Skip to main content
. Author manuscript; available in PMC: 2019 Jul 23.
Published in final edited form as: Struct Equ Modeling. 2016 Sep 26;24(1):129–147. doi: 10.1080/10705511.2016.1224088

TABLE 4.

Estimates of Fixed Effects and Variance–Covariance Parameters From Simultaneous Modeling Mothers’ and Fathers’ Data Using MLM and SEM

Default Error Covariance Structure Dependent Error Covariance Structure
MLM SEM MLM SEM
Fixed Effects Estimate SE p value Estimate SE p value Estimate SE p value Estimate SE p value
Father intercept β10 117.22 1.79 < .001 117.22 1.79 < .001 117.21 1.79 < .001 117.21 1.79 < .001
Father slope β20 −2.15 1.17 0.070 −2.15 1.18 0.070 −2.12 1.16 0.071 −2.12 1.17 0.071
Difference in M vs. F intercept β30 2.09 1.56 0.182 2.09 1.56 0.180 2.09 1.56 0.181 2.09 1.56 0.179
Difference in M vs. F slope β40 −1.43 1.27 0.263 −1.43 1.28 0.265 −1.41 1.27 0.267 −1.41 1.28 0.269
Variance Components Estimate SE p value Estimate SE p value Estimate SE p value Estimate SE p value
Father intercept σ12 345.91 52.99 < .001 345.92 52.99 < .001 346.21 53.05 < .001 346.21 53.05 < .001
Father slope σ22 80.71 23.76 < .001 80.75 23.77 < .001 78.95 23.78 < .001 78.95 23.78 < .001
Difference in M vs. F intercept σ32 165.19 41.03 < .001 165.20 41.03 < .001 189.82 41.34 < .001 189.80 41.34 < .001
Diff in M vs. F slope σ42 22.91 26.61 0.195 22.93 26.61 0.195 49.72 27.44 0.035 49.72 27.44 0.035
Cov (Father intercept, Father slope) σ12 −50.83 28.32 0.073 −50.84 28.33 0.073 −50.35 28.27 0.075 −50.35 28.27 0.075
Cov (Father intercept, Difference in intercept) σ13 −114.09 36.96 < .001 −114.09 36.96 .002 −127.63 37.20 0.001 −127.64 37.21 0.001
Cov (Father intercept, Difference in slope) σ14 31.59 29.07 0.277 31.60 29.07 0.277 44.89 29.44 0.127 44.89 29.44 0.127
Cov (Father slope, Difference in intercept) σ23 12.06 24.01 0.615 12.09 24.02 0.615 21.66 24.09 0.369 21.66 24.09 0.369
Cov (Father slope, Difference in slope) σ24 −2.12 19.68 0.914 −2.14 19.68 0.913 −17.57 20.29 0.387 −17.57 20.29 0.387
Cov (Difference in intercept, Diff in slope) σ34 −16.33 28.16 0.562 −16.34 28.16 0.562 −37.33 28.56 0.191 −37.33 28.56 0.191
Level 1 residual σe2 105.47 5.74 < .001 105.46 5.75 < .001 NA NA NA NA NA NA
Residual variance Mother σm2 NA NA NA NA NA NA 108.58 8.28 < .001 108.58 8.28 < .001
Residual variance Father σf2 NA NA NA NA NA NA 103.36 8.11 <.001 103.36 8.11 < .001
Correlation between Mother and Father residuals ρmf 0 N/A N/A 0 NA NA .170 .054 .002 .170 .054 .002

Note. M = mother; F = father; NA = not available; SE = standard error estimate. The variance tests are one-sided (H0: variance = 0 vs. Ha: variance > 0), which is the default of SAS PROC MIXED. One-sided Wald variance tests are recommended by Fitzmaurice et al. (2011) because two-sided Wald variance tests are too conservative due to the boundary issue (also see Ke & Wang, 2015). The default of Mplus is two-sided tests, so for testing the variance components, the p values in the Mplus columns are the two-sided p values from Mplus divided by 2.