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‡Instituto de Instrumentacioń para Imagen Molecular, Centro Mixto CSIC-Universitat Politec̀nica de Valeǹcia, Camino de Vera s/n,
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ABSTRACT: Diagnostic tests based on proteomics analysis can have
significant advantages over more traditional biochemical tests. However, low
molecular weight (MW) protein biomarkers are difficult to identify by standard
mass spectrometric analysis, as they are usually present at low concentrations
and are masked by more abundant resident proteins. We have previously shown
that mesoporous silica nanoparticles are able to capture a predominantly low
MW protein fraction from the serum, as compared to the protein corona (PC)
adsorbed onto dense silica nanoparticles. In this study, we begin by further
investigating this effect using liquid chromatography−mass spectrometry (LC−
MS)/MS and thermogravimetric analysis (TGA) to compare the MW of the
proteins in the coronas of mesoporous silica nanoparticles with the same
particle size but different pore diameters. Next, we examine the process by
which two proteins, one small and one large, adsorb onto these mesoporous
silica nanoparticles to establish a theory of why the corona becomes enriched in
low MW proteins. Finally, we use this information to develop a novel system for the diagnosis of prostate cancer. An elastic net
statistical model was applied to LC−MS/MS protein coronas from the serum of 22 cancer patients, identifying proteins specific
to each patient group. These studies help to explain why low MW proteins predominate in the coronas of mesoporous silica
nanoparticles, and they illustrate the ability of this information to supplement more traditional diagnostic tests.

■ INTRODUCTION

The early diagnosis of cancer is one of the most important
goals of current medicine, and in the last two decades
significant progress has been made in understanding the
molecular processes involved in the origin and evolution of
cancer.1 Recently, efforts have been made to use modern
techniques such as proteomics and genomics to isolate,
identify, and quantify specific molecules, that is, prognostic
factors or biomarkers, that are closely related to a specific
clinical outcome (in the absence of therapy).2 Many protein
and peptide biomarkers belong to the low MW serum protein
fraction (e.g. MW below 50 kDa) and their isolation by
standard MS analysis is mostly unfeasible, as these low MW
species are usually in low concentration and are masked by
large quantities of resident proteins, such as immunoglobulins
and albumin.3 Furthermore, most of these “small” proteins are
especially sensitive to enzymatic degradation following
collection, making their identification and determination

difficult.4 Consequently, there is need for techniques that
allow selective isolation, quantitative estimation, and statistical
validation of the low MW proteins in the specific proteome
assigned to a disease. In this context, we recently published
several reports showing that the composition of the protein
corona (PC) on porous nanoparticles is different from the
corona adsorbed onto dense nanoparticles of the same size and
composition.5,6 Specifically, porous nanoparticles retain
significantly more low MW proteins (<50 kDa) from serum.
Using stochastic optical reconstruction microscopy (STORM),
we showed that small proteins have a better fit within the pores
and are able to access the internal surface areas of the
nanoparticles, while large proteins are mainly restricted to the
external surface.7 Qualitative co-adsorption studies using one
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small and one large protein also showed that the presence of
the small protein reduces the amount of large protein able to
bind. We hypothesized that the small protein rapidly accesses
and fills the pores, while the large protein must undergo
restructuring (a high energy process) to fit into the pores, and
consequently becomes rapidly excluded from them.
The ability to specifically capture the low MW fraction of

serum proteins provides a unique opportunity to diagnose
certain disease states using a simple blood draw and
proteomics. Protein biomarker discovery and quantification
by mass spectrometry (MS) is a powerful tool, but it is severely
limited due to the intrinsic complexity of human serum
samples.8,9 The isolation of low MW biomarkers by standard
MS analysis is mostly unfeasible, as they are usually present at
low concentrations and are masked by more abundant resident
proteins, such as immunoglobulins and albumin.3 Further-
more, most of these small proteins are particularly sensitive to
enzymatic degradation after collection, making their identi-
fication difficult.4 Albeit nanoparticles modified with different
chemical groups have been used to selectively bind low-
abundance proteins and peptides,10 it is optimistic to think that
a single molecule is indicative of a pathologic state. Huo and
co-workers developed a diagnostic test for early stage prostate
cancer (PCa) based on the amount of human immunoglobulin
G (IgG) retained in the PC of citrate-capped gold nano-
particles.11,12 This blood test is a significant advance over the
currently clinically used prostate specific antigen (PSA)
analysis, but it could be seriously affected by selectivity issues,
as many pathological states can increase blood IgG
concentration. Instead, analysis of the entire PC adsorbed
onto porous nanoparticles by MS could reveal patterns of
protein up and down regulation throughout the low MW
proteome in the disease state versus the normal state. At this
point, Mahmoudi and co-workers recently introduced the
concept of a personalized PC (PPC) as a pattern linked to
physiological conditions.13 This PPC could have a dramatic
impact in cancer diagnosis, as many proteins change their
plasmatic profile. In this sense, the sequestration of proteins in
the nanoparticle PC could be used to detect low-abundant
proteins related to tumorigenesis.14 In this line, Huo and co-

workers also pointed out that nanoparticle corona proteomic
analysis may reveal molecular profile differences between
cancer and healthy serum samples,12 although no specific
protocols and patterns were given to confirm such differences
with statistical evidence. Moreover, Caracciolo and co-workers
used lipid nanoparticles to isolate the PC from pancreatic
cancer patient serum samples. Then, they characterized the
different proteomic patterns by sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) and, using
principal component analysis (PCA) and linear discriminant
analysis, they obtained statistically significant differences
between the healthy and the cancer groups.15

Our goal for the current set of experiments was threefold.
First, we sought to compare the extent of protein adsorption
on a set of nanoparticles with the same well-defined shapes and
sizes but different pore diameters. Previously, we focused on
materials with essentially the same pore diameter but with
other properties that differed (particle size, surface modifica-
tion, etc.). Second, we quantitatively compared the amount of
a single small and large protein adsorbed onto the nanoparticle
when both were present throughout the adsorption process
versus when the large protein was given a “head start”, that is,
the proteins were added sequentially with the small protein
added last. Finally, we sought to develop a proteomic test
based on the low MW proteins in porous nanoparticle coronas
to show that the low MW proteomes of patients with various
stages of PCa are statistically different from those of control
patients, and that this information can be used to distinguish
one patient group from another.

■ RESULTS AND DISCUSSION
We previously showed that the nanoparticle size has an
influence on protein adsorption, with small nanoparticles
adsorbing more total protein than large ones.6 To minimize
this effect and limit differences in protein adsorption to the
porosity of each material, we prepared nanoparticles with
diameters that were as similar as possible (see Table 1 and
Figure S1). Dense, nonporous silica nanoparticles (“SNP”)
with a particle size of ∼120 nm as determined by transmission
electron microscopy (TEM) (Figure 1) were prepared by

Table 1. Physical Properties of MSN

particle diameter N2 physisorption
sample phase TEMb (nm) DLSc (nm) PdId ζ-potential (mV) dpore (nm) dcavity

a (nm) SBET (m2/g) Vpore (cm
3/g)

SNP dense SiO2 123.4 ± 19.8 164.2 ± 85.0 0.268 −16.4 49.5
MSN MCM-41 113.7 ± 20.4 136.8 ± 56.6 0.171 −14.1 2.7 1016.4 0.76
LPS-1 FDU-12a 121.4 ± 27.0 185.2 ± 94.1 0.316 −15.2 4.8 15.5 680.5 0.92
LPS-2 FDU-12 107.8 ± 22.6 133.8 ± 48.1 0.129 −14.8 6.2 20.5 421.2 0.82
LPS-3 FDU-12 111.0 ± 25.4 115.4 ± 44.2 0.147 −12.0 7.4 20.4 360.7 0.74
LPS-4 FDU-12 108.4 ± 21.6 100.7 ± 48.3 0.230 −12.5 14.0 24.5 176.3 0.60

aFDU-12 consists of large cavities connected by much smaller pores. bAs determined by the TEM study of single particles: mean ± SD (n ≥ 250).
cAverage hydrodynamic diameter: mean ± SD (n = 3). dPdI = polydispersity index from DLS measurements.

Figure 1. Representative TEM images of silica nanoparticles: (a) dense nanoparticles; (b) MSN, with the MCM-41 structure; (c) LPS-1, with the
FDU-12 structure consisting of large cavities interconnected by smaller pores. The cavities can be readily observed in this image.
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modifying the Stobe ̈r method.16 The particle size was
confirmed by dynamic light scattering (DLS); the polydisper-
sity of this material and of the mesoporous nanoparticles
indicated reasonably consistent particle sizes throughout each
sample. Standard mesoporous silica nanoparticles (“MSN”)
with a hexagonally ordered pore structure similar to that of
MCM-41, with dpore = 2.7 nm and approximately the same
particle size as SNPs were prepared by polymerizing silicate
monomers in the presence of surfactant micelles.17 Large-pore
silica (“LPS”) nanoparticles with increasing dpore = 4.8, 6.2, 7.4,
and 14 nm were prepared using a previously published
procedure.18 These materials, with FDU-12 structure type
narrow channels that connect larger cavities,19 were used
because retaining the particle size of all materials used in this
study was of primary importance. Cavity sizes in LPS
nanoparticles are noted in Table 1 and were in the range
15.5−24.5 nm, significantly larger than the pore interconnec-
tions; thus, the limiting factor in protein adsorption onto these
particles should be the pore diameter. In addition to the
particle size, the zeta potentials for SNP, MSN, and LPS
materials were also nearly the same, ranging from −12.0 to
−16.4 mV. These values are mainly dependent on the synthesis
method, and in the case of the porous nanoparticles, are
related to the removal of the surfactant by extraction.
Characterization of the nanoparticles using N2 physisorption
showed that the surface areas (SBET) of the porous nano-
particles decreased as the pore diameter increased, as expected
for these materials (Table 1, Figures S2 and S3). The pore
volumes ranged from 0.60 to 0.92 cm3/g, indicating highly
porous MSN and LPS nanoparticles.
Dependence of Serum Protein Adsorption on the

Pore Diameter. Protein adsorption studies from whole serum
were performed by separately suspending each type of
nanoparticle in human serum for 1 h, followed by
centrifugation to collect the nanoparticles and washing to
remove any loosely adsorbed proteins. The total protein
adsorbed was obtained by TGA (Table 2).

As expected, the mass of the protein adsorbed was correlated
with the surface area of the nanoparticles; materials with larger
surface areas generally retained more protein. However, when
the specific adsorption (i.e., the mass of protein per unit
surface area) was calculated, the nanoparticles could be
separated into two groups. Although SNP did not adsorb
much protein, the specific adsorption was much higher than
that for porous nanoparticles, which adsorbed nearly 4−7
times as much total protein but which had a much lower
specific adsorption. When the pore diameter increased to 14
nm, the specific adsorption returned to a value similar to that
for the dense materials (0.83 vs 0.77). This information
supports a model in which a number of proteins present in

serum are too large to access the internal surface area of
mesoporous silica nanoparticles with pore diameters less than
approximately 7 nm, leading to a PC that is significantly
different from that on either dense nanoparticles or nano-
particles with large pores, the latter defined by our data as
nanoparticles with pore diameters 14 nm or larger.
A preliminary assessment of the content of the PCs on the

nanoparticles was obtained by gel electrophoresis (Figure S4).
The low protein content of the dense nanoparticles is apparent
from the lack of significant protein bands which, as it will be
shown later on, correspond to a few proteins, mostly
apolipoproteins and albumin. The porous nanoparticles all
showed more proteins, and qualitatively, the bands associated
with apolipoprotein A-1 and A-II are significantly more
prominent in these samples than the bands associated with
albumin. The most important difference between the coronas
from dense and porous nanoparticles is the addition of
proteins with MW < 50 kDa in the latter case. More detailed
analysis of the content of the PCs of these particles is shown by
proteomic analysis (Figure 2 and Table S1). Using the
normalized spectral counts (NSpC) provided by liquid
chromatography−MS (LC−MS) analysis gave the relative
percent of each identified protein; multiplying this percentage
by the mass of the total PC adsorbed onto each type of
particle, as determined by TGA, gave the mass of each
identified protein adsorbed onto the particles. These values
(NSpC × TGA) were collected into four distinct MW ranges
for clarity and plotted as a function of the pore diameter.
In the PCs of all nanoparticles, at least 90% of the protein

mass consisted of proteins with MW < 70 kDa (Figure 2a).
However, excluding serum albumin (MW = 69 kDa) and
proteins with MW above 50 kDa highlighted the difference
between dense and porous nanoparticles. The coronas of
porous nanoparticles still consisted primarily of low MW
proteins, with 80−85% of the total mass coming from proteins
with MW < 50 kDa. Only 65% of the total PC mass of the
dense nanoparticles came from proteins in this group. Within
the group of porous nanoparticles, there was a rough trend that
correlated to the pore diameter, with the smallest fraction of
proteins <50 kDa associated with the material with the largest
pores (LPS-4, 14 nm). Plotting the data in terms of specific
adsorption (i.e., mass of proteins adsorbed in each category per
unit surface area) highlighted the difference between LPS-4
and the other porous materials (Figure 2b). The total specific
protein adsorption for LPS-4 and dense nanoparticles was
similar to each other and different from that of the other
porous nanoparticles, as shown in Table 2. However, the
specific adsorption of proteins in the 50−70 kDa range for
LPS-4 was also more similar to that of the dense nanoparticle
sample than to that of the other porous samples. Thus, we can
conclude that it was easier for proteins with masses above 50
kDa and particularly between 50 and 70 kDa to access the
internal pore surfaces of porous nanoparticles with a very large
pore diameter (e.g., 14 nm). This highlights the size
discrimination effect due to the pore diameters of porous
nanoparticles and provides some explanation for the
predominance of low MW proteins in the coronas of porous
nanoparticles. Finally, for additional specific details about the
PCs adsorbed from total serum, we created a heat map
comparing adsorption data for the 24 most abundant proteins
(NSpC × TGA > 1 mg/g, Figure 3). The predominance of
only a few types of proteins, namely apolipoproteins, is

Table 2. Protein Adsorption Data from TGA

sample
dpore
(nm) SBET (m2/g)

mass of protein
adsorbed

(mg/g SiO2)

specific protein
adsorption
(mg/m2)

SNP 49.5 38 0.77
MSN 2.7 1016.4 212 0.21
LPS-1 4.8 680.5 168 0.25
LPS-2 6.2 421.2 134 0.32
LPS-3 7.4 360.7 136 0.38
LPS-4 14.0 176.3 147 0.83
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apparent. The complete proteomic profiles are shown in Table
S2.

Influence of the Pore Diameter on the Competitive
Adsorption of Representative Small and Large Pro-
teins. Having developed a model of protein adsorption onto
porous nanoparticles, we next examined the effect of pore
diameter on the adsorption of two specific proteins that are
representative of “small” and “large” proteins: apolipoprotein
A-II (abbreviated A-II) has a mass of 11.2 kDa and was one of
the most prominent low MW proteins identified and

complement C3 (abbreviated simply C3) was the largest
protein of the group of 24 proteins identified in Figure 3.
These two proteins were the subject of experiments we
previously reported, where we used the STORM technique to
provide qualitative observation of adsorption by fluorescence
microscopy and calculating the relative penetration depths of
each protein.7 Our results pointed out that when A-II and C3
were both present in the same solution, the adsorption of C3
was qualitatively much less than when C3 was the only protein
in the solution. This may have occurred because when C3 was
the only protein in the solution, some of it was able to bind
near the pore entrances, but when A-II was present, A-II
rapidly bound to the internal pore surfaces, blocking the pores
and reducing the overall amount of C3 able to bind. According
to this hypothesis, the pore diameter should have a significant
effect on both the total amount of protein bound and the
relative amounts of A-II and C3.
To study the effect of the pore diameter on the competitive

adsorption of A-II and C3, we performed a series of protein
adsorption experiments: C3 only, A-II only, C3 and A-II
together in the same solution (represented as C3 + A-II), and
finally C3 adsorbed first for 1 h followed by A-II (i.e.,
sequential adsorption of proteins that gave C3 a “head start”,
represented as C3 → A-II). The results are summarized in
Figure 4, where specific adsorption is plotted as a function of
pore diameter. First, we found that the total specific protein
adsorption increased with the pore diameter (Figure 4a), as
expected from our previous experiments described above. In
general, the total protein adsorption was the highest when C3
was given a head start, consistent with the hypothesis above
because C3 binds to the pore entrances and external surfaces,
and then A-II is able to bind to other surface sites to increase
the overall mass of the adsorbed protein. In addition, whatever
the pore size, it must be taken into account that both A-II and
C3 present isoelectric points lower than 7 (respectively, 6.62
and 6.40), and negative effective charge at physiological pH
(respectively −0.3 and −16.5), which means that electrostatic
repulsion may happen even in the solution, limiting total
adsorption. For materials with small pores, simultaneous
adsorption of C3 and A-II did not result in as much adsorbed
protein, because A-II prevented C3 from accessing pore
entrance sites and because C3 weighs over 10 times as much as
A-II, this significantly reduced the amount of adsorbed protein.
The exception came for LPS-4, with the largest pore diameter,
where the total amount of protein adsorbed was the same

Figure 2. Protein adsorption onto silica nanoparticles from human serum as a function of the pore diameter. (a) Percentage of different MW
fractions in the PC. (b) Specific protein adsorption per unit surface area of the different MW fractions. The mass of each protein in the coronas of
the nanoparticles was determined by multiplying the NSpC obtained from liquid chromatography tandem-mass spectrometry (LC−MS/MS) with
the total mass of the PC obtained from TGA. For the sake of clarity, error bars have been omitted in the figure, but the information is provided in
Table S1.

Figure 3. Relative abundance of human serum proteins in the coronas
of silica nanoparticles. The 24 most abundant proteins (NSpC × TGA
> 1 mg/g SiO2) across the entire data set of all identified proteins
were organized according to the MW, and the data were presented as
a heat map (scale shown at right of figure). The mass of
apolipoprotein A-I on MSN through LPS-4 was 90.8, 78.9, 59.4,
65.1, and 71.7 mg/g SiO2 and is represented in red in the heat map.
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regardless of whether or not C3 and A-II were both present
throughout the adsorption process. This can be rationalized by
the fact that here, C3 is more fully able to access the internal
porosity of the nanoparticles because the pores are much larger
than those of the other materials.
We also applied proteomic analysis to these samples to study

the relative amounts of C3 and A-II adsorbed in each material
as determined by NSpC × TGA (Figure 4b). For MSN, LPS-1,
and LPS-2, with pore diameters of 2.7, 4.8, and 6.2 nm,
respectively, the specific adsorption of C3 was very low
regardless of whether the proteins were added simultaneously
or sequentially. There was notably more C3 adsorbed in LPS-3
and LPS-4 (7.4 and 14 nm pore diameters), and for these
samples, there was clearly more C3 adsorbed when it was
added to the solution before A-II instead of being added
simultaneously. This result indicated that C3 is able to adsorb
more successfully when it does not compete with A-II for
access to the internal surface area. A-II, on the other hand, was
present in all samples regardless of the pore diameter although
there was a notable switch in the amount of A-II adsorbed in
the C3 + A-II experiment versus C3→ A-II. For materials with
the smallest pores, that is, MSN, LPS-1, and LPS-2, more A-II
adsorbed when it was added sequentially after C3 rather than
simultaneously. The fact that there was any difference at all in
these materials showed that even though there was very little
C3 present, it still had an influence on the adsorption of A-II.
When the pores were large enough to allow significant
amounts of C3 to bind (LPS-3 and LPS-4), more A-II was
adsorbed during simultaneous addition of proteins. This
indicates that when C3 is able to enter the pores, it blocks
them and decreases the diffusion of A-II within the pores to
adsorption sites, promoting adsorption on their external
surfaces; thus, less A-II binds when C3 is given a head start.

On the other hand, when the pores are too small for
appreciable amounts of C3 to enter, more A-II binds when it
does not compete directly for adsorption sites near the pore
entrances in the same solution. In addition, the latter result
may also indicate that some exchange occurs between
adsorbed C3 near the pore entrances and A-II. Overall, the
results of these experiments showed that the sizes of the
adsorbed proteins depended strongly on the pore diameter,
and that they were also sensitive to the presence of other
proteins in the solution.

Design of a Diagnostic Test for Prostate Cancer
Development Using the Protein Corona of Mesoporous
Silica Nanoparticles. It was apparent from the TGA data in
Table 2 that the material with the largest surface area (MSN)
adsorbed the most protein. As our other results above have
shown, MSN also had the largest fraction of low MW proteins:
more than 95% of the total protein mass in the corona
consisted of proteins with MW < 70 kDa. Therefore, we chose
this material as a “nano-concentrator” to demonstrate an
application involving proteomic analysis of the PC to develop a
diagnostic test for the progression of PCa. We began by
optimizing the physical properties of the MSN required to
obtain the highest possible fraction from human serum
samples. MSN were prepared similar to the experiments
mentioned above, and the particles’ surfaces were modified
with different organic moieties (amine, carboxylate, or thiol).
In all cases, highly porous nanoparticles were obtained (Table
3). After protein adsorption using human serum and
quantitative analysis by LC−MS/MS and TGA, we clearly
observed that thiol-derivatized MSN (“MSN-SH”) retained the
largest amount of low MW proteins (Figure S5). This is
consistent with previously published work, as the strongly
hydrophobic character of thiol-modified silica materials

Figure 4. Comparison of specific protein adsorption of a representative heavy protein (complement C3) and light protein (apolipoprotein A-II)
onto silica nanoparticles. “C3” = complement C3 alone; “A-II” = apolipoprotein A-II alone; “C3 + A-II” = complement C3 and apolipoprotein A-II
in the same solution; “C3 → A-II” = sequential adsorption, i.e. complement C3 adsorbed first for 1 h, followed by apolipoprotein A-II. (a) Total
specific adsorption of A-II and C3 proteins. (b) Specific adsorption of A-II or C-3 portions.

Table 3. Physical Properties and Protein Adsorption Data of Functionalized MSN

N2 physisorption organic group contenta

sample
dpore
(nm)

SBET
(m2/g)

Vpore
(cm3/g) (mmol/g) (μmol/m2)

mass of protein adsorbed
(mg/g SiO2)

b
specific protein adsorption

(mg/m2)

MSN-OH 2.7 1016.4 0.76 212 0.21
MSN-COOH 2.2 822.6 0.36 0.67 0.81 201 0.24
MSN-NH2 2.4 495.1 0.71 2.00 4.04 170 0.34
MSN-SH 2.5 882.5 0.72 2.57 2.91 368 0.42

aAs determined by elemental analysis. bAs determined by TGA.
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favored interactions with the hydrophobic pockets present on
protein surfaces as well as the formation of disulfide
bridges.10,20 For this reason, we selected MSN-SH for
subsequent studies of the PCs from serum samples of PCa
patients.
Since the late 1980s, PSA-based testing has been widely used

for PCa detection. However, overdiagnosis and overtreatment
occur frequently, involving serious side effects and unnecessary
clinical expenses. Often, these problems are a result of the fact
that PSA levels may also be elevated in healthy men, as PSA is

prostate-specific but not PCa-specific. Indeed, meta-analyses
show that in patients with PSA levels above 4 ng/mL, the
positive predictive value of PSA is only about 25%.21

Moreover, second biopsies can detect cancer in 15−34% of
patients whose first biopsy was negative.22 A recent U.S.
preventive services task force recommended against PSA-based
screening for PCa in all age groups, highlighting the need for
new, clinically-useful, biomarkers.23,24

We sought to study the low MW proteomes of patients with
various stages of PCa, using their PSA levels and biopsy status

Figure 5. Statistical identification of proteins unique to each patient group after adsorbing serum proteins from patients onto thiol-modified
mesoporous silica nanoparticles (MSN-SH). Patient groups are defined in the text. (a) Z-score differences (±4SD) corresponding to selected
variables obtained by the elastic net penalized multinomial regression model for 51 identified proteins were clustered into groups based on
correlation in their relative abundance (Pearson correlation coefficients). A heat map (scale at left of figure) was then generated from the Z-score
data. Proteins present in a larger amount in a particular patient sample are in green; those in a smaller amount are in red. (b) 3D plot of the heat
map, emphasizing groups of proteins unique to each patient group, based on Z-score data.
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to divide them into groups and to provide a method of
comparing the relative amounts of each protein from group to
group. For this purpose, blood samples were taken from 22
patients from the following groups: metastatic PCa (“M”
group, 4 patients); elevated PSA and positive biopsy for PCa
(“B+” group, 6 patients); elevated PSA and negative biopsy
(“B−” group, 7 patients); age-matched control patients with
normal PSA levels (“C” group, 5 patients). Adsorption
experiments were carried out over MSN-SH and subsequent
analysis of the PC by LC−MS/MS and TGA showed a
complex mixture of proteins with the MW ranging from 5 to
515 kDa, with 344 different protein assignments over the entire
set of patient sera (Table S3). All proteins were organized by
the mass of each protein contained in each patient’s corona, as
calculated by NSpC × TGA, and statistical analysis using
principal component analysis (PCA) was performed. Accord-
ing to PCA, the first three components of the proteomic
distribution in different patient groups were represented in a
tri-coordinate projection system (Figure S6). Then, to
determine individual proteomes (which may correspond to
the real PPC as described before),13,14 predictor variables
associated with the four different patient groups were
estimated by using an elastic net penalized multinomial
regression model, and a total of 51 proteins were identified
as model components. The combinations of the levels of these
51 proteins were sufficient to define the four groups; these data
are presented in Figure 5a as a heat map.
The data in this figure are presented as a “Z-score”, which is

the number of standard deviations (SD) above (green) or
below (red) the average value of the mass of a particular
protein in each corona. A 3D representation of the heat map
(Figure 5b) revealed that all PCa groups showed unique
proteomic clusters, making it potentially feasible to quickly
assign each patient to a particular diagnostic group. Many of
the identified proteins belong to the low MW fraction, where a
significant number of proteins whose serum concentration is
severely affected by the pathological stage are expected to be
found.8 Indeed, some of these proteins are strongly related to
cancer development, such as plasma serine protease inhibitor
in metastasis and positive biopsy patients (inhibits tissue- and
urinary-type plasminogen activators, prostate-specific antigens,
and kallikrein activities). Other detected up and down-
regulated proteins with reported potential as cancer biomarkers
are identified in Table S4.25

With proteomics data in hand, the predictive value of the
model was tested by applying the elastic net model coefficients
to the data of each patient.19 That is, each patient’s proteomics
information was processed through the model without any bias
as to their clinical diagnosis, and a prediction was made as to
the probability of their assignment to a specific group. The
results (Table 4) showed that patient assignments made from
proteomics matched the clinical assignment quite well, with
probabilities of matching assignments ranging from 49 to 78%.
Importantly, the difference between the probability of being in
the clinically assigned group versus the other groups was
sizable. For example, patients with clinical assignments of B−
(elevated PSA but negative biopsy) had a probability of 67% of
being assigned to the B− group from proteomics data, but only
a probability of 14% of being assigned to the B+ group;
patients with B+ clinical assignments (elevated PSA and
positive biopsy) had a probability of 59% of being assigned to
the B+ group but only 17% probability of assignment to the
B− group.

The distinction between B− and B+ patients is of special
significance because the predictive value of the PSA test alone
is only ∼25%. Instead, an initial screening with a PSA test
followed by proteomics using MSN-SH, which only requires an
additional blood sample, provides a simple predictive tool to
avoid unnecessary, costly, and invasive biopsies. This is
especially relevant to clearly discriminate patients with elevated
PSA levels due to prostatitis or benign prostate hyperplasia
from those with lethal forms of PCa. Conversely, continued
monitoring of patients with elevated PSA levels using
proteomics could also allow early intervention, for example,
when assignment to the B+ group becomes indicated. The data
set here is small and the information presented is preliminary;
however, the probability difference between correct and
incorrect assignments will only increase as more patients are
added to the model and additional proteomics information is
collected. This is the focus of our current studies.

■ CONCLUSIONS
We have shown that low MW proteins dominate the PCs of
mesoporous silica nanoparticles, an effect that is more
pronounced with small pore diameters. When the surface
areas of each type of particle are taken into account by
comparing the specific protein adsorption (protein adsorbed

Table 4. Summary of Clinical Data for Prostate Cancer
Patients and Prediction Values Obtained by Application of
the Elastic Net Penalized Multinomial Regression Modela

probability of patients in groupc

patient # groupb PSA (ng/mL) M B+ B− C

1 M 235 0.78 0.08 0.05 0.09
2 M 426 0.66 0.16 0.09 0.08
3 M 26.7 0.73 0.11 0.07 0.10
4 M 530 0.61 0.14 0.08 0.17
average 0.70 0.12 0.07 0.11
5 B+ 7.6 0.09 0.57 0.17 0.18
6 B+ 9.7 0.05 0.69 0.10 0.16
7 B+ 5.1 0.09 0.55 0.17 0.19
8 B+ 8.1 0.08 0.57 0.23 0.12
9 B+ 7.4 0.06 0.63 0.18 0.13
10 B+ 6.5 0.06 0.56 0.19 0.18
average 0.07 0.59 0.17 0.16
11 B− 6.9 0.06 0.12 0.69 0.13
12 B− 5.8 0.04 0.13 0.72 0.10
13 B− 11.4 0.05 0.11 0.73 0.11
14 B− 8.7 0.07 0.15 0.65 0.13
15 B− 6.1 0.07 0.15 0.64 0.13
16 B− 5.3 0.06 0.13 0.64 0.17
17 B− 6.3 0.07 0.18 0.61 0.14
average 0.06 0.14 0.67 0.13
18 C 0.6 0.09 0.22 0.20 0.49
19 C 0.8 0.08 0.18 0.23 0.51
20 C 1.1 0.07 0.14 0.26 0.53
21 C 0.2 0.04 0.10 0.24 0.63
22 C 0.5 0.07 0.19 0.12 0.62
average 0.07 0.16 0.21 0.56

aBest statistical matches for each patient group are indicated in bold.
bAssigned after complete clinical examination and biopsy. M,
metastatic PCa; B+, elevated PSA, positive PCa biopsy; B−, elevated
PSA, negative PCa biopsy = negative biopsy; C, normal PSA (age-
matched control). PSA = prostate-specific antigen. cPrediction based
solely on proteomics data.
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per unit surface area), silica nanoparticles with the largest pore
diameter studied (14 nm) had PCs with very similar
compositions to those of dense silica nanoparticles. This
indicated that the protein size discrimination capability is most
pronounced when the pore diameter is below 7.4 nm.
Comparing the adsorption patterns of a representative low
MW protein (apolipoprotein A-II) and a high MW protein
(complement C3), we found that in silica nanoparticles with
small pores, A-II diffuses easily within the pores while C3 does
not. Interestingly, although only a small amount of C3 bound
to small-pore silica nanoparticles, it still influenced the
adsorbed quantity of A-II bound. In particles with larger
pores, each protein was able to bind more successfully when
the other was not present. These competitive adsorption
experiments showed that in addition to the expected size
exclusion effect on protein adsorption, there is still competition
for surface adsorption sites. Finally, thiol-modified medium
pore silica nanoparticles (MSN-SH) were used to adsorb
proteins from sera of PCa patients, patients with elevated PSA
but without PCa, and control patients. Application of a
statistical model to the complete set of proteomics data
allowed groups of proteins to be preliminarily identified as
markers of each patient’s status. The proteomics and clinical
assessments showed very good agreement, and the proteomics
assignations had the added advantage of discriminating
between patients with elevated PSA due to PCa and patients
with elevated PSA for another reason. These experiments
provide additional insight into the development of the PCs on
MSNs, and illustrate how this information can be usefully
applied to a diagnostic test.

■ MATERIALS AND METHODS
Materials. All materials were purchased from Sigma-

Aldrich unless otherwise noted, and used as received. Synthetic
protocols corresponding to preparation of dense silica
nanoparticles (SNPs), medium pore silica nanoparticles
(MSNs), and large pore silica nanoparticles (LPSs), as well
as surface modification with organic groups are fully detailed in
the Supporting Information. Furthermore, the different
techniques used for silica nanoparticle physico-chemical
characterization are also described in the Supporting
Information.
Human Serum Protein Adsorption Experiments. Prior

to serum exposure, particles (1 mg) were suspended in 0.5 mL
phosphate-buffered saline (PBS) (1×, pH 7.4). Subsequently,
the serum sample (0.5 mL) was added and the mixture was
incubated for 1 h at 37 °C and 1500 rpm in a ThermoMixer.
Next, the protein-adsorbed particles were isolated through
centrifugation at 14800 rpm at 4 °C for 5 min. Then, the
supernatant was discarded and nanoparticles were resuspended
in PBS (1 mL) and sonicated. This process was repeated three
times in order to ensure that any free or loosely bound proteins
were removed from the solution. After removal of the final PBS
wash, nanoparticles containing the hard corona were
suspended in digestion buffer (36 μL, 50 mM ammonium
bicarbonate, 0.25 mM urea, 4% acetonitrile) and reducing
buffer (6 μL, 100 mM dithiothreitol in H2O). These
nanoparticle suspensions were allowed to incubate for 1 h at
70 °C. After 1 h, alkylation buffer (15 μL, 100 mM
iodoacetamide) was added and the samples were incubated
at room temperature for 20 min in a dark place. Protein
digestion was achieved by adding trypsin (15 μL, 40 ng/μL)
and incubating overnight at 37 °C. The following morning,

formic acid (15 μL, 10%) was added to stop the digestion
process. Prior to submitting the samples for proteomic analysis,
the nanoparticles were centrifuged out of solution and the
supernatant was submitted for analysis.

Single Protein Adsorption Experiments. Nanoparticles
(1 mg) were suspended in 0.5 mL PBS (1×, pH 7.4). The
particle suspension was then sonicated to disperse any
aggregates. Subsequently, the suspension was diluted to a
final concentration of 1 mg/mL with PBS containing
apolipoprotein AII (40 μg/mL) and/or complement C3
protein (40 μg/mL). Proteins were supplied by Athens
Research & Technologies. The adsorption proceeded for 1 h
before isolating the particle−protein conjugates via centrifu-
gation (1 min, 14 800 rpm). The protein adsorbed sample was
then re-suspended in PBS (1 mL), sonicated, and centrifuged.
This process was repeated three times in order to remove any
loosely bound protein. In the case of sequential adsorption, C3
was adsorbed first for 1 h. Then, the supernatant was removed
by centrifugation (1 min, 14 800 rpm) and the sample was
washed three times with PBS as above. Afterwards, A-II
adsorption was carried out for 1 h, and the protein−particle
conjugate was separated and washed again three times with
PBS. Subsequently, hard corona was extracted and analyzed as
described above.

Proteomic Analysis. Prior to the MS/MS technique,
preliminary characterization of the PC composition by one-
dimensional SDS-PAGE was performed, and details are
presented in the Supporting Information. Subsequently, for
the proteomic analysis, samples were subjected to desalting
and concentration by μC18 ZipTip (Millipore) according to
the manufacturer protocol. 5 μL of each sample were loaded
onto a trap column (NanoLC Column, 3μ C18-CL, 350 μm ×
0.5 mm; Eksigen) and desalted with 0.1% trifluoroacetic acid at
3 μL/min for 5 min. The peptides were then loaded onto an
analytical column (LC Column, 3 μC18-CL, 75 mm × 12 cm,
Nikkyo) equilibrated in 5% acetonitrile and 0.1% formic acid.
Elution was carried out with a linear gradient of 5−35%
acetonitrile in 0.1% formic acid at a flow rate of 300 nL/min
for 30 min. Peptides were analysed in a mass spectrometer
nanoESI-qQTOF (6600 TripleTOF, AB SCIEX). A tripleTOF
was operated in information-dependent acquisition mode, in
which a 0.26 s TOF MS scan from 350 to 1250 m/z was
performed, followed by 0.05 s product ion scans from 100 to
1600 m/z on the 50 most intense 2−5 charged ions. The
system sensitivity was controlled with 2 fmol of 6 proteins (LC
Packings). ProteinPilot 5.0 search engine (AB SCIEX) default
parameters were used to generate a peak list directly from 6600
Triple TOF .wiff files. The paragon algorithm of ProteinPilot
5.0 was used to search the ExPASy protein database (616203
sequences; 181334896 residues) with the following parame-
ters: trypsin specificity, cys-alkylation, taxonomy restricted to
human, and the search effort set to through. To avoid using the
same spectral evidence in more than one protein, the identified
proteins are grouped based on MS/MS spectra by the
ProteinPilot Pro Group algorithm. Thus, proteins sharing
MS/MS spectra are grouped, regardless of the peptide
sequence assigned. The protein within each group that can
explain more spectral data with confidence is shown as the
primary protein of the group. Only the proteins of the group
for which there is individual evidence (unique peptides with
enough confidence) are also listed, usually toward the end of
the protein list. Protein identification was performed according
to ProtScore units (eq 1). Here, proteins showing unused
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score >1.3 were identified with confidence ≥96%, and proteins
showing identification confidence less than 96% were
eliminated.

i
k
jjjj
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zzzzProtScore log

1 (% confidence)
100

= − −
(1)

Calculation of Mass % of Individual Proteins. LC−
MS/MS analysis of adsorbed proteins was carried in triplicate.
In order to obtain a unique intensity signal for each identified
protein, the signals obtained from all peptides that make up the
protein were summed. Then, the NSpC for each protein,
which represent the percentage of each protein identified in
the proteomic analysis as a function of MW, were multiplied by
the overall mass of adsorbed protein as determined by TGA.
The result of this calculation (NSpC × TGA, eqs 2 and 3) is
the contribution of each protein to the total adsorbed mass.26

SD were determined from these values.
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Patient Selection and Clinical Sample Extraction. This
study was conducted with the approval of the Ethics
Committee of La Fe Hospital (Valencia, Spain). Informed
consent was obtained from all cases for the examinations and
experiments conducted. Clinical materials were used after
written informed consent was obtained, according to protocols
approved by the Institutional Review Board of La Fe Hospital.
Between January and February 2015, 17 patients were

referred to the Department of Urology at La Fe Hospital for
further evaluation of suspected PCa based on an abnormal
digital rectal examination and/or an elevated serum PSA
concentration.27 During the study period, 17 transrectal
ultrasonography-guided biopsies were performed with an
ultrasound system (Siemens Healthcare, Erlangen, Germany).
An extended 10-core systematic random biopsy was performed
using an automatic spring-loaded gun biopsy device with an
18-gauge needle, and the Gleason score and TNM adscription
were established in all patients.27,28 Also, a computer
tomography scan was performed in patients suspected of
metastasis (PSA > 25 ng/mL). In parallel, 5 extra patients were
selected as controls. Controls were defined as men who had
been followed at least for 5 years on study with no PCa
diagnosis. Blood samples from all patients were collected the
same day that biopsies were scheduled in Vacutainer tubes
(Becton Dickinson) and centrifuged at room temperature for
15 min at 3000 g. Serum was collected from the tubes,
aliquoted, and stored at −80 °C.
Statistical Analysis. Statistical analysis of clinical data was

performed using R software (version 3.2.2) and the R-package
glmnet (version 2.0-2).
Data Pretreatment. Data were summarized by mean, SD,

median, and first and third quartiles. Initial data exploration
was performed using PCA.29 Moreover, identified proteins
were clustered into groups based on correlation to their
relative abundance (Pearson correlation coefficients), and
variables with zero variance were excluded. A total of 187
proteins were clustered in a heat map.
Elastic Net Penalized Multinomial Regression Model.

Association of the predictor variables with the four different

patient groups was assessed using an elastic net penalized
multinomial regression model.30 Elastic net penalization allows
for variable selection by shrinking the coefficients of the
variables not related to the response to zero. Thus, variables
with non-zero coefficients are considered as important
predictors. Selection of the shrinkage parameter (lambda) for
the elastic net model was performed by twenty repetitions of
10-fold cross-validation. The one-standard-error rule was used.
The results of the elastic net model were depicted in a heat
map including only the selected variables. Finally, the
probability (Pr) to ascribe the corresponding patient to a
specific PCa group was calculated through the minimum error
model.30

Model Validation. An internal model validation was
performed using 1000 iterations of bootstrapping. Optimism-
corrected kappa statistic was 0.58 and accuracy was 0.69.
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