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Abstract

Although methodology articles have increasingly emphasized the need to analyze data from two
members of a dyad simultaneously, the most popular method in substantive applications is to
examine dyad members separately. This might be due to the underappreciation of the extra
information simultaneous modeling strategies can provide. Therefore, the goal of this study was to
compare multiple growth curve modeling approaches for longitudinal dyadic data (LDD) in both
structural equation modeling and multilevel modeling frameworks. Models separately assessing
change over time for distinguishable dyad members are compared to simultaneous models fitted to
LDD from both dyad members. Furthermore, we compared the simultaneous default versus
dependent approaches (whether dyad pairs’ Level 1 [or unique] residuals are allowed to covary
and differ in variance). Results indicated that estimates of variance and covariance components led
to conflicting results. We recommend the simultaneous dependent approach for inferring
differences in change over time within a dyad.
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Often, in longitudinal studies, our objectives are to study how an individual changes over
time as well as differences in how individuals change over time (e.g., McArdle &
Nesselroade, 2014; Singer & Willett, 2003). The former is called intraindividual change,
whereas the latter is called interindividual differences in intraindividual changes (Baltes &
Nesselroade, 1979). An example of each type of objective in the developmental literature is
emotion regulation. Kopp (1989) found that infants’ ability to regulate their emotions gets
better as they get older; this is intraindividual change. However, not all infants change in the
same way, such that some get better more rapidly and some improve less rapidly; this is
interindividual differences in intraindividual changes. In the specific case of emotion
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regulation, we can examine both how infants change in emotion regulation over age and how
individual trajectories differ across infants.

LONGITUDINAL DATA

To study changes over time, one can measure the same individuals across multiple time
points on the same measures or constructs. The data are called repeated measures,
multiwave, or longitudinal. In a longitudinal study, each individual acts as his or her own
control and thus the aforementioned objectives of the analysis of change can be fulfilled by
analyzing the longitudinal data. One important feature of longitudinal data is that the data
from different time points are nested within an individual and thus are more or less
correlated within an individual (Fitzmaurice, Laird, & Ware, 2011). Considering the nested
data feature, researchers fit multilevel models (MLM) or latent growth curve models in the
structural equation modeling (SEM) framework to analyze longitudinal data for the analysis
of change (e.g., Grimm, Steele, Ram, & Nesselroade, 2013; McArdle, 2009; Singer &
Willett, 2003).

DYADIC DATA

In a different line of investigation, psychological research often examines how related people
are similar or different from each other in their behaviors and attitudes. For example, family
researchers might be interested in studying the extent to which a husband and wife’s marital
satisfaction levels relate within a couple. To examine this research question, one needs to
collect data from dyads of two related individuals (i.e., both husband and wife). The
collected data are called dyadic data. There are two kinds of dyadic data, depending on
dyadic distinguishability, whether the two individuals comprising a dyad possess a
distinctive characteristic to identify them (i.e., distinguishable dyads) or not (i.e.,
indistinguishable dyads; e.g., Kenny, Kashy, & Cook, 2006). For our example, the husband
and the wife in a dyad can be distinguished based on their gender or role and thus form a
distinguishable dyad. In contrast, identical twins can be considered to form indistinguishable
dyads. In this article, we focus on studying distinguishable dyads.

When examining dyadic data, it is important to account for the possibility that one member’s
responses to questions might be related to the other member’s responses. That is, the data
from two members of a dyad are nested within a dyad and thus might be correlated. For
example, in the case of marital relationships, two members of a dyad are inherently reporting
on the same relationship. Therefore, dyadic data often encounter the problem of
nonindependence (e.g., Gonzalez & Griffin, 2012; Kenny et al., 2006). To account for
nonindependence in the data, we need to allow the observations from a member of a dyad to
be related to the corresponding observations from the other member of the dyad in statistical
analyses. However, one assumption underlying many basic statistical analyses (e.g.,
regression analysis and analysis of variance [ANOVA]) is that observations are independent.
Thus, more advanced analyses such as MLM and SEM have been proposed and studied for
cross-sectional dyadic data analysis to account for interdependence in the data (e.g., Du &
Wang, 2016; Kenny et al., 2006; Ledermann, Macho, & Kenny, 2011; Newsom, 2002; Sayer
& Klute, 2005; Wendorf, 2002).
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LONGITUDINAL DYADIC DATA

When dyads are repeatedly measured, we have longitudinal dyadic data (LDD). For LDD,
data from different time points are nested within a dyad member and data from dyad
members are nested within a dyad. Thus, LDD are three-level data. There are two kinds of
nonindependence in LDD: nonindependence from repeated measures over time and
nonindependence from related members in a dyad at a given time point. This could make the
data analysis more complicated. Specifically, there are three kinds of intraclass correlations
(ICCs) for which to account in analyses: an ICC for each dyad member over time (how
strongly data from different time points correlate for each dyad member) and a third kind of
ICC for the relation between dyad members at each time point (how strongly data from the
two dyad members correlate at each time point).

Several techniques have been proposed and used to account for nonindependence in LDD.
These techniques answer different research questions. For example, growth curve modeling
(e.g., Atkins, 2005; Kashy & Donnellan, 2008; Kashy, Donnellan, Burt, & McGue, 2008;
Lyons & Sayer, 2005; Peugh, DiLillo, & Panuzio, 2013; Whittaker, Beretvas, & Falbo,
2014) can be used to address questions related to intraindividual change over time, whereas
cross-lagged models (e.g., Bolger & Laurenceau, 2013; Ferrer & Nesselroade, 2003) are
considered as longitudinal actor—partner models to study how a dyad member at time -1
influences the other dyad member at time #and thus do not address intraindividual change
(Kenny et al., 2006). In this article, we focus on discussing how to apply growth curve
modeling to LDD for the analysis of change.

As stated by Kenny et al. (2006), “The analysis of over-time data from individuals is very
complex. ... Adding the complications of dyadic data analysis makes a difficult topic even
more challenging. Moreover, methodologists have not yet come to a complete consensus on
which data-analytic techniques are most appropriate” (p. 343). Inspired by this comment, we
explicitly compare six growth modeling approaches for LDD analysis with distinguishable
dyads: 2 Modeling Framework (MLM vs. SEM) x 3 Modeling Approach (separate vs.
simultaneous “default” vs. simultaneous “dependent”). By comparing methodologies in both
the MLM and SEM frameworks, we hope to provide researchers with the tools necessary to
conduct these analyses independently. Furthermore, we assess change over time for
distinguishable dyad members separately and simultaneously using the default or a
dependent Level 1 (unique) residual covariance approach. The simultaneous default
approach does not allow dyad pairs’ Level 1 (unique) residuals to covary and differ in
variance whereas the simultaneous dependent approach does. The approaches are explained
in detail later.

Researchers have discussed and compared different growth curve modeling approaches for
LDD analysis with distinguishable dyads. However, none has explicitly compared all six
approaches. For example, Atkins (2005) focused on discussing MLM with the separate or
simultaneous default approach for conducting LDD analysis in family research but not
within the SEM framework or in comparison to the simultaneous dependent approach.
Kashy and Donnellan (2008) illustrated MLM and SEM growth models with the
simultaneous dependent approach for LDD analysis with distinguishable dyads but did not
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compare them to the separate and simultaneous “default” approaches. More recently, Peugh
et al. (2013) articulated the use of SEM models with the simultaneous dependent approach
but not within the MLM framework or in comparison to the separate and simultaneous
default approaches for LDD analysis with distinguishable dyads. Furthermore, Whittaker et
al. (2014) described how to use the curve of factor analysis in the SEM framework to
analyze LDD and discussed the measurement invariance over time issue but did not compare
various error covariance structure approaches.

Therefore, the purpose of this study is to apply three growth curve modeling approaches in
both MLM and SEM frameworks to analyze a real LDD set with distinguishable dyads to
show (a) differences in the research questions that can be answered by different modeling
approaches, and (b) similarities and differences in the results of using different approaches.
SAS PROC MIXED or Mplus code for implementing each of the six (2 x 3) approaches is
provided and recommendations are made and discussed on growth curve modeling for LDD
analysis with distinguishable dyads.

OUR REAL DATA AND SUBSTANTIVE RESEARCH QUESTIONS

The data are from a longitudinal study exploring infant development in 135 parent—infant
triads and include a measure of marital satisfaction completed by both mothers and fathers at
five waves of data collection. The data are both longitudinal and dyadic in nature. More
specifically, families attended six laboratory visits when the infants were 3, 5, 7, 12, 14, and
20 months of age (£14 days). Only mothers and infants attended the 12-month visit, and
only fathers and infants attended the 14-month visit, resulting in five time points of data
collection each for mothers and fathers.

Before each laboratory visit, parents completed a measure of marital satisfaction measured
using the Short Marital Satisfaction Test (SMAT; Locke & Wallace, 1959), a 15-item
questionnaire assessing global marital satisfaction and how the couple agrees on various
matters that arise in marriage (i.e., recreation, finances, and the handling of disagreements).
Parents completed the questionnaire separately. Scores on the SMAT ranged from 29.89 to
157 for fathers and 26 to 156 for mothers. Cronbach’s alphas assessing internal consistency
for fathers” SMAT responses ranged from .75 to .89 across the five time points and ranged
from .73 to .86 for mothers’ responses. See Appendix A for a subset of the data in various
forms.

Descriptive statistics for mother and father marital satisfaction are presented in Table 1. The
correlations among mothers’ data over time (the M block in Table 1) ranged from .55 to .78,
with higher correlations from repeated measures data with shorter time intervals. A very
similar range (.59-.79) and pattern were observed for the correlations among fathers’ data
over time (the F block in Table 1). The correlations between mother and father reports of
marital satisfaction (the M&F block in Table 1) indicated that they were related at each time
point (.52-.65) and across time (.43-.52) as well. Thus, data used for this empirical example
are related over time for each dyadic member, between the two dyadic members at each time
point and across time, as would be expected for typical longitudinal dyadic data. More
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information about the sample and the measure can be found in Planalp, Braungart-Rieker,
Lickenbrock, and Zentall (2013).

ICCs were calculated for mothers’ repeated measures over time, fathers’ repeated measures
over time, and between mothers and fathers at each time point. SAS syntax for calculating
the three types of ICCs is included in Appendix B. ICCs for measuring the nonindependence
from the repeated measures data of mothers and fathers over time were .67 and .71,
respectively. These two ICCs summarize the correlations in the M and F blocks of Table 1,
respectively. At each time point, the ICCs for measuring the nonindependence between
mothers and fathers ranged from .52 to .67 (.56 at 3 months, .64 at 5 months, .52 at 7
months, .60 at 12 and 14 months, .67 at 20 months), which are corresponding to the
correlations in the M&F block of Table 1. The calculated ICC values indicated that the data
were highly dependent over time within a dyadic member and were also highly dependent
between mothers and fathers at each time point. High ICCs from LDD suggest and require
the use of models that can handle nonindependence among observations.

With a focus on studying intraindividual changes, intraindividual variability, and
interindividual differences and relations in them (Baltes & Nesselroade, 1979), we are
interested in answering the following substantive research questions:

1 How do mothers’ (or fathers”) reports of marital satisfaction change over time,
on average, respectively?

2. How do mothers (or fathers) differ in changes in marital satisfaction over time?

3. How do mothers differ from fathers in changes in marital satisfaction over time,
on average?

4 How do couples differ in the mother versus father differences in changes over
time?

5. How do mothers’ changes relate to fathers’ changes?

6. How much average intraindividual variability is there for mothers (or fathers)

after controlling the individual fitted trends?

7. How much difference in the average intraindividual variability is there between
mothers and fathers after controlling for the individual fitted trends?

8. How do intraindividual fluctuations of mothers relate to those of fathers after
controlling for the individual fitted trends?

Also see Table 2 for the list of substantive research questions, which is long. However, with
LDD and an appropriate modeling approach, we are able to answer them, which is
demonstrated in what follows.

MODELING APPROACHES FOR LONGITUDINAL DYADIC DATA ANALYSIS

A non-exhaustive literature review was conducted to gather modeling information about how
substantive researchers have been analyzing LDD. We used the keywords /longitudinal (or
repeated measures) and dyad (dyadic or pair) for searching post-2000 peer-reviewed articles
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in several psychology journals including, but not limited to Child Development,
Developmental Psychology, Infancy, Development and Psychopathology, British Journal of
Developmental Psychology, Journal of Abnormal Child Psychology, Journal of Family
Psychology, and Journal of Marriage and Family. Models such as MLM, latent growth curve
models in the SEM framework, and repeated measures ANOVAs were widely used for the
analysis of change using LDD. Given that traditional repeated measures ANOVAS are
generally less flexible and less capable in handling missing data for longitudinal data
analysis (Hedeker & Gibbons, 2006), we focus on studying MLM and SEM for LDD
analysis in this article. These two frameworks for the analysis of change perform the same or
nearly identically, given that the specified models are the same (e.g., Bauer, 2003; Kashy &
Donnellan, 2008; Kenny et al., 2006; MacCallum, Kim, Malarkey, & Kiecolt-Glaser, 1997).
Thus, one purpose of this study is to illustrate the similarity, differences, advantages, and
limitations of conducting LDD analysis in the two frameworks.

Surprisingly, our literature review showed that few substantive studies (less than 20%)
modeled longitudinal dyadic data from both dyad members simultaneously. In other words,
substantive researchers often model the longitudinal data from each dyad member
separately, resulting in two separate models, and verbally compare the results from the two
models. Although this provides information on each dyad member’s behavior of interest, it
is impossible to infer comparisons statistically. Use of this popular but perhaps less
appropriate practice might be due to the lack of understanding of negative consequences of
the separate modeling strategy and the underappreciation of the extra information and
flexibility a simultaneous modeling strategy can provide. If the question of interest includes
a comparison between dyad members, researchers should use a modeling approach that
accurately answers that question, namely a simultaneous approach. Based on the results of
our limited search, this was often not the case. Thus, another goal of this study is to discuss
the separate versus simultaneous modeling approaches for LDD analysis and demonstrate
the similarities and differences in the estimates of both fixed effects and variance parameters
from both approaches.

In addition, for the simultaneous modeling approach, we compare two methods for modeling
the error covariance structure: the default method, which does not allow Level 1 (or unique)
residuals to covary and their variances to be different versus a dependent method allowing
Level 1 residuals to covary and their variances to differ. Note that the default and dependent
approaches are also called the standard and alternative error covariance structures in the
MLM literature (e.g., Singer & Willett, 2003).

In sum, we examine and compare 2 (MLM vs. SEM) x 3 (separate vs. simultaneous default
vs. simultaneous dependent) modeling approaches for LDD analysis. We focus on
examining what research questions can be answered by each modeling approach (see Table 2
for a summary), how the estimates of fixed effects and variance—covariance parameters
differ between approaches, and which modeling technique might yield more informative and
accurate results.
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Data Structures for MLM and SEM

We fit the multilevel models using SAS 9.3 (SAS Institute, 2011) and the SEM models using
Mplus 6.0 (Muthén & Muthén, 1998-2010) to the real LDD. We had different data
structures for the two frameworks (Singer & Willett, 2003). When using SAS PROC
MIXED for multilevel models, data were set up in a long data format, in which each dyad
has multiple records or rows of data for one outcome variable, in our case marital
satisfaction (SMAT). Using our real data example, for the separate mother and father
analyses, there are five variables: a dyad or family ID variable, a time variable (age: infant
age) for each dyad, and the outcome variables (msmat: mothers’ marital satisfaction; fsmat:
fathers’ marital satisfaction) in the data set. For the simultaneous analyses, there are six
variables: a dyad or family 1D variable, a time variable (age: infant age), a dyad member
identifier (mom: whether the member is mother or father), the outcome (smat: marital
satisfaction data from both mothers and fathers), and two additional variables (time and role)
that are explained later. Appendix A shows examples of the long data format used in our
separate and simultaneous modeling analyses.

When using Mpl/us for SEM analyses, data are in a wide data format, such that each dyad
has one row of data and multiple variables: each variable for each dyad member at each time
point. For our example, there is a dyad or family ID variable, five mother variables, and five
father variables for each dyad. Appendix A also shows an example of the wide data format
used in our analyses.

Because our data are from mothers and fathers reporting on marital satisfaction, we use the
terms motherand father to indicate two distinguishable members of a dyad in the following
descriptions of modeling strategies. The models can be applied to other longitudinal data
with distinguishable dyads.

Separate MLM Models for Each Dyad Member

MLM allows the examination of both intraindividual changes and interindividual differences
in changes (Singer & Willett, 2003). MLM models for this study used a Level 1 model for
intraindividual changes over time and a Level 2 model for interindividual differences in such
change (Singer & Willett, 2003).

We compared models with no change, linear change, and quadratic change functions (Singer
& Willett, 2003). Model comparison results indicated that the linear model fit the data
adequately. Thus in this article, we focus on models with a linear change function at the first
level.

Two separate two-level MLM models were fit to the data for mothers and fathers,
respectively. Equations for the separate MLM models are, for Level 1, intraindividual
changes over time:

Vie = b1+ byfage; )| +e; (1)

and for Level 2, between-person differences in such changes
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b, =B+ @

by =P +&y )

where yj;is the observed score in the outcome variable (marital satisfaction) for individual 7
at time ¢ Different centering and scaling approaches of the time variable (infant age at a
mother—child or father—child visit), agej; yield different meanings of the random effects: 4, ;
and &;. In our example, we centered the infant age variable at the child’s birth date with
year as the time unit and thus the values for age;-were 3/12, 5/12, 7/12, 12/12, 20/12 for
mothers and 3/12, 5/12, 7/12, 14/12, 20/12 for fathers. Random coefficient by, represents the
level of marital satisfaction (at the child’s birth) of individual / or intercept, and random
effect by, represents the linear rate of change over the observation period in marital
satisfaction of individual / or linear slope. ej;is the deviation of the observed response score
from individual /s fitted curve for individual /at time t. The default covariance structure of
the Level 1 residuals in MLM is a diagonal matrix with equal residual variances across time,
and off-diagonal elements constrained to be zero. For our example, it is the 5 x 5 diagonal

matrix in Equation 4. ag measures the average intraindividual variability of the observed

responses around each individual’s fitted curve.

2000 0

20 0 0

0
COV(e,)=[0 0 > 0 0| (4)

00060

0

0004

At the second level, B1p and Bog represent the average initial level and linear slope across
individuals. The covariance matrix of Level 2 residuals C;,and C»;, matrix G1, usually

includes the variances for the intercept (o7) and slope (o3 as well as the covariance between

intercepts and slopes (o12).

<t "% 12
Gl=cov| '|= 1 ®
$oi Gy 05
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Separate SEM Models for Each Dyad Member

SEM is a widely used tool for examining relationships between multiple variables in one
pathway model (Bollen, 1998), and can also be used to examine LDD (Kashy & Donnellan,
2008). In particular, latent growth curve modeling is a highly recommended method for
studying levels and changes of a behavior with repeated-measures data over time, as well as
the relation between the growth of several variables over time (Ferrer & McArdle, 2003;
McArdle, 2009; Meredith & Tisak, 1990). For a linear latent growth curve model, two latent
variables, intercept and change, can be defined to model the individual change trajectories
over time. Depending on the factor loadings, different meanings of the intercept and change
latent variables can be obtained.

Using the same example as with the MLM models earlier, we specified two separate models
for mothers’ and fathers’” marital satisfaction. See Figure 1 for a path diagram. By
constraining all paths from the latent intercept variable to the manifest (observed) marital
satisfaction variable at each time point to be one and to the latent change variable to be the
age values of the infant (unit: year) at the visit such as 3/12, 5/12, 7/12, 12/12, 20/12 for
mothers and 3/12, 5/12, 7/12, 14/12, 20/12 for fathers, this allows the latent intercept
variable to represent individual initial levels for marital satisfaction, corresponding to by;in
MLM, and the latent change variable to represent individual yearly linear rate of change in
marital satisfaction, corresponding to by;in MLM. The means of the level and linear slope
latent variables correspond to fixed effects B1g and By in MLM, representing the average
initial level and linear slope across individuals, respectively. In addition, the residual or

unique variance of the observed variables is set to be equal across time, og, to be consistent

with the standard setting in the MLM framework. It should be noted that this constraint is
not necessary for latent growth curve modeling. For the two latent variables, a 2 x 2
covariance structure is specified to model the variances of the latent level and linear slope
variables and their covariance, corresponding to the G1 matrix (Equation 5) in MLM. The
model specification in the SEM framework, therefore, is the same as that in the MLM
framework.

To examine whether and how fathers’ change trajectories differ from those of mothers, we
need to model the longitudinal data from both mothers and fathers simultaneously. Next, we
discuss the simultaneous models in both MLM and SEM frameworks.

Simultaneous MLM Models for Both Dyad Members

To answer our research question on whether mothers and fathers differ from each other in
their initial levels and changes over time in marital satisfaction, we need to analyze the data
from both mothers and fathers simultaneously. Simultaneous modeling methods allow us to
statistically test for the differences between mothers and fathers. Although the longitudinal
data from both mothers and fathers are three-level, we analyze them using a two-level MLM
because the role within a dyad (e.g., mother vs. father) is a fixed (not random) factor. In
other words, a conceptual three-level model can be represented but only two levels show
random variation (also see Chapter 8 in Bolger & Laurenceau, 2013). Thus, the two-level
MLM equations for the simultaneous modeling method, for Level 1, intraindividual changes
over time:
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Yiar = [bra + byglagey,) + by (mom;y) + b, (agey, * momy)| + e,y (6)

and for Level 2, between-person differences in change:

byy=l+&u (1)

byy=Frp+8y (8)

by, =P30+8 (9)

byy=Pyg+Csq  (10)

In Equation 6, yj; represents the observed outcome (marital satisfaction) for member /of
dyad dat time & momjyindicates whether a datum is from the mother or the father of dyad ¢
with 1 indicating from the mother and 0 indicating from the father. For the random effects,
by s represents the initial status in marital status and b,y represents the linear slope for the
father in dyad & In addition, bz represents the difference in the initial status between the
father and the mother of dyad &, and by is the difference in the linear slopes between the
father and the mother of dyad d. It should be noted that we could specify the model to allow
bzyand byto represent the initial status and linear slope for the mother in dyad d. In this
case, another indicator variable (e.g., dad) needs to be added. For example, we have, for
Level 1, intraindividual changes over time:

Vidr = |014ldad i) + by fage;y, * dad i) +bs (mom; ) + b, age;y, * mom; )l + e

The two specifications are mathematically equivalent. However, the specification in
Equation 6 allows us to directly compare mothers and fathers in their initial levels and
changes over time. Therefore, we use the specification in Equation 6 in this article.

Following the regular assumptions in MLM, the random effects are assumed to have a
multivariate normal distribution with COV (614, B4 B34 bag) = COV(C14i Cogi C34i Cag) Tor
this unconditional MLM model. Diagnostics of the normality assumption and alternative (or
robust) methods for general growth curve modeling have been discussed in the literature
(e.g., Pan & Fang, 2012; Tong & Zhang, 2012) and are not discussed in this article due to the
scope limits. The covariance matrix of the random effects, G2, is

Struct Equ Modeling. Author manuscript; available in PMC 2019 July 23.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Planalp et al.

Page 11

2
il [ C1 %12 13 %14

2
$oa O1p 0y 0p3 0y
G2=cov| | = ) . (1)
3df |013 Op3 O3 O3y

C4d 2
014 024 O34 04

The main diagonal elements in G2 measure interindividual variation in fathers’ initial levels,
fathers’ linear slopes, differences in the initial levels between mothers and fathers, and
differences in the linear slopes between mothers and fathers, respectively. Bio; Bo; Bo; and
PBao are the corresponding fixed effects, representing the average initial level for fathers, the
average linear slope for fathers, the average difference in the initial levels between mothers
and fathers, and the average difference in the linear slopes between mothers and fathers,
respectively.

For the Level 1 residual variable ey we compare two ways of modeling its covariance
structure: the default error covariance structure and the dependent error covariance structure.
The former sets the residual variances to be equal for mothers and fathers and assumes all
the covariances to be 0, resulting a diagonal homogeneous covariance matrix (see Equation
12). Using our specific example, the default covariance structure implies that mother and
father reports of marital satisfaction, after controlling for the individual linear trends, are
unrelated and have the same amount of intraindividual variability. In other words, after
controlling for the individual linear trends, mothers’ and fathers’ reports of marital
satisfaction are not correlated at a given time point and the amount of intraindividual
variability in mothers’ reports of marital satisfaction is assumed to be the same as that in

fathers’ reports of marital satisfaction (ag in Equation 12).
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An alternative to this default error covariance structure is to account for interdependence in
the Level-1 residuals of two members of a dyad at a given time point. An appropriate
dependent error covariance structure for Level 1 residuals in LDD analysis is the
heterogeneous compound symmetry covariance structure (e.g., Fitzmaurice et al., 2011,
Kashy & Donnellan, 2008; Singer & Willett, 2003). That is, the Level 1 residual variances
for mothers and fathers are allowed to differ from each other, and the Level 1 errors of the
mother and the father of a dyad are allowed to covary at a given time point (see Equation
13). Again, using our specific example, the dependent covariance structure implies that
mother and father reports, after controlling for the individual linear trends, are allowed to
covary at a given time point and have different amounts of average intraindividual variability
between mothers and fathers.

In Equation 13, o ,rrepresents the covariance between the Level 1 residuals of mothers and
fathers at a given time point. In addition, o ,;¢is assumed to be the same across different

dyads and different time points. 0'31 represents the Level 1 residual variance for mothers and

a}% represents the Level 1 residual variance for fathers, which are also assumed to be same

across dyads and across different time points, respectively. The dependent specification
gives us extra information, especially about differences and relations between dyadic

i to study whether

mothers and fathers have the same amount of average intraindividual variability in reports of
marital satisfaction around their individual fitted trajectories. Furthermore, we can test
whether o ,,¢= 0 to investigate whether the intraindividual fluctuations in reports of marital
satisfaction around the individual fitted trajectories covary between mothers and fathers at a
given time point. In other words, after controlling the linear trends, o ,;rcould inform us
whether when a mother has a higher level of marital satisfaction, the father tends to have a
higher level of marital satisfaction as well.

members. Using our specific example, we can test whether 0%1 =0

& 0 0 0 06,0 0 0 0
m mf
& 0 0 0 06,0 0 0
m mf
0 0 62 0 0 0 0 6., 0 0
m mf
0 0 0 ¢~ 0 0 0 0 6., 0
m mf
0 0 0 0 ¢~ 0 0 0 0 o
_ m mf
COV{cia) = 0 0 0 0 62 0 0 0 0 &
Omf °f
2
0 6,0 0 0 0 0 o4 0 0 0
2
0 0 o, 0 0 0 0 o7 0 0
2
0 0 0., 0 0 0 0 o 0
2
0 0 0 00,0 0 0 0 o
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Simultaneous SEM Models for Both Dyad Members

To specify models in the SEM framework that mimic the MLM models for simultaneously
modeling data from both mothers and fathers, two sets of latent variables, latent intercepts
and slopes for mothers and fathers, respectively, are included. They are M_level, M_slope,
F_level, and F_slope. To compare mothers and fathers, difference score variables (Diff_level
and Diff_slope) are also generated. More specifically, we have Diff_level = M_level -
F_level and Diff_slope = M_slope — F_slope, where the means and variances of both
M_level and M_slope are set to be 0 because we want to estimate the means and variances
of Diff_level and Diff_slope. The means and variances of both F_level and F_slope are
freely estimated. By using those constraints, we set fathers in the reference group, which
mimics the MLM framework. The four latent variables, including F_level, F_slope,
Diff_level, and Diff_slope, corresponding to the random effects by 4 &4 B3q; and ba4in
Equation 6, are assumed to follow a multivariate normal distribution with a 4 x 4 freely
estimated covariance matrix. This matrix is equivalent to the G2 matrix in Equation 11 in the
MLM framework. Under the default residual covariance structure method, residuals em1 to
em5 and ef1 to ef5 are assumed to follow a multivariate normal distribution with a 10 x 10
homogeneous diagonal covariance matrix (see Equation 12). The path diagram for the
simultaneous SEM model with the default error covariance structure is depicted in Figure 2.
As illustrated, the unique residual variances are constrained to be equal across the time
points and between mothers and fathers, and the covariance between mother and father
unique residuals at each time point is constrained to 0.

We can also specify the simultaneous model with the dependent error covariance structure
(i.e., heterogeneous compound symmetry error covariance structure) in the SEM framework
(see Figure 3). In contrast to the simultaneous model with the default error covariance

structure, the unique residual variance of mothers (variance of em1 to em5; afn) are allowed
to be different from the unique residual variance of fathers (variance of efl to ef5; 6?0). In

addition, the covariance between mother unique residuals and father unique residuals at each
time point (o, is freely estimated.

EMPIRICAL RESULTS FROM THE MODELS

Results From the Separate Modeling Strategies

Using the separate modeling strategies, we can answer the first two research questions:

1 How do mothers’ (or fathers”) reports of marital satisfaction change over time,
on average?

2. How do mothers (or fathers) differ in changes in marital satisfaction over time?

First, we examined the estimates of fixed effects (or estimated means of latent variables)
from each MLM or SEM model (see Table 3). As expected, fixed effects estimates and their
standard error estimates are identical from the two modeling frameworks, for both mother
and father models. Substantively, mothers’ average initial level of marital satisfaction was
119.31, and decreased by approximately 3.5 points per year. Fathers” average initial level of
marital satisfaction was 117.19 and decreased at approximately1.89 points per year,
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although this slope estimate is not significantly different from 0. The initial levels of marital
satisfaction are similar between mothers and fathers and there were decreasing patterns over
time for both, although mothers’ changes were significant and fathers’ changes were not. For
the estimates of the variance parameters, again MLM and SEM had nearly identical results
because the models were specified in the same way. This is consistent with our expectation
that both MLM and SEM can be used to examine longitudinal data and yield the same
results given the same model specification. The results from variance tests were all
significant, indicating that there was sufficient variation in mothers’ and fathers’ initial

levels and changes in marital satisfaction over time. Furthermore, the estimates of the
average intraindividual variability after accounting for the individual fitted linear trends were
108.66 and 106.00 for mothers and fathers, respectively (Research Question 6). However,
based on results from the separate modeling of mothers’ and fathers’ data, we are not able to
statistically infer whether fathers’ change trajectories differ from those of mothers. The
trajectories looked similar, but there is no statistical comparison, because we examined each
dyad member using a separate model.

Results From the Simultaneous Modeling Strategies

To address our substantive research questions, especially on whether mothers and fathers
differ in their initial levels and changes over time in marital satisfaction, we fit the
simultaneously modeling models (2 MLM and 2 SEM models) to the data and the results are
displayed in Table 4. First, fixed effects estimates and their standard error estimates from the
MLM and SEM models were very similar, regardless of the different specifications of the
error covariance structures. In addition, the estimates were also similar to those from the
models that were separately fitted to the data for fathers and mothers. Although the fixed
effects results were similar, we can conduct additional statistical tests on Bz and By for
comparing estimates between mothers and fathers using the simultaneous models (Research
Question 3). The differences between mothers and fathers were nonsignificant based on the
Wald tests, indicating that the average initial levels and linear slopes in marital status for
mothers and fathers were not significantly different from each other in this sample. For the
covariances and correlations among the random-effects (latent) changes (Equation 11,
Research Question 5), the correlation between fathers’ initial levels of marital satisfaction
and the differences in the initial levels between fathers and mothers was significantly
negative (the estimates were —.47 and —.50 from the default and dependent approaches with
ps < .002 from the Wald tests, respectively), indicating that the higher the fathers’ initial
levels, the lower the differences in the initial levels between fathers and mothers. The other
covariances and correlations were not significantly different from 0. This information,
however, cannot be obtained from the separate modeling approach. Therefore, the
simultaneous models allow us to statistically infer differences and relations between mothers
and fathers, whereas this cannot be done from the models with separately modeled data from
fathers and mothers.

In terms of the estimates of Level-1 (or unique) residual variance—covariance components,
the results from the simultaneous default and simultaneous dependent methods differed, in
line with our expectations that allowing mother and father residuals to covary would alter
some variance and covariance estimates (see Table 4). Although the simultaneous default
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method allows us to compare fixed effects (or means in SEM) estimates between mothers
and fathers, it does not account for interdependence between dyadic members of a dyad
within a time point after controlling the individual linear trends and does not allow different
Level-1 (or unique) residual variances between mothers and fathers. The simultaneous
dependent method, however, does account for these. Consequently, in terms of variance—
covariance parameter estimates, there were some differences in the results from the default
and dependent methods.

Specifically, the correlation between mother and father residuals in the simultaneous default
method is fixed at zero, and in the dependent method is estimated. As can be seen in Table 4,
there was indeed a significant correlation between mother and father Level-1 (or unique)
residuals at a given time point (/;¢=.170 with p=.002 from both MLM and SEM),
indicating nonindependence in the Level-1 (or unique) residuals of a dyad and implying that
after controlling the linear trends, when a mother had a higher marital satisfaction, the father
tended to have a higher marital satisfaction (Research Question 8).

In addition, to answer Research Question 6, the simultaneous default method gives the same
Level-1 (or unique) residual variance estimate for both mothers and fathers (estimate =
105.47 and 105.46 from MLM and SEM, respectively), whereas the dependent method
allows us to estimate separate Level-1 (or unique) residual variances for mothers and fathers
(108.58 vs. 103.36 from both MLM and SEM). Although the two residual variances were
not significantly different from each other, Xz(l) =0.20, p=.655, from both MLM and
SEM, using these data (Research Question 7), the dependent method gives us more
information about mothers’ and fathers’ residual variances and allows a statistical test for
comparing them.

With regard to Research Question 4, the variance estimate of the differences in slopes
between mothers and fathers differed between the default and dependent methods. For
example, using the default method, the variance estimates were 22.91 and 22.93 from MLM
and SEM, respectively, and were not significant (p = .195) from the MLM. In contrast, using
the dependent method, the variance estimates were 49.72 and 49.71 from MLM and SEM,
respectively, and were significant (o =.034). This has some practical implications. For
example, when the default method was used, the insignificant variance test results might
lead a researcher not to examine possible predictors of the differences in linear slopes (e.g.,
Ke & Wang, 2015; Singer & Willett, 2003). When the dependent method was used, the
researcher would examine possible predictors of the differences in linear slopes. Again, the
dependent method could give us more information.

Finally, we compared the model fits of the simultaneous models with default or dependent
error covariance structures using the likelihood ratio test. The —2LL for the simultaneous
default model was 9696.3, and for the simultaneous dependent model was 9686.6. With two
degrees of freedom, the dependent model fit the data significantly better than the standard
model. The SAS PROC MIXED and Mp/us code for fitting the aforementioned models is
included in Appendix B.1 In addition, R Ime code for MLM modeling and R lavaan code for
SEM is also included in the online supplementary document.
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DISCUSSION

Our study was motivated by the fact that the separate modeling strategy is still the most
widely used method in LDD analysis. Researchers might not be aware of the limitations of
the separate modeling strategy nor appreciate the extra information and flexibility the
simultaneous models can provide. Therefore, the goal of this study was to compare multiple
modeling methods of analyzing LDD for studying change differences within distinguishable
dyads, illustrate the similarities and differences in the results from the models, and provide
our recommendations. Specifically, we compared the separate modeling to simultaneous
modeling strategies, and also a default method with a dependent method for the error
covariance structure under the simultaneous modeling strategy. We analyzed real LDD in
both the MLM and SEM frameworks. Results showed that, although estimates of fixed
effects were similar from the different modeling approaches, estimates of variance
components substantially differed.

MLM Versus SEM

Researchers have long understood that MLM and SEM can and will provide identical or
nearly identical results if the underlying models are specified in the same way. For example,
Newsom (2002) and Wendorf (2002) showed that identical or nearly identical results were
obtained from analyzing cross-sectional dyadic data in the two frameworks. Kashy and
Donnellan (2008) analyzed longitudinal dyadic data using both MLM and SEM and showed
that identical results were also obtained. In this study, we showed how to specify models for
LDD analysis in the same way in both MLM and SEM frameworks and demonstrated that
identical or nearly identical results can be obtained from the two frameworks. Although the
two frameworks could yield identical results, there are advantages and limitations for LDD
analysis using each framework.

On the one hand, SEM is useful and flexible when multiple manifest variables are used for
measuring a latent construct and thus latent variables need to be generated to define latent
constructs (e.g., Grimm, Kuhl, & Zhang, 2013). As shown in our examples, it is also flexible
and easy to form latent variables from latent variables such as Diff_level and Diff_slope for
various interesting comparisons. Furthermore, it is more flexible to test longitudinal and
dyadic measurement invariance using the SEM framework, as shown in Whittaker et al.
(2014). On the other hand, MLM is more straightforward in terms of handling unbalanced
data. In this study, at Wave 3, mothers were measured at 12 months and fathers at 14
months. Although the data look unbalanced between mothers and fathers, within each
maternal or paternal group, the data are balanced. Thus, we can handle the differences in the
age values between mothers and fathers in both frameworks (exact age values are used in
MLM and different sets of factor loadings for the linear slope latent variable for mothers and
fathers in SEM). When the data are unbalanced within each maternal or paternal group,
however, it is more straightforward for MLM to handle the unbalanced nature of the data by
including the exact age values for different individuals.

LAl the materials in the appendices can be found at http://www3.nd.edu/~lwang4/LDD-SEM/.
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Separate Modeling Versus Simultaneous Default Versus Simultaneous Dependent

More important, we also examined multiple modeling methods for LDD analysis in both
MLM and SEM frameworks. Although methodology articles have been emphasizing the
need for analyzing dyadic data simultaneously, our nonexhaustive literature review showed
that the separate modeling strategy is still the most popular method. Conceptually, it is
impossible to compare changes between dyad members when the separate modeling strategy
is used, so the simultaneous modeling strategy can give us much more informative results,
especially in terms of the meaningful comparisons between dyad members (see Table 2 for a
summary). Under the simultaneous modeling strategy, our results demonstrated the
importance of considering all different kinds of interdependence. The difference between
simultaneous default and dependent error covariance structures lies in how we treat the
interdependence of the two dyad members at a given time point. Quantitatively, our results
showed that although the fixed effect estimates were similar from different modeling
methods, the estimates and statistical inference of variance—covariance components could be
very different. For multilevel models, the maximum likelihood estimates of fixed effects are
unbiased as long as the mean structure is correctly specified, even when the covariance
structure is misspecified (e.g., Liang & Zeger, 1986). Therefore, it is not surprising to see
that the fixed-effects estimates in our study were similar to each other from the models with
different specifications for the covariance structure because the mean structures were the
same across the models. However, it should also be noted that different covariance structures
could empirically influence estimates of fixed effects and their standard error estimates, as
emphasized by statisticians and methodologists such as Bamia, White, and Kenward (2013)
and Liu, Rovine, and Molenaar (2012). Substantively, allowing the residual covariances at
both levels to be nonzero in the simultaneous dependent approach appropriately reflects the
fact that dyadic members (e.g., mother and father) could be dependent at a given time point
due to shared experiences at the time point that are not captured by the predictor variables
such as the time variable in our example (see Bolger & Shrout, 2007, for a more detailed
discussion and examples). Therefore, it is important to have an appropriate covariance
structure specified for LDD analysis given the different kinds of interdependence in LDD.

Because the default model is a reduced model of the dependent model, we can fit both to
LDD and compare model fits. If the dependent error covariance structure fits the data
significantly better, it should be used. The extra parameters in the model with the dependent
error covariance structure shed light on differences in intraindividual variability and relations
in intraindividual fluctuations between dyadic members after controlling trends.

To allow the use of the simultaneous approaches, data from both dyad members over time
need to be collected (e.g., Kenny et al., 2006). Depending on the shape of the change
trajectory, different numbers of time points are needed for capturing the change pattern
accurately (e.g., Singer & Willett, 2003). Generally speaking, at least three time points are
needed for estimating linear curves, four for quadratic curves, and five for cubic and other
nonlinear curves. The simultaneous models can also be viewed as bivariate growth curve
models. Power to detect fixed effects, variances, and covariances between latent slopes for
univariate and bivariate growth curve models has been discussed in the literature (e.g.,
Bolger & Laurenceau, 2013; Fitzmaurice et al., 2011; Hertzog, Lindenberger, Ghisletta, &
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Oertzen, 2006; Rast & Hofer, 2014; Satorra & Saris, 1985). An adequate amount of data
needs to be collected to ensure both estimation accuracy and statistical power in LDD
analysis. Future studies are needed to examine the data requirements for LDD analysis.

Conclusion and Recommendations

In conclusion, if one wants to compare changes over time between dyad members, we
recommend repeatedly collecting data from both dyad members over time and using a model
with simultaneously modeling data from both dyad members to statistically infer differences
in changes between dyad members. The default error covariance structure (homogeneous
diagonal error covariance structure) fails to take all kinds of interdependence in dyadic data
into account. A dependent error covariance structure, heterogeneous compound symmetry
error covariance structure, allows heterogeneity and interdependence in the data from
members of a dyad at a given time point and thus we recommend the use of dependent error
covariance structures for LDD analysis. We hope this article helps researchers better analyze
their longitudinal dyadic data with distinguishable dyads.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1.
Path diagram of separate SEM models for mothers and fathers. Tq, Ty, T3, T4, and Tg are

3/12,5/12, 7/12, 12/12, and 20/12 for mothers and 3/12, 5/12, 7/12, 14/12, and 20/12 for
fathers for our example.
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FIGURE 2.
Path diagram of simultaneous SEM models with the default error covariance structure. Ty,

Ty, T3, Ty, and Ty are 3/12, 5/12, 7/12, 12/12, and 20/12 for mothers and 3/12, 5/12, 7/12,
14/12, and 20/12 for fathers for our example.
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FIGURE 3.
Path diagram of simultaneous SEM models with the dependent error covariance structure.

T1,T2, T3, T4, and T5 are 3/12, 5/12, 7/12, 12/12, and 20/12 for mothers and 3/12, 5/12,
7/12,14/12, and 20/12 for fathers for our example.
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