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Abstract

Although methodology articles have increasingly emphasized the need to analyze data from two 

members of a dyad simultaneously, the most popular method in substantive applications is to 

examine dyad members separately. This might be due to the underappreciation of the extra 

information simultaneous modeling strategies can provide. Therefore, the goal of this study was to 

compare multiple growth curve modeling approaches for longitudinal dyadic data (LDD) in both 

structural equation modeling and multilevel modeling frameworks. Models separately assessing 

change over time for distinguishable dyad members are compared to simultaneous models fitted to 

LDD from both dyad members. Furthermore, we compared the simultaneous default versus 

dependent approaches (whether dyad pairs’ Level 1 [or unique] residuals are allowed to covary 

and differ in variance). Results indicated that estimates of variance and covariance components led 

to conflicting results. We recommend the simultaneous dependent approach for inferring 

differences in change over time within a dyad.

Keywords

longitudinal dyadic data analysis; multilevel modeling; separate modeling; simultaneous 
modeling; structural equation modeling

Often, in longitudinal studies, our objectives are to study how an individual changes over 

time as well as differences in how individuals change over time (e.g., McArdle & 

Nesselroade, 2014; Singer & Willett, 2003). The former is called intraindividual change, 

whereas the latter is called interindividual differences in intraindividual changes (Baltes & 

Nesselroade, 1979). An example of each type of objective in the developmental literature is 

emotion regulation. Kopp (1989) found that infants’ ability to regulate their emotions gets 

better as they get older; this is intraindividual change. However, not all infants change in the 

same way, such that some get better more rapidly and some improve less rapidly; this is 

interindividual differences in intraindividual changes. In the specific case of emotion 
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regulation, we can examine both how infants change in emotion regulation over age and how 

individual trajectories differ across infants.

LONGITUDINAL DATA

To study changes over time, one can measure the same individuals across multiple time 

points on the same measures or constructs. The data are called repeated measures, 

multiwave, or longitudinal. In a longitudinal study, each individual acts as his or her own 

control and thus the aforementioned objectives of the analysis of change can be fulfilled by 

analyzing the longitudinal data. One important feature of longitudinal data is that the data 

from different time points are nested within an individual and thus are more or less 

correlated within an individual (Fitzmaurice, Laird, & Ware, 2011). Considering the nested 

data feature, researchers fit multilevel models (MLM) or latent growth curve models in the 

structural equation modeling (SEM) framework to analyze longitudinal data for the analysis 

of change (e.g., Grimm, Steele, Ram, & Nesselroade, 2013; McArdle, 2009; Singer & 

Willett, 2003).

DYADIC DATA

In a different line of investigation, psychological research often examines how related people 

are similar or different from each other in their behaviors and attitudes. For example, family 

researchers might be interested in studying the extent to which a husband and wife’s marital 

satisfaction levels relate within a couple. To examine this research question, one needs to 

collect data from dyads of two related individuals (i.e., both husband and wife). The 

collected data are called dyadic data. There are two kinds of dyadic data, depending on 

dyadic distinguishability, whether the two individuals comprising a dyad possess a 

distinctive characteristic to identify them (i.e., distinguishable dyads) or not (i.e., 

indistinguishable dyads; e.g., Kenny, Kashy, & Cook, 2006). For our example, the husband 

and the wife in a dyad can be distinguished based on their gender or role and thus form a 

distinguishable dyad. In contrast, identical twins can be considered to form indistinguishable 

dyads. In this article, we focus on studying distinguishable dyads.

When examining dyadic data, it is important to account for the possibility that one member’s 

responses to questions might be related to the other member’s responses. That is, the data 

from two members of a dyad are nested within a dyad and thus might be correlated. For 

example, in the case of marital relationships, two members of a dyad are inherently reporting 

on the same relationship. Therefore, dyadic data often encounter the problem of 

nonindependence (e.g., Gonzalez & Griffin, 2012; Kenny et al., 2006). To account for 

nonindependence in the data, we need to allow the observations from a member of a dyad to 

be related to the corresponding observations from the other member of the dyad in statistical 

analyses. However, one assumption underlying many basic statistical analyses (e.g., 

regression analysis and analysis of variance [ANOVA]) is that observations are independent. 

Thus, more advanced analyses such as MLM and SEM have been proposed and studied for 

cross-sectional dyadic data analysis to account for interdependence in the data (e.g., Du & 

Wang, 2016; Kenny et al., 2006; Ledermann, Macho, & Kenny, 2011; Newsom, 2002; Sayer 

& Klute, 2005; Wendorf, 2002).
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LONGITUDINAL DYADIC DATA

When dyads are repeatedly measured, we have longitudinal dyadic data (LDD). For LDD, 

data from different time points are nested within a dyad member and data from dyad 

members are nested within a dyad. Thus, LDD are three-level data. There are two kinds of 

nonindependence in LDD: nonindependence from repeated measures over time and 

nonindependence from related members in a dyad at a given time point. This could make the 

data analysis more complicated. Specifically, there are three kinds of intraclass correlations 

(ICCs) for which to account in analyses: an ICC for each dyad member over time (how 

strongly data from different time points correlate for each dyad member) and a third kind of 

ICC for the relation between dyad members at each time point (how strongly data from the 

two dyad members correlate at each time point).

Several techniques have been proposed and used to account for nonindependence in LDD. 

These techniques answer different research questions. For example, growth curve modeling 

(e.g., Atkins, 2005; Kashy & Donnellan, 2008; Kashy, Donnellan, Burt, & McGue, 2008; 

Lyons & Sayer, 2005; Peugh, DiLillo, & Panuzio, 2013; Whittaker, Beretvas, & Falbo, 

2014) can be used to address questions related to intraindividual change over time, whereas 

cross-lagged models (e.g., Bolger & Laurenceau, 2013; Ferrer & Nesselroade, 2003) are 

considered as longitudinal actor–partner models to study how a dyad member at time t – 1 

influences the other dyad member at time t and thus do not address intraindividual change 

(Kenny et al., 2006). In this article, we focus on discussing how to apply growth curve 

modeling to LDD for the analysis of change.

As stated by Kenny et al. (2006), “The analysis of over-time data from individuals is very 

complex. … Adding the complications of dyadic data analysis makes a difficult topic even 

more challenging. Moreover, methodologists have not yet come to a complete consensus on 

which data-analytic techniques are most appropriate” (p. 343). Inspired by this comment, we 

explicitly compare six growth modeling approaches for LDD analysis with distinguishable 

dyads: 2 Modeling Framework (MLM vs. SEM) × 3 Modeling Approach (separate vs. 

simultaneous “default” vs. simultaneous “dependent”). By comparing methodologies in both 

the MLM and SEM frameworks, we hope to provide researchers with the tools necessary to 

conduct these analyses independently. Furthermore, we assess change over time for 

distinguishable dyad members separately and simultaneously using the default or a 

dependent Level 1 (unique) residual covariance approach. The simultaneous default 

approach does not allow dyad pairs’ Level 1 (unique) residuals to covary and differ in 

variance whereas the simultaneous dependent approach does. The approaches are explained 

in detail later.

Researchers have discussed and compared different growth curve modeling approaches for 

LDD analysis with distinguishable dyads. However, none has explicitly compared all six 

approaches. For example, Atkins (2005) focused on discussing MLM with the separate or 

simultaneous default approach for conducting LDD analysis in family research but not 

within the SEM framework or in comparison to the simultaneous dependent approach. 

Kashy and Donnellan (2008) illustrated MLM and SEM growth models with the 

simultaneous dependent approach for LDD analysis with distinguishable dyads but did not 
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compare them to the separate and simultaneous “default” approaches. More recently, Peugh 

et al. (2013) articulated the use of SEM models with the simultaneous dependent approach 

but not within the MLM framework or in comparison to the separate and simultaneous 

default approaches for LDD analysis with distinguishable dyads. Furthermore, Whittaker et 

al. (2014) described how to use the curve of factor analysis in the SEM framework to 

analyze LDD and discussed the measurement invariance over time issue but did not compare 

various error covariance structure approaches.

Therefore, the purpose of this study is to apply three growth curve modeling approaches in 

both MLM and SEM frameworks to analyze a real LDD set with distinguishable dyads to 

show (a) differences in the research questions that can be answered by different modeling 

approaches, and (b) similarities and differences in the results of using different approaches. 

SAS PROC MIXED or Mplus code for implementing each of the six (2 × 3) approaches is 

provided and recommendations are made and discussed on growth curve modeling for LDD 

analysis with distinguishable dyads.

OUR REAL DATA AND SUBSTANTIVE RESEARCH QUESTIONS

The data are from a longitudinal study exploring infant development in 135 parent–infant 

triads and include a measure of marital satisfaction completed by both mothers and fathers at 

five waves of data collection. The data are both longitudinal and dyadic in nature. More 

specifically, families attended six laboratory visits when the infants were 3, 5, 7, 12, 14, and 

20 months of age (±14 days). Only mothers and infants attended the 12-month visit, and 

only fathers and infants attended the 14-month visit, resulting in five time points of data 

collection each for mothers and fathers.

Before each laboratory visit, parents completed a measure of marital satisfaction measured 

using the Short Marital Satisfaction Test (SMAT; Locke & Wallace, 1959), a 15-item 

questionnaire assessing global marital satisfaction and how the couple agrees on various 

matters that arise in marriage (i.e., recreation, finances, and the handling of disagreements). 

Parents completed the questionnaire separately. Scores on the SMAT ranged from 29.89 to 

157 for fathers and 26 to 156 for mothers. Cronbach’s alphas assessing internal consistency 

for fathers’ SMAT responses ranged from .75 to .89 across the five time points and ranged 

from .73 to .86 for mothers’ responses. See Appendix A for a subset of the data in various 

forms.

Descriptive statistics for mother and father marital satisfaction are presented in Table 1. The 

correlations among mothers’ data over time (the M block in Table 1) ranged from .55 to .78, 

with higher correlations from repeated measures data with shorter time intervals. A very 

similar range (.59–.79) and pattern were observed for the correlations among fathers’ data 

over time (the F block in Table 1). The correlations between mother and father reports of 

marital satisfaction (the M&F block in Table 1) indicated that they were related at each time 

point (.52–.65) and across time (.43–.52) as well. Thus, data used for this empirical example 

are related over time for each dyadic member, between the two dyadic members at each time 

point and across time, as would be expected for typical longitudinal dyadic data. More 
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information about the sample and the measure can be found in Planalp, Braungart-Rieker, 

Lickenbrock, and Zentall (2013).

ICCs were calculated for mothers’ repeated measures over time, fathers’ repeated measures 

over time, and between mothers and fathers at each time point. SAS syntax for calculating 

the three types of ICCs is included in Appendix B. ICCs for measuring the nonindependence 

from the repeated measures data of mothers and fathers over time were .67 and .71, 

respectively. These two ICCs summarize the correlations in the M and F blocks of Table 1, 

respectively. At each time point, the ICCs for measuring the nonindependence between 

mothers and fathers ranged from .52 to .67 (.56 at 3 months, .64 at 5 months, .52 at 7 

months, .60 at 12 and 14 months, .67 at 20 months), which are corresponding to the 

correlations in the M&F block of Table 1. The calculated ICC values indicated that the data 

were highly dependent over time within a dyadic member and were also highly dependent 

between mothers and fathers at each time point. High ICCs from LDD suggest and require 

the use of models that can handle nonindependence among observations.

With a focus on studying intraindividual changes, intraindividual variability, and 

interindividual differences and relations in them (Baltes & Nesselroade, 1979), we are 

interested in answering the following substantive research questions:

1. How do mothers’ (or fathers’) reports of marital satisfaction change over time, 

on average, respectively?

2. How do mothers (or fathers) differ in changes in marital satisfaction over time?

3. How do mothers differ from fathers in changes in marital satisfaction over time, 

on average?

4. How do couples differ in the mother versus father differences in changes over 

time?

5. How do mothers’ changes relate to fathers’ changes?

6. How much average intraindividual variability is there for mothers (or fathers) 

after controlling the individual fitted trends?

7. How much difference in the average intraindividual variability is there between 

mothers and fathers after controlling for the individual fitted trends?

8. How do intraindividual fluctuations of mothers relate to those of fathers after 

controlling for the individual fitted trends?

Also see Table 2 for the list of substantive research questions, which is long. However, with 

LDD and an appropriate modeling approach, we are able to answer them, which is 

demonstrated in what follows.

MODELING APPROACHES FOR LONGITUDINAL DYADIC DATA ANALYSIS

A non-exhaustive literature review was conducted to gather modeling information about how 

substantive researchers have been analyzing LDD. We used the keywords longitudinal (or 

repeated measures) and dyad (dyadic or pair) for searching post-2000 peer-reviewed articles 
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in several psychology journals including, but not limited to Child Development, 
Developmental Psychology, Infancy, Development and Psychopathology, British Journal of 
Developmental Psychology, Journal of Abnormal Child Psychology, Journal of Family 
Psychology, and Journal of Marriage and Family. Models such as MLM, latent growth curve 

models in the SEM framework, and repeated measures ANOVAs were widely used for the 

analysis of change using LDD. Given that traditional repeated measures ANOVAs are 

generally less flexible and less capable in handling missing data for longitudinal data 

analysis (Hedeker & Gibbons, 2006), we focus on studying MLM and SEM for LDD 

analysis in this article. These two frameworks for the analysis of change perform the same or 

nearly identically, given that the specified models are the same (e.g., Bauer, 2003; Kashy & 

Donnellan, 2008; Kenny et al., 2006; MacCallum, Kim, Malarkey, & Kiecolt-Glaser, 1997). 

Thus, one purpose of this study is to illustrate the similarity, differences, advantages, and 

limitations of conducting LDD analysis in the two frameworks.

Surprisingly, our literature review showed that few substantive studies (less than 20%) 

modeled longitudinal dyadic data from both dyad members simultaneously. In other words, 

substantive researchers often model the longitudinal data from each dyad member 

separately, resulting in two separate models, and verbally compare the results from the two 

models. Although this provides information on each dyad member’s behavior of interest, it 

is impossible to infer comparisons statistically. Use of this popular but perhaps less 

appropriate practice might be due to the lack of understanding of negative consequences of 

the separate modeling strategy and the underappreciation of the extra information and 

flexibility a simultaneous modeling strategy can provide. If the question of interest includes 

a comparison between dyad members, researchers should use a modeling approach that 

accurately answers that question, namely a simultaneous approach. Based on the results of 

our limited search, this was often not the case. Thus, another goal of this study is to discuss 

the separate versus simultaneous modeling approaches for LDD analysis and demonstrate 

the similarities and differences in the estimates of both fixed effects and variance parameters 

from both approaches.

In addition, for the simultaneous modeling approach, we compare two methods for modeling 

the error covariance structure: the default method, which does not allow Level 1 (or unique) 

residuals to covary and their variances to be different versus a dependent method allowing 

Level 1 residuals to covary and their variances to differ. Note that the default and dependent 

approaches are also called the standard and alternative error covariance structures in the 

MLM literature (e.g., Singer & Willett, 2003).

In sum, we examine and compare 2 (MLM vs. SEM) × 3 (separate vs. simultaneous default 

vs. simultaneous dependent) modeling approaches for LDD analysis. We focus on 

examining what research questions can be answered by each modeling approach (see Table 2 

for a summary), how the estimates of fixed effects and variance–covariance parameters 

differ between approaches, and which modeling technique might yield more informative and 

accurate results.
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Data Structures for MLM and SEM

We fit the multilevel models using SAS 9.3 (SAS Institute, 2011) and the SEM models using 

Mplus 6.0 (Muthén & Muthén, 1998–2010) to the real LDD. We had different data 

structures for the two frameworks (Singer & Willett, 2003). When using SAS PROC 

MIXED for multilevel models, data were set up in a long data format, in which each dyad 

has multiple records or rows of data for one outcome variable, in our case marital 

satisfaction (SMAT). Using our real data example, for the separate mother and father 

analyses, there are five variables: a dyad or family ID variable, a time variable (age: infant 

age) for each dyad, and the outcome variables (msmat: mothers’ marital satisfaction; fsmat: 

fathers’ marital satisfaction) in the data set. For the simultaneous analyses, there are six 

variables: a dyad or family ID variable, a time variable (age: infant age), a dyad member 

identifier (mom: whether the member is mother or father), the outcome (smat: marital 

satisfaction data from both mothers and fathers), and two additional variables (time and role) 

that are explained later. Appendix A shows examples of the long data format used in our 

separate and simultaneous modeling analyses.

When using Mplus for SEM analyses, data are in a wide data format, such that each dyad 

has one row of data and multiple variables: each variable for each dyad member at each time 

point. For our example, there is a dyad or family ID variable, five mother variables, and five 

father variables for each dyad. Appendix A also shows an example of the wide data format 

used in our analyses.

Because our data are from mothers and fathers reporting on marital satisfaction, we use the 

terms mother and father to indicate two distinguishable members of a dyad in the following 

descriptions of modeling strategies. The models can be applied to other longitudinal data 

with distinguishable dyads.

Separate MLM Models for Each Dyad Member

MLM allows the examination of both intraindividual changes and interindividual differences 

in changes (Singer & Willett, 2003). MLM models for this study used a Level 1 model for 

intraindividual changes over time and a Level 2 model for interindividual differences in such 

change (Singer & Willett, 2003).

We compared models with no change, linear change, and quadratic change functions (Singer 

& Willett, 2003). Model comparison results indicated that the linear model fit the data 

adequately. Thus in this article, we focus on models with a linear change function at the first 

level.

Two separate two-level MLM models were fit to the data for mothers and fathers, 

respectively. Equations for the separate MLM models are, for Level 1, intraindividual 

changes over time:

yit = b1i + b2i ageit + eit, (1)

and for Level 2, between-person differences in such changes
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b1i = β10 + ζ1i (2)

b2i = β20 + ζ2i (3)

where yit is the observed score in the outcome variable (marital satisfaction) for individual i 
at time t. Different centering and scaling approaches of the time variable (infant age at a 

mother–child or father–child visit), ageit, yield different meanings of the random effects: b1i 

and b2i. In our example, we centered the infant age variable at the child’s birth date with 

year as the time unit and thus the values for ageit were 3/12, 5/12, 7/12, 12/12, 20/12 for 

mothers and 3/12, 5/12, 7/12, 14/12, 20/12 for fathers. Random coefficient b1i represents the 

level of marital satisfaction (at the child’s birth) of individual i, or intercept, and random 

effect b2i represents the linear rate of change over the observation period in marital 

satisfaction of individual i, or linear slope. eit is the deviation of the observed response score 

from individual i’s fitted curve for individual i at time t. The default covariance structure of 

the Level 1 residuals in MLM is a diagonal matrix with equal residual variances across time, 

and off-diagonal elements constrained to be zero. For our example, it is the 5 × 5 diagonal 

matrix in Equation 4. σe
2 measures the average intraindividual variability of the observed 

responses around each individual’s fitted curve.

COV eit =

σe
2 0 0 0 0

0 σe
2 0 0 0

0 0 σe
2 0 0

0 0 0 σe
2 0

0 0 0 0 σe
2

(4)

At the second level, β10 and β20 represent the average initial level and linear slope across 

individuals. The covariance matrix of Level 2 residuals ζ1i and ζ2i, matrix G1, usually 

includes the variances for the intercept σ1
2  and slope σ2

2  as well as the covariance between 

intercepts and slopes (σ12).

G1 = COV
ζ1i

ζ2i
=

σ1
2 σ12

σ12 σ2
2 (5)
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Separate SEM Models for Each Dyad Member

SEM is a widely used tool for examining relationships between multiple variables in one 

pathway model (Bollen, 1998), and can also be used to examine LDD (Kashy & Donnellan, 

2008). In particular, latent growth curve modeling is a highly recommended method for 

studying levels and changes of a behavior with repeated-measures data over time, as well as 

the relation between the growth of several variables over time (Ferrer & McArdle, 2003; 

McArdle, 2009; Meredith & Tisak, 1990). For a linear latent growth curve model, two latent 

variables, intercept and change, can be defined to model the individual change trajectories 

over time. Depending on the factor loadings, different meanings of the intercept and change 

latent variables can be obtained.

Using the same example as with the MLM models earlier, we specified two separate models 

for mothers’ and fathers’ marital satisfaction. See Figure 1 for a path diagram. By 

constraining all paths from the latent intercept variable to the manifest (observed) marital 

satisfaction variable at each time point to be one and to the latent change variable to be the 

age values of the infant (unit: year) at the visit such as 3/12, 5/12, 7/12, 12/12, 20/12 for 

mothers and 3/12, 5/12, 7/12, 14/12, 20/12 for fathers, this allows the latent intercept 

variable to represent individual initial levels for marital satisfaction, corresponding to b1i in 

MLM, and the latent change variable to represent individual yearly linear rate of change in 

marital satisfaction, corresponding to b2i in MLM. The means of the level and linear slope 

latent variables correspond to fixed effects β10 and β20 in MLM, representing the average 

initial level and linear slope across individuals, respectively. In addition, the residual or 

unique variance of the observed variables is set to be equal across time, σe
2, to be consistent 

with the standard setting in the MLM framework. It should be noted that this constraint is 

not necessary for latent growth curve modeling. For the two latent variables, a 2 × 2 

covariance structure is specified to model the variances of the latent level and linear slope 

variables and their covariance, corresponding to the G1 matrix (Equation 5) in MLM. The 

model specification in the SEM framework, therefore, is the same as that in the MLM 

framework.

To examine whether and how fathers’ change trajectories differ from those of mothers, we 

need to model the longitudinal data from both mothers and fathers simultaneously. Next, we 

discuss the simultaneous models in both MLM and SEM frameworks.

Simultaneous MLM Models for Both Dyad Members

To answer our research question on whether mothers and fathers differ from each other in 

their initial levels and changes over time in marital satisfaction, we need to analyze the data 

from both mothers and fathers simultaneously. Simultaneous modeling methods allow us to 

statistically test for the differences between mothers and fathers. Although the longitudinal 

data from both mothers and fathers are three-level, we analyze them using a two-level MLM 

because the role within a dyad (e.g., mother vs. father) is a fixed (not random) factor. In 

other words, a conceptual three-level model can be represented but only two levels show 

random variation (also see Chapter 8 in Bolger & Laurenceau, 2013). Thus, the two-level 

MLM equations for the simultaneous modeling method, for Level 1, intraindividual changes 

over time:
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yidt = b1d + b2d ageidt + b3d momid + b4d ageidt * momid + eidt, (6)

and for Level 2, between-person differences in change:

b1d = β10 + ζ1d (7)

b2d = β20 + ζ2d (8)

b3d = β30 + ζ3d (9)

b4d = β40 + ζ4d (10)

In Equation 6, yidt represents the observed outcome (marital satisfaction) for member i of 

dyad d at time t. momid indicates whether a datum is from the mother or the father of dyad d 
with 1 indicating from the mother and 0 indicating from the father. For the random effects, 

b1d represents the initial status in marital status and b2d represents the linear slope for the 

father in dyad d. In addition, b3d represents the difference in the initial status between the 

father and the mother of dyad d, and b4d is the difference in the linear slopes between the 

father and the mother of dyad d. It should be noted that we could specify the model to allow 

b3d and b4d to represent the initial status and linear slope for the mother in dyad d. In this 

case, another indicator variable (e.g., dad) needs to be added. For example, we have, for 

Level 1, intraindividual changes over time:

yidt = b1d dadid + b2d ageidt * dadid + b3d momid + b4d ageidt * momid ] + eidt

The two specifications are mathematically equivalent. However, the specification in 

Equation 6 allows us to directly compare mothers and fathers in their initial levels and 

changes over time. Therefore, we use the specification in Equation 6 in this article.

Following the regular assumptions in MLM, the random effects are assumed to have a 

multivariate normal distribution with COV (b1d; b2d; b3d; b4d) = COV(ζ1d; ζ2d; ζ3d; ζ4d) for 

this unconditional MLM model. Diagnostics of the normality assumption and alternative (or 

robust) methods for general growth curve modeling have been discussed in the literature 

(e.g., Pan & Fang, 2012; Tong & Zhang, 2012) and are not discussed in this article due to the 

scope limits. The covariance matrix of the random effects, G2, is
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G2 = COV

ζ1d

ζ2d

ζ3d

ζ4d

=

σ1
2 σ12 σ13 σ14

σ12 σ2
2 σ23 σ24

σ13 σ23 σ3
2 σ34

σ14 σ24 σ34 σ4
2

. (11)

The main diagonal elements in G2 measure interindividual variation in fathers’ initial levels, 

fathers’ linear slopes, differences in the initial levels between mothers and fathers, and 

differences in the linear slopes between mothers and fathers, respectively. β10; β20; β30; and 

β40 are the corresponding fixed effects, representing the average initial level for fathers, the 

average linear slope for fathers, the average difference in the initial levels between mothers 

and fathers, and the average difference in the linear slopes between mothers and fathers, 

respectively.

For the Level 1 residual variable eidt, we compare two ways of modeling its covariance 

structure: the default error covariance structure and the dependent error covariance structure. 

The former sets the residual variances to be equal for mothers and fathers and assumes all 

the covariances to be 0, resulting a diagonal homogeneous covariance matrix (see Equation 

12). Using our specific example, the default covariance structure implies that mother and 

father reports of marital satisfaction, after controlling for the individual linear trends, are 

unrelated and have the same amount of intraindividual variability. In other words, after 

controlling for the individual linear trends, mothers’ and fathers’ reports of marital 

satisfaction are not correlated at a given time point and the amount of intraindividual 

variability in mothers’ reports of marital satisfaction is assumed to be the same as that in 

fathers’ reports of marital satisfaction (σe
2 in Equation 12).

COV eidt =

σe
2 0 0 0 0 0 0 0 0 0

0 σe
2 0 0 0 0 0 0 0 0

0 0 σe
2 0 0 0 0 0 0 0

0 0 0 σe
2 0 0 0 0 0 0

0 0 0 0 σe
2 0 0 0 0 0

0 0 0 0 0 σe
2 0 0 0 0

0 0 0 0 0 0 σe
2 0 0 0

0 0 0 0 0 0 0 σe
2 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 σe
2

(12)
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An alternative to this default error covariance structure is to account for interdependence in 

the Level-1 residuals of two members of a dyad at a given time point. An appropriate 

dependent error covariance structure for Level 1 residuals in LDD analysis is the 

heterogeneous compound symmetry covariance structure (e.g., Fitzmaurice et al., 2011; 

Kashy & Donnellan, 2008; Singer & Willett, 2003). That is, the Level 1 residual variances 

for mothers and fathers are allowed to differ from each other, and the Level 1 errors of the 

mother and the father of a dyad are allowed to covary at a given time point (see Equation 

13). Again, using our specific example, the dependent covariance structure implies that 

mother and father reports, after controlling for the individual linear trends, are allowed to 

covary at a given time point and have different amounts of average intraindividual variability 

between mothers and fathers.

In Equation 13, σmf represents the covariance between the Level 1 residuals of mothers and 

fathers at a given time point. In addition, σmf is assumed to be the same across different 

dyads and different time points. σm
2  represents the Level 1 residual variance for mothers and 

σ f
2 represents the Level 1 residual variance for fathers, which are also assumed to be same 

across dyads and across different time points, respectively. The dependent specification 

gives us extra information, especially about differences and relations between dyadic 

members. Using our specific example, we can test whether σm
2 = σ f

2 to study whether 

mothers and fathers have the same amount of average intraindividual variability in reports of 

marital satisfaction around their individual fitted trajectories. Furthermore, we can test 

whether σmf = 0 to investigate whether the intraindividual fluctuations in reports of marital 

satisfaction around the individual fitted trajectories covary between mothers and fathers at a 

given time point. In other words, after controlling the linear trends, σmf could inform us 

whether when a mother has a higher level of marital satisfaction, the father tends to have a 

higher level of marital satisfaction as well.

COV eidt =

σm
2 0 0 0 0 σm f 0 0 0 0

0 σm
2 0 0 0 0 σm f 0 0 0

0 0 σm
2 0 0 0 0 σm f 0 0

0 0 0 σm
2 0 0 0 0 σm f 0

0 0 0 0 σm
2 0 0 0 0 σm f

σm f 0 0 0 0 σ f
2 0 0 0 0

0 σm f 0 0 0 0 σ f
2 0 0 0

0 0 σm f 0 0 0 0 σ f
2 0 0

0 0 0 σm f 0 0 0 0 σ f
2 0

0 0 0 0 σm f 0 0 0 0 σ f
2

(13)
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Simultaneous SEM Models for Both Dyad Members

To specify models in the SEM framework that mimic the MLM models for simultaneously 

modeling data from both mothers and fathers, two sets of latent variables, latent intercepts 

and slopes for mothers and fathers, respectively, are included. They are M_level, M_slope, 

F_level, and F_slope. To compare mothers and fathers, difference score variables (Diff_level 

and Diff_slope) are also generated. More specifically, we have Diff_level = M_level – 

F_level and Diff_slope = M_slope – F_slope, where the means and variances of both 

M_level and M_slope are set to be 0 because we want to estimate the means and variances 

of Diff_level and Diff_slope. The means and variances of both F_level and F_slope are 

freely estimated. By using those constraints, we set fathers in the reference group, which 

mimics the MLM framework. The four latent variables, including F_level, F_slope, 

Diff_level, and Diff_slope, corresponding to the random effects b1d; b2d; b3d; and b4d in 

Equation 6, are assumed to follow a multivariate normal distribution with a 4 × 4 freely 

estimated covariance matrix. This matrix is equivalent to the G2 matrix in Equation 11 in the 

MLM framework. Under the default residual covariance structure method, residuals em1 to 

em5 and ef1 to ef5 are assumed to follow a multivariate normal distribution with a 10 × 10 

homogeneous diagonal covariance matrix (see Equation 12). The path diagram for the 

simultaneous SEM model with the default error covariance structure is depicted in Figure 2. 

As illustrated, the unique residual variances are constrained to be equal across the time 

points and between mothers and fathers, and the covariance between mother and father 

unique residuals at each time point is constrained to 0.

We can also specify the simultaneous model with the dependent error covariance structure 

(i.e., heterogeneous compound symmetry error covariance structure) in the SEM framework 

(see Figure 3). In contrast to the simultaneous model with the default error covariance 

structure, the unique residual variance of mothers (variance of em1 to em5; σm
2 ) are allowed 

to be different from the unique residual variance of fathers (variance of ef1 to ef5; σ f
2). In 

addition, the covariance between mother unique residuals and father unique residuals at each 

time point (σmf) is freely estimated.

EMPIRICAL RESULTS FROM THE MODELS

Results From the Separate Modeling Strategies

Using the separate modeling strategies, we can answer the first two research questions:

1. How do mothers’ (or fathers’) reports of marital satisfaction change over time, 

on average?

2. How do mothers (or fathers) differ in changes in marital satisfaction over time?

First, we examined the estimates of fixed effects (or estimated means of latent variables) 

from each MLM or SEM model (see Table 3). As expected, fixed effects estimates and their 

standard error estimates are identical from the two modeling frameworks, for both mother 

and father models. Substantively, mothers’ average initial level of marital satisfaction was 

119.31, and decreased by approximately 3.5 points per year. Fathers’ average initial level of 

marital satisfaction was 117.19 and decreased at approximately1.89 points per year, 
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although this slope estimate is not significantly different from 0. The initial levels of marital 

satisfaction are similar between mothers and fathers and there were decreasing patterns over 

time for both, although mothers’ changes were significant and fathers’ changes were not. For 

the estimates of the variance parameters, again MLM and SEM had nearly identical results 

because the models were specified in the same way. This is consistent with our expectation 

that both MLM and SEM can be used to examine longitudinal data and yield the same 

results given the same model specification. The results from variance tests were all 

significant, indicating that there was sufficient variation in mothers’ and fathers’ initial 

levels and changes in marital satisfaction over time. Furthermore, the estimates of the 

average intraindividual variability after accounting for the individual fitted linear trends were 

108.66 and 106.00 for mothers and fathers, respectively (Research Question 6). However, 

based on results from the separate modeling of mothers’ and fathers’ data, we are not able to 

statistically infer whether fathers’ change trajectories differ from those of mothers. The 

trajectories looked similar, but there is no statistical comparison, because we examined each 

dyad member using a separate model.

Results From the Simultaneous Modeling Strategies

To address our substantive research questions, especially on whether mothers and fathers 

differ in their initial levels and changes over time in marital satisfaction, we fit the 

simultaneously modeling models (2 MLM and 2 SEM models) to the data and the results are 

displayed in Table 4. First, fixed effects estimates and their standard error estimates from the 

MLM and SEM models were very similar, regardless of the different specifications of the 

error covariance structures. In addition, the estimates were also similar to those from the 

models that were separately fitted to the data for fathers and mothers. Although the fixed 

effects results were similar, we can conduct additional statistical tests on β30 and β40 for 

comparing estimates between mothers and fathers using the simultaneous models (Research 

Question 3). The differences between mothers and fathers were nonsignificant based on the 

Wald tests, indicating that the average initial levels and linear slopes in marital status for 

mothers and fathers were not significantly different from each other in this sample. For the 

covariances and correlations among the random-effects (latent) changes (Equation 11, 

Research Question 5), the correlation between fathers’ initial levels of marital satisfaction 

and the differences in the initial levels between fathers and mothers was significantly 

negative (the estimates were −.47 and −.50 from the default and dependent approaches with 

ps ≤ .002 from the Wald tests, respectively), indicating that the higher the fathers’ initial 

levels, the lower the differences in the initial levels between fathers and mothers. The other 

covariances and correlations were not significantly different from 0. This information, 

however, cannot be obtained from the separate modeling approach. Therefore, the 

simultaneous models allow us to statistically infer differences and relations between mothers 

and fathers, whereas this cannot be done from the models with separately modeled data from 

fathers and mothers.

In terms of the estimates of Level-1 (or unique) residual variance–covariance components, 

the results from the simultaneous default and simultaneous dependent methods differed, in 

line with our expectations that allowing mother and father residuals to covary would alter 

some variance and covariance estimates (see Table 4). Although the simultaneous default 
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method allows us to compare fixed effects (or means in SEM) estimates between mothers 

and fathers, it does not account for interdependence between dyadic members of a dyad 

within a time point after controlling the individual linear trends and does not allow different 

Level-1 (or unique) residual variances between mothers and fathers. The simultaneous 

dependent method, however, does account for these. Consequently, in terms of variance–

covariance parameter estimates, there were some differences in the results from the default 

and dependent methods.

Specifically, the correlation between mother and father residuals in the simultaneous default 

method is fixed at zero, and in the dependent method is estimated. As can be seen in Table 4, 

there was indeed a significant correlation between mother and father Level-1 (or unique) 

residuals at a given time point (rmf = .170 with p = .002 from both MLM and SEM), 

indicating nonindependence in the Level-1 (or unique) residuals of a dyad and implying that 

after controlling the linear trends, when a mother had a higher marital satisfaction, the father 

tended to have a higher marital satisfaction (Research Question 8).

In addition, to answer Research Question 6, the simultaneous default method gives the same 

Level-1 (or unique) residual variance estimate for both mothers and fathers (estimate = 

105.47 and 105.46 from MLM and SEM, respectively), whereas the dependent method 

allows us to estimate separate Level-1 (or unique) residual variances for mothers and fathers 

(108.58 vs. 103.36 from both MLM and SEM). Although the two residual variances were 

not significantly different from each other, χ2(1) = 0.20, p = .655, from both MLM and 

SEM, using these data (Research Question 7), the dependent method gives us more 

information about mothers’ and fathers’ residual variances and allows a statistical test for 

comparing them.

With regard to Research Question 4, the variance estimate of the differences in slopes 

between mothers and fathers differed between the default and dependent methods. For 

example, using the default method, the variance estimates were 22.91 and 22.93 from MLM 

and SEM, respectively, and were not significant (p = .195) from the MLM. In contrast, using 

the dependent method, the variance estimates were 49.72 and 49.71 from MLM and SEM, 

respectively, and were significant (p = .034). This has some practical implications. For 

example, when the default method was used, the insignificant variance test results might 

lead a researcher not to examine possible predictors of the differences in linear slopes (e.g., 

Ke & Wang, 2015; Singer & Willett, 2003). When the dependent method was used, the 

researcher would examine possible predictors of the differences in linear slopes. Again, the 

dependent method could give us more information.

Finally, we compared the model fits of the simultaneous models with default or dependent 

error covariance structures using the likelihood ratio test. The −2LL for the simultaneous 

default model was 9696.3, and for the simultaneous dependent model was 9686.6. With two 

degrees of freedom, the dependent model fit the data significantly better than the standard 

model. The SAS PROC MIXED and Mplus code for fitting the aforementioned models is 

included in Appendix B.1 In addition, R lme code for MLM modeling and R lavaan code for 

SEM is also included in the online supplementary document.

Planalp et al. Page 15

Struct Equ Modeling. Author manuscript; available in PMC 2019 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DISCUSSION

Our study was motivated by the fact that the separate modeling strategy is still the most 

widely used method in LDD analysis. Researchers might not be aware of the limitations of 

the separate modeling strategy nor appreciate the extra information and flexibility the 

simultaneous models can provide. Therefore, the goal of this study was to compare multiple 

modeling methods of analyzing LDD for studying change differences within distinguishable 

dyads, illustrate the similarities and differences in the results from the models, and provide 

our recommendations. Specifically, we compared the separate modeling to simultaneous 

modeling strategies, and also a default method with a dependent method for the error 

covariance structure under the simultaneous modeling strategy. We analyzed real LDD in 

both the MLM and SEM frameworks. Results showed that, although estimates of fixed 

effects were similar from the different modeling approaches, estimates of variance 

components substantially differed.

MLM Versus SEM

Researchers have long understood that MLM and SEM can and will provide identical or 

nearly identical results if the underlying models are specified in the same way. For example, 

Newsom (2002) and Wendorf (2002) showed that identical or nearly identical results were 

obtained from analyzing cross-sectional dyadic data in the two frameworks. Kashy and 

Donnellan (2008) analyzed longitudinal dyadic data using both MLM and SEM and showed 

that identical results were also obtained. In this study, we showed how to specify models for 

LDD analysis in the same way in both MLM and SEM frameworks and demonstrated that 

identical or nearly identical results can be obtained from the two frameworks. Although the 

two frameworks could yield identical results, there are advantages and limitations for LDD 

analysis using each framework.

On the one hand, SEM is useful and flexible when multiple manifest variables are used for 

measuring a latent construct and thus latent variables need to be generated to define latent 

constructs (e.g., Grimm, Kuhl, & Zhang, 2013). As shown in our examples, it is also flexible 

and easy to form latent variables from latent variables such as Diff_level and Diff_slope for 

various interesting comparisons. Furthermore, it is more flexible to test longitudinal and 

dyadic measurement invariance using the SEM framework, as shown in Whittaker et al. 

(2014). On the other hand, MLM is more straightforward in terms of handling unbalanced 

data. In this study, at Wave 3, mothers were measured at 12 months and fathers at 14 

months. Although the data look unbalanced between mothers and fathers, within each 

maternal or paternal group, the data are balanced. Thus, we can handle the differences in the 

age values between mothers and fathers in both frameworks (exact age values are used in 

MLM and different sets of factor loadings for the linear slope latent variable for mothers and 

fathers in SEM). When the data are unbalanced within each maternal or paternal group, 

however, it is more straightforward for MLM to handle the unbalanced nature of the data by 

including the exact age values for different individuals.

1All the materials in the appendices can be found at http://www3.nd.edu/~lwang4/LDD-SEM/.
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Separate Modeling Versus Simultaneous Default Versus Simultaneous Dependent

More important, we also examined multiple modeling methods for LDD analysis in both 

MLM and SEM frameworks. Although methodology articles have been emphasizing the 

need for analyzing dyadic data simultaneously, our nonexhaustive literature review showed 

that the separate modeling strategy is still the most popular method. Conceptually, it is 

impossible to compare changes between dyad members when the separate modeling strategy 

is used, so the simultaneous modeling strategy can give us much more informative results, 

especially in terms of the meaningful comparisons between dyad members (see Table 2 for a 

summary). Under the simultaneous modeling strategy, our results demonstrated the 

importance of considering all different kinds of interdependence. The difference between 

simultaneous default and dependent error covariance structures lies in how we treat the 

interdependence of the two dyad members at a given time point. Quantitatively, our results 

showed that although the fixed effect estimates were similar from different modeling 

methods, the estimates and statistical inference of variance–covariance components could be 

very different. For multilevel models, the maximum likelihood estimates of fixed effects are 

unbiased as long as the mean structure is correctly specified, even when the covariance 

structure is misspecified (e.g., Liang & Zeger, 1986). Therefore, it is not surprising to see 

that the fixed-effects estimates in our study were similar to each other from the models with 

different specifications for the covariance structure because the mean structures were the 

same across the models. However, it should also be noted that different covariance structures 

could empirically influence estimates of fixed effects and their standard error estimates, as 

emphasized by statisticians and methodologists such as Bamia, White, and Kenward (2013) 

and Liu, Rovine, and Molenaar (2012). Substantively, allowing the residual covariances at 

both levels to be nonzero in the simultaneous dependent approach appropriately reflects the 

fact that dyadic members (e.g., mother and father) could be dependent at a given time point 

due to shared experiences at the time point that are not captured by the predictor variables 

such as the time variable in our example (see Bolger & Shrout, 2007, for a more detailed 

discussion and examples). Therefore, it is important to have an appropriate covariance 

structure specified for LDD analysis given the different kinds of interdependence in LDD.

Because the default model is a reduced model of the dependent model, we can fit both to 

LDD and compare model fits. If the dependent error covariance structure fits the data 

significantly better, it should be used. The extra parameters in the model with the dependent 

error covariance structure shed light on differences in intraindividual variability and relations 

in intraindividual fluctuations between dyadic members after controlling trends.

To allow the use of the simultaneous approaches, data from both dyad members over time 

need to be collected (e.g., Kenny et al., 2006). Depending on the shape of the change 

trajectory, different numbers of time points are needed for capturing the change pattern 

accurately (e.g., Singer & Willett, 2003). Generally speaking, at least three time points are 

needed for estimating linear curves, four for quadratic curves, and five for cubic and other 

nonlinear curves. The simultaneous models can also be viewed as bivariate growth curve 

models. Power to detect fixed effects, variances, and covariances between latent slopes for 

univariate and bivariate growth curve models has been discussed in the literature (e.g., 

Bolger & Laurenceau, 2013; Fitzmaurice et al., 2011; Hertzog, Lindenberger, Ghisletta, & 
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Oertzen, 2006; Rast & Hofer, 2014; Satorra & Saris, 1985). An adequate amount of data 

needs to be collected to ensure both estimation accuracy and statistical power in LDD 

analysis. Future studies are needed to examine the data requirements for LDD analysis.

Conclusion and Recommendations

In conclusion, if one wants to compare changes over time between dyad members, we 

recommend repeatedly collecting data from both dyad members over time and using a model 

with simultaneously modeling data from both dyad members to statistically infer differences 

in changes between dyad members. The default error covariance structure (homogeneous 

diagonal error covariance structure) fails to take all kinds of interdependence in dyadic data 

into account. A dependent error covariance structure, heterogeneous compound symmetry 

error covariance structure, allows heterogeneity and interdependence in the data from 

members of a dyad at a given time point and thus we recommend the use of dependent error 

covariance structures for LDD analysis. We hope this article helps researchers better analyze 

their longitudinal dyadic data with distinguishable dyads.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Path diagram of separate SEM models for mothers and fathers. T1, T2, T3, T4, and T5 are 

3/12, 5/12, 7/12, 12/12, and 20/12 for mothers and 3/12, 5/12, 7/12, 14/12, and 20/12 for 

fathers for our example.
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FIGURE 2. 
Path diagram of simultaneous SEM models with the default error covariance structure. T1, 

T2, T3, T4, and T5 are 3/12, 5/12, 7/12, 12/12, and 20/12 for mothers and 3/12, 5/12, 7/12, 

14/12, and 20/12 for fathers for our example.
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FIGURE 3. 
Path diagram of simultaneous SEM models with the dependent error covariance structure. 

T1, T2, T3, T4, and T5 are 3/12, 5/12, 7/12, 12/12, and 20/12 for mothers and 3/12, 5/12, 

7/12, 14/12, and 20/12 for fathers for our example.
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