding to GxE scenarios in Figure 1 were considered. First, β1, β2
and β3 were set to 0, 0, and log (3), respectively, yielding an OR of 1 for the genetic main 

effect, 1 for the environmental main effect, and 3 for the interaction effect (i.e. Figure 1C). 

Second,β1, β2 and were set to log (1.5), log (1.5), and log (3), respectively, resulting in an 

OR of 1.5 for the genetic main effect, 1.5 for the environmental main effect and 3 for the 

interaction effect (i.e. Figure 1B). Third, β1, β2 and β3 were set to log (2), log (1.5), and log 

(0.25), respectively, resulting in an OR of 2 for the genetic main effect, 1.5 for the 

environmental main effect and 0.25 for the interaction effect (i.e. Figure 1E).

The GEE-adaptive and GEE-joint were compared to the standard practice of testing 

H0:β3 = 0 using model (3) on cases and controls, namely the GEE-case-control (GEE-CC). 

The nominal FWER was set at 0.05 and 0.01 respectively. For GEE-joint, when assuming 

the independence between pmarginal and pinteraction, the T statistic under a Chi-square 

distribution with four degrees of freedom (GEE-joint-chisq) was utilized, and when 

assuming the dependence between pmarginal and pinteraction, a Gamma distribution with 

shape parameter of 4 and scale parameter equal to 4 + δ (GEE-joint-gamma) was used. The 

strategy using a case-only analysis (GEE-CO) was examined where the interaction effect is 

identified by fitting the logistic regression model: logit(Pr E|G, X, Y = 1 = γ0 + γ1G + γ2X on 

cases. Based on the simulated data, empirical kinship coefficients were calculated using 

KING (Manichaikul et al., 2010).

Application to the AMASS Sarcoidosis Study

To evaluate the utilization of the proposed methods in a real dataset, a GEWIS was 

performed using the insecticide exposure variable and GWAS autosomal data available for 

the AMASS study comprising 1073 African-American sarcoidosis cases and 804 controls 

collected from family and unrelated case-control studies (Rybicki et al., 2011). Genotyping 

was conducted using the Illumina Human Omni1-Quad for 1.1 million SNPs across the 

genome as described in Adrianto et al. (Adrianto et al., 2012). The final SNP dataset 

consisted of 887,296 autosomal SNPs after applying quality control measures. The first two 

principal components of genetic data (calculated using EIGENSOFT 3.0 (Galinsky et al., 

2016)) and sex were included as covariates in the GEWIS analysis.
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Results

Simulation Results

Figure 2 displays the FWER for each of the four methods tested on the nine simulation 

settings based on both the simple and complex pedigree structures. For the simple structure, 

the FWER of GEE-CO method (FWERCO) increased dramatically as the proportion of SNPs 

associated with E (pge) increased, and the FWERCO were severely inflated, with the 

exception of the lowest pge of 10−4 (Figure 2A). The FWER of GEE-CC (FWERCC), GEE-

adaptive (FWERadaptive), and GEE-joint (FWERjoint-chisq and FWERjoint-gamma) methods 

were similar and controlled near the nominal level of 0.05 (Figure 2A). For simulations 

based on the complex structure with larger pedigrees (Figure 2B), FWER displayed a similar 

pattern across methods and simulation conditions as that of the simple structure.

Figure 3 shows the corresponding power from the nine simulations shown. The left and 

middle panels in Figures 3A and B resembled the conceptual models with both marginal and 

interaction effects in Figures 1B and C, respectively. The right panel in Figures 3A and B 

represented the conceptual model without marginal but with interaction effects in Figure 1E. 

Both GEE-joint-chisq and GEE-joint-gamma demonstrated consistently high power across 

all simulations. When a moderate marginal effect was present (Figure 3A, left and middle 

panels), the power of GEE-joint-chisq and GEE-joint-gamma increased and were the highest 

of all four methods tested. GEE-adaptive demonstrated superior power over GEE-CC when 

there was a marginal effect (Figure 3A, left and middle panels). When there was a GxE 

effect without a marginal effect (Figure 3A, right panel), GEE-CC showed superior power to 

GEE-joint. GEE-joint tends to be more powerful relative to the other methods when the 

probability of each SNP associated with the environmental factor is higher. As SNPs with 

small marginal effects were filtered at the first step of GEE-adaptive, GEE-adaptive had 

lower power compared to GEE-CC as expected. In this scenario, GEE-CO had the lowest 

power. The patterns of the power estimates of the four methods in the complex structure 

(Figure 3B) were similar to those observed in the simple structure.

Sarcoidosis insecticide GEWIS application

For GEE-adaptive, 43,131 SNPs passed Step 1 significance level α1 of 0.05. There was no 

indication of an inflated type-1 error as suggested by quantile-quantile plot for both GEE-

adaptive (Supplemental Figure S1) and GEE-joint-gamma (Figure 4A). No SNP associations 

passed the step2 significance threshold (0.05/43,131 = 1.16*10−6) in GEE-adaptive 

(Supplemental Figure S1). Further, no GEE-joint-gamma tests reached genome-wide 

significance (p-value less than 5×10−8 - Figure 4B).

Nineteen SNPs from GEE-joint-gamma reached a suggestive level of association (p-value < 

1*10−5) and are displayed in Table 1. The corresponding pmarginal and pinteraction values 

provide a convenient basis to categorize identified SNPs into the following three categories: 

category 1 SNPs are those with a significant (p<0.05) marginal effect but without significant 

interaction with insecticide exposure; category 2 SNPs are those with both a significant 

marginal effect and interaction with insecticide exposure; and category 3 SNPs have a 
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significant interaction effect with insecticide exposure without a significant marginal effect. 

Using these categories, twelve of the 19 SNPs identified by GEE-joint-gamma had marginal 

effects without a significant interaction(Category 1); seven SNPs had both marginal and 

interaction effects (Category 2); and no SNPs were found for Category 3. Category 2 and 3 

SNPs were of particular interest for this analysis. Of the seven Category 2 SNPs, Six were 

located on chromosome 6, clustered closely in the human leukocyte antigen (HLA) region, 

either around or within HLA-DRA. Among these six, SNP rs3129890 had the most 

significant GEE-joint-gamma test (iOR =1.62, 95% CI: 1.06 – 2.49). Among those exposed 

to insecticides, the effect of the SNP was higher (OR=2.32, 95%CI 1.61 – 3.36) relative to 

the unexposed (OR=1.43, 95%CI 1.15 – 1.79). The effects of the remaining five SNPs in the 

region reflected these same iOR and stratum specific ORs, likely due to their moderate to 

high linkage disequilibrium with SNP rs3129890 (r2>0.33; Table 1). The SNP rs1347729 on 

chromosome 2 was the only Category 2 SNP with an interaction OR (iOR) less than 1 (iOR 

= 0.56, 95% CI: 0.35 – 0.90), where insecticide exposure leads to a larger reduction in 

sarcoidosis risk for individuals carrying the minor allele (unexposed OR 0.75, 95% CI: 0.58 

– 0.96; exposed OR 0.42, 95% CI: 0.28 – 0.63). No genes were found close to rs1347729; 

with the closest genes, LRP1B, NXPH2, and SPOPL about 1 Mb away (Supplemental 

Figure S2). At the cutoff of 5*10−5, we found additional 68 SNPs (Supplemental Table S1). 

The SNPs rs10499003 and rs7745248 in gene FUT9 that have interaction effects alone have 

been identified and discussed in our previous study (Li et al., 2014). As these two markers 

have low marginal effects and moderate interaction effects, they are ranked lower compared 

to those with both moderate marginal effects and low interaction effects in general using the 

GEE-joint method.

Discussion

Strategies for efficient analyses in GEWIS in the context of data containing related 

individuals from admixed populations is an understudied area. We developed two GEE-

based methods – GEE-joint and GEE-adaptive – to assess the association between disease 

and GxE interactions while accounting for correlations among related and admixed 

individuals. To our knowledge, this is the first systematic investigation in this area. Our 

methods can robustly identify GxE with different combinations of marginal and interaction 

effects. The GEE-joint and GEE-adaptive methods are also flexible as many response 

functions under varying model assumptions can be used, and covariates can be included in 

the model. Using data from simulations and a previously reported sarcoidosis study 

(Adrianto et al., 2012), we demonstrate their improved performance over traditional case-

control and case-only GxE analyses. We also compared GEE-joint with the 2 degrees of 

freedom test (2DF) which jointly test the main effects of gene and the GxE interaction in 

model (2) (Kraft, Yen, Stram, Morrison, & Gauderman, 2007) using simulations based on 

complex pedigree structures. Both tests have similar power. The advantage of the proposed 

GEE-joint test is that it provides a more flexible and meaningful interpretation of the 

findings, because the test combines GWAS and GEWIS simultaneously.

The GEE-joint and GEE-adaptive methods were written in C++ using the linear algebra 

library Armadillo (Sanderson & Curtin, 2016) and integrated into the R programming 

language through RCPP package (Eddelbuettel & Francois, 2011). The C++ implementation 
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makes the program more computationally efficient. When utilizing 40 threads of a Linux 

node equipped with 12 CPUs (the Intel(R) Xeon(R) CPU E5–2695 v2 @ 2.40GHz) and 256 

GB of random access memory, it took less than 1 hour to finish scans on 1 million SNPs for 

the sarcoidosis dataset.

In the sarcoidosis study, the most significant GEE-joint test in the GEWIS of insecticide 

exposure and sarcoidosis risk in African Americans was SNP rs3129890, located within the 

HLA class II region on chromosome 6. Consistent with its strong marginal genetic effect, 

SNP rs3129890 is in high linkage disequilibrium (r2=0.78) in African Americans with SNP 

rs2227139, which was identified in our previously published GWAS of sarcoidosis risk in 

African Americans (Adrianto et al., 2012). Further, SNP rs2227139 shows a similar GxE 

effect as rs3129890 (Table 1), with the minor allele associated with higher risk of sarcoidosis 

in those individuals reporting insecticide exposure relative to those who did not. SNP 

rs2227139 has been identified as a cis-acting expression quantitative trait locus (eQTL) in 

lymphoblastoid cells for multiple HLA class II genes including HLA-DRB1, -DQB1, -

DQA1, -DRB5, and -DRA (Houldcroft et al., 2014). Alleles in these genes have been 

associated with risk of sarcoidosis and are thought to mechanistically alter risk through 

antigen presentation to CD4+ T-cells. In the Genotype-Tissue Expression (GTEx) project 

(Consortium, 2013), SNP rs2227139 has also been implicated as a cross-tissue eQTL for 

HLA class II genes (www.gtexportal.org).

The validity of this sarcoidosis risk associated GxE effect between SNP rs2227139 and 

insecticide exposure is supported by a similar, recent finding in Parkinson’s disease (PD). 

Similar to the sarcoidosis data above, SNP rs3129882 in HLA-DRA has been associated 

with increased risk of PD in multiple GWAS studies (Hamza et al., 2010; Wissemann et al., 

2013), and PD-associated risk of rs3129882 appears to be mediated by its function as an 

eQTL for HLA class II genes. Further, a recent study by Kannarkat et al. also described that 

the association between SNP rs3129882 and PD risk was dependent upon insecticide 

exposure, with increased risk associated with the minor “G” allele restricted to those 

exposed to the insecticide pyrethroid (Kannarkat et al., 2015). While the PD risk SNP 

rs3129882 is in low linkage disequilibrium (r2=0.18 in the African Americans from the 

Southwest 1000 genomes subjects) with the sarcoidosis risk SNP rs2227139, the SNP-by-

insecticide interactions are remarkably similar across the two diseases, and both appear to 

function through a broad effect on the expression of multiple HLA class II genes. Taken 

together with this parallel finding in PD, this sarcoidosis GxE finding is provocative and 

requires further study within African Americans, a population with a nearly four-fold higher 

risk of disease in comparison to European Americans (Rybicki, Major, Popovich, Maliarik, 

& Iannuzzi, 1997).

As with any analytic method, limitations exist which could be addressed by future 

extensions. First, the GEE-joint test has limited power when there is no marginal effect. The 

joint test is the Fisher’s combination of p-values, which has been shown to be admissible, 

providing good power for a wide range of alternative hypotheses (Li & Tseng, 2011). 

Furthermore, in this study, we used individual p-values (pmarginal and pinteraction) to group the 

detected markers into three categories (Category 1: SNPs with significant marginal effect but 

insignificant interaction effect; Category 2: SNPs with both significant marginal and 
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interaction effect; and Category 3: SNPs with insignificant marginal effect but significant 

interaction effect). In future work, we intend to extend the adaptive weighted method 

developed by Li et al. (Li & Tseng, 2011) to address these restrictions. Second, as with other 

2-step approaches developed for independent samples, the choice of the first step threshold 

α1 in GEE-adaptive can impact its power. In general, GEE-adaptive is preferred over GEE-

CC and GEE-CO. However, GEE-adaptive suffers from low power if the gene has no 

marginal effect. The hybrid strategy proposed by Murcray et al. (2011) may be adapted to 

improve upon the current method in the absence of marginal effects. Finally, our proposed 

method may be extended for gene-set based testing summary measures of multiple SNPs 

with subtle effects by taking into account the linkage disequilibrium among them (Wang et 

al., 2013). Through differential weighting, this extension could accommodate additional 

known functional data, including tissue-specific expression quantitative trait loci information 

from resources such as GTEx (Consortium, 2013).

In conclusion, recent methods to improve power for GEWIS have focused primarily on 

studies of unrelated individuals. The methods we have developed add to the GEWIS 

approaches available for the analysis of data from studies containing known and unknown 

relationships of any degree, while allowing for the inclusion of potential confounding 

variables including genetic ancestry. Further, the GEE framework upon which these methods 

are based also open the possibility of extension to other outcomes, including time-to-event 

and longitudinal analyses. The R code for GEE-adaptive and GEE-joint is available on 

GitHub https://github.com/ndtkinesin/GxE_GEEKin_Joint).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported by R21-HL129023–01 (AML); R56-AI072727, R01-HL092576 (BAR); R01-HL54306, 
U01-HL060263(MCI); 1RC2HL101499, R01HL113326 (CGM); P20GM103456 (IA).

References

Adrianto I, Lin CP, Hale JJ, Levin AM, Datta I, Parker R, … Montgomery CG (2012). Genome-wide 
association study of African and European Americans implicates multiple shared and ethnic specific 
loci in sarcoidosis susceptibility. PLoS One, 7(8), e43907. doi:10.1371/journal.pone.0043907 
[PubMed: 22952805] 

Balding DJ, & Nichols RA (2008). A method for quantifying differentiation between populations at 
multi-allelic loci and its implications for investigating identity and paternity (vol 96, pg 3, 1995). 
Genetica, 133(1), 107–107. doi:10.1007/s10709–007-9181–2

Brown MB (1975). 400: A Method for Combining Non-Independent, One-Sided Tests of Significance. 
Biometrics, 31(4), 987–992. doi:10.2307/2529826

Chen H, Wang C, Conomos MP, Stilp AM, Li Z, Sofer T, … Lin X (2016). Control for Population 
Structure and Relatedness for Binary Traits in Genetic Association Studies via Logistic Mixed 
Models. Am J Hum Genet, 98(4), 653–666. doi:10.1016/j.ajhg.2016.02.012 [PubMed: 27018471] 

Consortium GT (2013). The Genotype-Tissue Expression (GTEx) project. Nat Genet, 45(6), 580–585. 
doi:10.1038/ng.2653 [PubMed: 23715323] 

Chen et al. Page 11

Genet Epidemiol. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/ndtkinesin/GxE_GEEKin_Joint
https://10.1371/journal.pone.0043907
https://10.1007/s10709–007-9181–2
https://10.2307/2529826
https://10.1016/j.ajhg.2016.02.012
https://10.1038/ng.2653


Dai JY, Kooperberg C, Leblanc M, & Prentice RL (2012). Two-stage testing procedures with 
independent filtering for genome-wide gene-environment interaction. Biometrika, 99(4), 929–944. 
doi:10.1093/biomet/ass044 [PubMed: 23843674] 

Dudbridge F, & Fletcher O (2014). Gene-Environment Dependence Creates Spurious Gene-
Environment Interaction. American Journal of Human Genetics, 95(3), 301–307. doi:10.1016/j.ajhg.
2014.07.014 [PubMed: 25152454] 

Eddelbuettel D, & Francois R (2011). Rcpp: Seamless R and C++ Integration. 2011, 40(8), 18. doi:
10.18637/jss.v040.i08

Freedman ML, Reich D, Penney KL, McDonald GJ, Mignault AA, Patterson N, … Altshuler D 
(2004). Assessing the impact of population stratification on genetic association studies. Nature 
Genetics, 36(4), 388–393. doi:10.1038/ng1333 [PubMed: 15052270] 

Galinsky KJ, Bhatia G, Loh PR, Georgiev S, Mukherjee S, Patterson NJ, & Price AL (2016). Fast 
Principal-Component Analysis Reveals Convergent Evolution of ADH1B in Europe and East Asia. 
American Journal of Human Genetics, 98(3), 456–472. doi:10.1016/j.ajhg.2015.12.022 [PubMed: 
26924531] 

Govindaraju DR, Cupples LA, Kannel WB, O’Donnell CJ, Atwood LD, D’Agostino RB, … Benjamin 
EJ (2008). Genetics of the Framingham Heart Study Population. Advances in Genetics, Vol 62, 62, 
33–65. doi:10.1016/S0065–2660(08)00602–0 [PubMed: 19010253] 

Hamza TH, Zabetian CP, Tenesa A, Laederach A, Montimurro J, Yearout D, … Payami H (2010). 
Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson’s 
disease. Nat Genet, 42(9), 781–785. doi:10.1038/ng.642 [PubMed: 20711177] 

Houldcroft CJ, Petrova V, Liu JZ, Frampton D, Anderson CA, Gall A, & Kellam P (2014). Host 
genetic variants and gene expression patterns associated with Epstein-Barr virus copy number in 
lymphoblastoid cell lines. PLoS One, 9(10), e108384. doi:10.1371/journal.pone.0108384 
[PubMed: 25290448] 

Hsu L, Jiao S, Dai JY, Hutter C, Peters U, & Kooperberg C (2012). Powerful Cocktail Methods for 
Detecting Genome-Wide Gene-Environment Interaction. Genetic Epidemiology, 36(3), 183–194. 
doi:10.1002/gepi.21610 [PubMed: 22714933] 

Huber PJ (1967, 1967). The behavior of maximum likelihood estimates under nonstandard conditions. 
Paper presented at the Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics 
and Probability, Volume 1: Statistics, Berkeley, Calif.

Hunter DJ (2005). Gene-environment interactions in human diseases. Nat Rev Genet, 6(4), 287–298. 
doi:10.1038/nrg1578 [PubMed: 15803198] 

Kannarkat GT, Cook DA, Lee JK, Chang J, Chung J, Sandy E, … Tansey MG (2015). Common 
Genetic Variant Association with Altered HLA Expression, Synergy with Pyrethroid Exposure, 
and Risk for Parkinson’s Disease: An Observational and Case-Control Study. NPJ Parkinsons Dis, 
1. doi:10.1038/npjparkd.2015.2

Khoury MJ, & Wacholder S (2009). Invited commentary: from genome-wide association studies to 
gene-environment-wide interaction studies--challenges and opportunities. Am J Epidemiol, 169(2), 
227–230; discussion 234–225. doi:10.1093/aje/kwn351 [PubMed: 19022826] 

Kooperberg C, & LeBlanc M (2008). Increasing the power of identifying gene x gene interactions in 
genome-wide association studies. Genetic Epidemiology, 32(3), 255–263. doi:10.1002/gepi.20300 
[PubMed: 18200600] 

Kraft P, Yen YC, Stram DO, Morrison J, & Gauderman WJ (2007). Exploiting gene-environment 
interaction to detect genetic associations. Human Heredity, 63(2), 111–119. doi:
10.1159/000099183 [PubMed: 17283440] 

Li DL, & Conti DV (2009). Detecting Gene-Environment Interactions Using a Combined Case-Only 
and Case-Control Approach. American Journal of Epidemiology, 169(4), 497–504. doi:
10.1093/aje/kwn339 [PubMed: 19074774] 

Li J, & Tseng GC (2011). An Adaptively Weighted Statistic for Detecting Differential Gene 
Expression When Combining Multiple Transcriptomic Studies. Annals of Applied Statistics, 5(2a), 
994–1019. doi:10.1214/10-Aoas393

Li J, Yang J, Levin AM, Montgomery CG, Datta I, Trudeau S, … Rybicki BA (2014). Efficient 
generalized least squares method for mixed population and family-based samples in genome-wide 

Chen et al. Page 12

Genet Epidemiol. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://10.1093/biomet/ass044
https://10.1016/j.ajhg.2014.07.014
https://10.1016/j.ajhg.2014.07.014
https://10.18637/jss.v040.i08
https://10.1038/ng1333
https://10.1016/j.ajhg.2015.12.022
https://10.1016/S0065–2660(08)00602–0
https://10.1038/ng.642
https://10.1371/journal.pone.0108384
https://10.1002/gepi.21610
https://10.1038/nrg1578
https://10.1038/npjparkd.2015.2
https://10.1093/aje/kwn351
https://10.1002/gepi.20300
https://10.1159/000099183
https://10.1093/aje/kwn339
https://10.1214/10-Aoas393


association studies. Genet Epidemiol, 38(5), 430–438. doi:10.1002/gepi.21811 [PubMed: 
24845555] 

Lin DY, Tao R, Kalsbeek WD, Zeng D, Gonzalez F 2nd, Fernandez-Rhodes L, … Heiss G (2014). 
Genetic association analysis under complex survey sampling: the Hispanic Community Health 
Study/Study of Latinos. Am J Hum Genet, 95(6), 675–688. doi:10.1016/j.ajhg.2014.11.005 
[PubMed: 25480034] 

Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, & Chen WM (2010). Robust relationship 
inference in genome-wide association studies. Bioinformatics, 26(22), 2867–2873. doi:10.1093/
bioinformatics/btq559 [PubMed: 20926424] 

Marchini J, Cardon LR, Phillips MS, & Donnelly P (2004). The effects of human population structure 
on large genetic association studies. Nature Genetics, 36(5), 512–517. doi:10.1038/ng1337 
[PubMed: 15052271] 

Mukherjee B, Ahn J, Gruber SB, & Chatterjee N (2012). Testing Gene-Environment Interaction in 
Large-Scale Case-Control Association Studies: Possible Choices and Comparisons. American 
Journal of Epidemiology, 175(3), 177–190. doi:10.1093/aje/kwr367 [PubMed: 22199027] 

Mukherjee B, & Chatterjee N (2008). Exploiting gene-environment independence for analysis of case-
control studies: an empirical Bayes-type shrinkage estimator to trade-off between bias and 
efficiency. Biometrics, 64(3), 685–694. doi:10.1111/j.1541–0420.2007.00953.x [PubMed: 
18162111] 

Murcray CE, Lewinger JP, Conti DV, Thomas DC, & Gauderman WJ (2011). Sample Size 
Requirements to Detect Gene-Environment Interactions in Genome-Wide Association Studies. 
Genetic Epidemiology, 35(3), 201–210. doi:10.1002/gepi.20569 [PubMed: 21308767] 

Murcray CE, Lewinger JP, & Gauderman WJ (2009). Gene-environment interaction in genome-wide 
association studies. Am J Epidemiol, 169(2), 219–226. doi:10.1093/aje/kwn353 [PubMed: 
19022827] 

Newman LS, Rose CS, Bresnitz EA, Rossman MD, Barnard J, Frederick M, … Group AR (2004). A 
case control etiologic study of sarcoidosis: environmental and occupational risk factors. Am J 
Respir Crit Care Med, 170(12), 1324–1330. doi:10.1164/rccm.200402–249OC [PubMed: 
15347561] 

Piegorsch WW, Weinberg CR, & Taylor JA (1994). Non-hierarchical logistic models and case-only 
designs for assessing susceptibility in population-based case-control studies. Stat Med, 13(2), 153–
162. [PubMed: 8122051] 

Rossman MD, Thompson B, Frederick M, Iannuzzi MC, Rybicki BA, Pander JP, … Group, A. (2008). 
HLA and environmental interactions in sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis, 25(2), 
125–132. [PubMed: 19382531] 

Rothman N, Garcia-Closas M, Chatterjee N, Malats N, Wu X, Figueroa JD, … Chanock SJ (2010). A 
multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci. 
Nat Genet, 42(11), 978–984. doi:10.1038/ng.687 [PubMed: 20972438] 

Rybicki BA, Levin AM, McKeigue P, Datta I, Gray-McGuire C, Colombo M, … Iannuzzi MC (2011). 
A genome-wide admixture scan for ancestry-linked genes predisposing to sarcoidosis in African-
Americans. Genes Immun, 12(2), 67–77. doi:10.1038/gene.2010.56 [PubMed: 21179114] 

Rybicki BA, Major M, Popovich J Jr., Maliarik MJ, & Iannuzzi MC (1997). Racial differences in 
sarcoidosis incidence: a 5-year study in a health maintenance organization. Am J Epidemiol, 
145(3), 234–241. [PubMed: 9012596] 

Sanderson C, & Curtin R (2016). Armadillo: a template-based C++ library for linear algebra. Journal 
of Open Source Software, 1(26). doi:10.21105/joss.00026

Sul JH, Bilow M, Yang WY, Kostem E, Furlotte N, He D, & Eskin E (2016). Accounting for 
Population Structure in Gene-by-Environment Interactions in Genome-Wide Association Studies 
Using Mixed Models. PLoS genetics, 12(3). doi:ARTN e100584910.1371/journal.pgen.1005849

Thomas D (2010). Gene-environment-wide association studies: emerging approaches. Nature Reviews 
Genetics, 11(4), 259–272. doi:10.1038/nrg2764

Thomas DC, Haile RW, & Duggan D (2005). Recent developments in genomewide association scans: 
A workshop summary and review. American Journal of Human Genetics, 77(3), 337–345. doi:Doi.
10.1086/432962 [PubMed: 16080110] 

Chen et al. Page 13

Genet Epidemiol. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://10.1002/gepi.21811
https://10.1016/j.ajhg.2014.11.005
https://10.1093/bioinformatics/btq559
https://10.1093/bioinformatics/btq559
https://10.1038/ng1337
https://10.1093/aje/kwr367
https://10.1111/j.1541–0420.2007.00953.x
https://10.1002/gepi.20569
https://10.1093/aje/kwn353
https://10.1164/rccm.200402–249OC
https://10.1038/ng.687
https://10.1038/gene.2010.56
https://10.21105/joss.00026
https://ARTNe100584910.1371/journal.pgen.1005849
https://10.1038/nrg2764
https://Doi.10.1086/432962
https://Doi.10.1086/432962


Thornton T, Tang H, Hoffmann TJ, Ochs-Balcom HM, Caan BJ, & Risch N (2012). Estimating kinship 
in admixed populations. Am J Hum Genet, 91(1), 122–138. doi:10.1016/j.ajhg.2012.05.024 
[PubMed: 22748210] 

Wang XF, Lee S, Zhu XF, Redline S, & Lin XH (2013). GEE-Based SNP Set Association Test for 
Continuous and Discrete Traits in Family-Based Association Studies. Genetic Epidemiology, 
37(8), 778–786. doi:10.1002/gepi.21763 [PubMed: 24166731] 

Wang YT, Localio R, & Rebbeck TR (2006). Evaluating bias due to population stratification in 
epidemiologic studies of gene-gene or gene-environment interactions. Cancer Epidemiology 
Biomarkers & Prevention, 15(1), 124–132. doi:10.1158/1055–9965.Epi-05–0304

Weir BS, & Cockerham CC (1984). Estimating F-Statistics for the Analysis of Population Structure. 
Evolution, 38(6), 1358–1370. doi:10.1111/j.1558–5646.1984.tb05657.x [PubMed: 28563791] 

Wissemann WT, Hill-Burns EM, Zabetian CP, Factor SA, Patsopoulos N, Hoglund B, … Payami H 
(2013). Association of Parkinson disease with structural and regulatory variants in the HLA 
region. Am J Hum Genet, 93(5), 984–993. doi:10.1016/j.ajhg.2013.10.009 [PubMed: 24183452] 

Yang JJ (2010). Distribution of Fisher’s combination statistic when the tests are dependent. Journal of 
Statistical Computation and Simulation, 80(1–2), 1–12. doi:10.1080/00949650802412607

Yang JJ, Li J, Williams LK, & Buu A (2016). An efficient genome-wide association test for 
multivariate phenotypes based on the Fisher combination function. BMC Bioinformatics, 17, 19. 
doi:10.1186/s12859–015-0868–6 [PubMed: 26729364] 

Yang Q, Khoury MJ, & Flanders WD (1997). Sample size requirements in case-only designs to detect 
gene-environment interaction. Am J Epidemiol, 146(9), 713–720. [PubMed: 9366618] 

Zhou W, Nielsen JB, Fritsche LG, Dey R, Gabrielsen ME, Wolford BN, … Lee S (2018). Efficiently 
controlling for case-control imbalance and sample relatedness in large-scale genetic association 
studies. Nature Genetics, 50(9), 1335-+. doi:10.1038/s41588–018-0184-y

Chen et al. Page 14

Genet Epidemiol. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://10.1016/j.ajhg.2012.05.024
https://10.1002/gepi.21763
https://10.1158/1055–9965.Epi-05–0304
https://10.1111/j.1558–5646.1984.tb05657.x
https://10.1016/j.ajhg.2013.10.009
https://10.1080/00949650802412607
https://10.1186/s12859–015-0868–6
https://10.1038/s41588–018-0184-y


Figure 1: 
Five conceptual models of gene-environment interactions: (A) genetic marginal effects, but 

no GxE interaction; (B-D), marginal effects and GxE interaction; (E) no marginal effect for 

gene but GxE interaction exists. β1, β2, β3 are as shown in model (2), where β1 is the main 

effect for genetic factors, β2 is the main effect for environmental factors and β3 stands for 

interaction effects of the two.
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Figure 2: 
Family-wise error rate (FWER) from simulation results. (A) for simple pedigree structure 

simulations and (B) for complex pedigree structure simulations. Y-axis represents FWER 

and x-axis shows the probability of SNPs associated with environment (Pge) in simulation. 

The simulation parameters are listed on top of each panel. Left panel: β1 = β2 = 0, and β3 = 

log(3); middle panel: β1 = β2 = log(1.5), and β3 = log(3); β1 = log(2), β2 = log(1.5), and β3 

= log(0.25). Five methods are tested: GEE-CC, GEE-CO, GEE-joint-chisq, GEE-joint-

gamma, and GEE-adaptive. The insert plots are zoom-in on the FWER range of 0 to 0.1.
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Figure 3: 
Power from simulation results. (A) for simple pedigree structure simulations and (B) for 

complex pedigree structure simulations. The plots are arranged in the same order as in 

Figure 2 for easy comparison.
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Figure 4: 
The SNP and insecticide interaction scan using genotyped AMASS data using GEE-joint-

gamma method. (a) QQ plot of p-values from the joint test. (b) the Manhattan plot of p-

values across autosomes, where the suggestive significance line is drawn at p value of 10−5. 

(c) LocusZoom plot of the peak region on chromosome 6 as identified in Manhattan plot. 

Each SNP is represented by a circle except the lead variant as diamond and labeled as 

chr:position in hg19.
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