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ABSTRACT: Intermetallics are atomically ordered crystalline
compounds containing two or more main group and
transition metals. In addition to their rich crystal chemistry,
intermetallics display unique properties of interest for a variety
of applications, including superconductivity, hydrogen storage,
and catalysis. Because of the presence of metals with a wide
range of reduction potentials, the controlled synthesis of
intermetallics can be difficult. Recently, soft chemical
syntheses such as the modified polyol and ship-in-a-bottle
methods have helped advance the preparation of these
materials. However, phase-segregated products and complex
multistep syntheses remain common. Here, we demonstrate
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the use of heterobimetallic single-source precursors for the synthesis of 10—15 and 11—15 binary intermetallics. The
coordination environment of the precursor, as well as the exact temperature used play a critical role in determining the
crystalline intermetallic phase that is produced, highlighting the potential versatility of this approach in the synthesis of a variety
of compounds. Furthermore, we show that a recently developed novel plasma-processing technique is successful in removing
the surface graphitic carbon observed in some of the prepared compounds. This new single-source precursor approach is a
powerful addition to the synthesis of atomically ordered intermetallic compounds and will help facilitate their further study and

development for future applications.

B INTRODUCTION

Atomically ordered intermetallics are stoichiometric crystalline
compounds in which main group and transition metals
together adopt a unique structure that differs from that of its
constituent elements. In addition to their rich and diverse
structural chemistry, intermetallic compounds display impor-
tant properties of interest for magnetism, superconductivity,
catalysis, hydrogen storage, and shape-memory applications.' ™
Often grown as single crystals, intermetallic compounds are
typically made from the elements by traditional solid-state
synthesis at relatively high temperatures—normally exceeding
1000 °C. As a result, it can be challenging to study their
formation, measure their properties, or assess their practical
utilization.

Recently, progress was made in the synthesis of intermetallic
compounds by mild “soft” chemistry methods (Scheme 1).'°
One approach involves dissolving separate metal salts in
tetraethylene glycol, which acts as a mild reducing agent under
relatively modest temperatures."' ~'® This “modified polyol
synthesis” method can be limited due to the different reduction
potentials of the separate metal ions, leading in some cases to
phase-segregated products rather than to the desired
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intermetallic compound. Very recently, a new templated
approach was developed to overcome this problem.”’ Termed
the “ship-in-a-bottle” method, it involves growing a porous
oxide shell on a metal particle, followed by the addition of a
second metal salt; the latter is able to permeate the porous
shell and react with the original metal core, resulting in an
encapsulated version of the intermetallic compound. Limi-
tations include the multiple steps required to grow (and, if
necessary, later remove) the porous oxide shell.

Single-source precursors—molecular complexes that contain
all of the necessary elements required to make an inorganic
material —were originally developed for the chemical vapor
deposition of thin films.”'~** Later, single-source precursors
were successfully applied to the solution phase synthesis of
colloidal nanomaterials.”>~>” Because of the presence of very
different metals with dissimilar electronegativities and disparate
reduction potentials, complex intermetallics are an ideal target
for single-source precursors (SSPs). In this paper, we
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Scheme 1. Soft Synthesis of Intermetallic Compounds by
(a) Modified Polyol Synthesis and (b) Ship-in-a-Bottle
Methods; The Latter (b) Was Adapted with Permission
from Maligal-Ganesh, R. V.; Xiao, C.; Goh, T. W.; Wang, L.-
L.; Gustafson, J.; Pei, Y. Qi, Z.; Johnson, D. D.; Zhang, S.;
Tao, F.; Huang, W. The Ship-in-a-Bottle Strategy To
Synthesize Encapsulated Intermetallic Nanoparticle
Catalysts: Exemplified for Furfural Hydrogenation. ACS
Catal. 2016, 6, 1754—1763; Copyright 2016 American
Chemical Society™®

(b)

Pt@mSio,

Pt-M@mSiO,

demonstrate the general synthetic utility of heterobimetallic
single-source molecular precursors in the preparation of a wide
range of binary 10—15 and 11—15 intermetallic compounds.

B RESULTS AND DISCUSSION

Precursor Screening. A quick search in the Cambridge
Structural Database®® (CSD) is a great way to find well-
characterized molecular compounds comprised of specific
multiple elements (Scheme 2). Hits from the initial CCSD
search can then be easily grouped into families of compounds
supported by common or closely related ligands; they can also
be narrowed down according to the desirable structural and
bonding features, such as the presence of heterometal—metal
interactions. A case in point is the family of heterobimetallic
compounds shown in Scheme 3, all of which are supported by
the same multidentate phosphine scaffold and contain a grou
10 or 11 metal directly bonded to a group 15 element.”'~*
The presence of a common ligand platform allows for
systematic synthetic variation by changing the identity of the
metals or group substitution—of the R groups on the terminal
phosphine or of the X ligands. In addition, the presence of a
pre-existing, heterometal—metal bond bodes well for the use of
these complexes as SSPs to the synthesis of atomically ordered
intermetallics.

Establishing Scope and Tunability. Thermolysis of
seven representative heterobimetallic complexes with varying
transition-metal (Ni, Pd, Pt, or Au), pnictogen (As, Sb, or Bi),
and ancillary ligand combinations demonstrates the utility of
this platform in accessing several crystalline intermetallic
compounds (Figure 1). Reflecting their original stoichiometry,
thermolysis of several of the precursors produces “one-to-one”
(1:1) binaries (NiAs, NiSb, PdSb, PtSb) that are known to
adopt a2 common NiAs structure type (hexagonal, P65/mmc)
(Table 1). In cases where the relevant phase diagram lacks any
known one-to-one phases,”® thermolysis produces other
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Scheme 2. Flowchart for Screening Known Molecular
Complexes as Potential SSPs

CSD: Molecular
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Group into families
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Scheme 3. (a) Di- and tri-(orthophosphino)heterobimetallic
complexes; (b) SSP thermolysis
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stoichiometries such as Pd,As (hexagonal, P62m) and Au,Bi
(cubic, Fd3m). Interestingly, thermolysis of the cationic
precursor [(CyNC)Pd(o-Ph,P-C¢H,),SbCl,][SbF,] produces
PdSb, whereas thermolysis of the neutral analog CIPd(o-Ph,P-
C¢H,),SbCl, produces Pd,oSb, (trigonal, R3, Figure 1d vs le,
respectively). These divergent results strongly suggest that the
specific ligand scaffold and metal coordination environment of
the precursor precisely determine its mechanism and rate of
decomposition, raising the prospect of fine tuning the outcome
of thermolzsis by group substitution or “molecular program-
ming”3~*

Single Source versus Separate Precursors. Control
experiments with separate commercially available precursors,
thoroughly mixed and heated under the same conditions used
to thermolyze the heterobimetallic complexes attest to the
superiority of the latter. For example, NiCl, and Ph;Sb fail to
react with one another, whereas Ni(COD), and Ph;Sb do so
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Figure 1. Powder XRD patterns of solids obtained after thermolysis of
(a) [CINi(o-Ph,P-C¢H,);As]Cl (600 °C), (b) CINi(o-Ph,P-
C¢H,);SbCl (600 °C), (c) [CIPd(o-Ph,P-C¢H,);As]Cl (475 °C),
(d) [(CyNC)Pd(o-Ph,P-C¢H,),SbCL,][SbF] (600 °C, * = Pd), (e)
CIPd(o0-Ph,P-C4H,),SbCL, (450 °C), (f) CIPt(o-Ph,P-C4H,)SbCl
(340 °C), and (g) ClAu(o-iPr,P-C¢H,),BiCl (600 °C, I = Bi).

Standard patterns are shown in red.

uncontrollably, producing a mixture of NiSb and NisSb,
(Figure 2). Therefore, thermolysis of CINi(o-Ph,P-
CgH,);SbCl and other SSPs is a more reliable and general-
izable approach to the preparation of binary intermetallics.

Precursor Decomposition and Phase Evolution. An
added feature of the heterobimetallic SSPs presented here is
their ability to produce different intermetallic compounds
when heated to different temperatures. For example,
thermolysis of CIPt(o-Ph,P-C¢H,);SbCl at 340, 450, or 600
°C produces phase-pure PtSb, a mixture of PtSb and Pt, or
only Pt metal, respectively. Similarly, thermolysis of [CIPd(o-
Ph,P-C4H,);As]Cl at 475 or 600° C produces either phase-
pure Pd,As or a mixture of Pd,As and PdAs,, respectively.
Finally, thermolysis of CIPd(o-Ph,P-C¢H,),SbCl, at 380, 450,
or 600 °C produces phase-pure PdgSb;, phase-pure Pd,,Sb,, or
a mixture of PdSb and PdgSb;, respectively—see the
Supporting Information.
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Figure 2. Powder XRD patterns of solids obtained after thermolysis of
separate vs SSPs (600 °C).

Thermogravimetric analysis (TGA) and differential scanning
calorimetry (DSC) coupled to online MS and IR analysis of
evolved gases provide additional clues about the mechanism of
thermal decomposition of SSPs (Figure 3). The two most
common decomposition products are phenylchloride (PhCl)
and triphenylphosphine (PPh;) (Table 1 and Supporting
Information). These are confirmed IR peaks corresponding to
C(Ar)—H stretches slightly above 3000 cm™ and C(Ar)—P
stretches at 1100 and 1400 cm™. In the case of ClAu(o-iPr,P-
Cg¢H,),BiCl, where R = iPr rather than phenyl (Scheme 3), MS
and IR spectra are consistent with the evolution of di-iso-
propylphenylphosphine (iPr,PPh) instead of PhyP. A majority
of heterobimetallic complexes start to decompose between 270
and 340 °C, with the exception of [(CyNC)Pd(o-Ph,P-
Cg¢H,),SbCL,][SbF], which starts to decompose at only 173
°C. In this case, MS and IR show that this is accompanied by
loss of cyclohexene (C¢H,,) from fragmentation of the
cyclohexylisocyanide (CNCy) ligand. Therefore, a change in
the nature of the monodentate ligand from phosphine to
isocyanide can have a significant effect in lowering the
temperature of thermolysis.

Interestingly, the difference between the total mass left after
thermolysis, as measured by TGA, and the theoretical total

Table 1. Thermolysis of 10—15 and 11—15 Heterobimetallic SSPs

precursor g/mol (%) T4/°C* XRD (°C) g/mol (%) Res. mass A?/%(°C) gases”
[CINi(o-Ph,P-C¢H,)5As]Cl 988.37 (100) 340 NiAs (600) 133.62 (13.52) 4329 PhCl, PPh,
CINi(0-Ph,P-C4H,);SbCl 103520 (100) 315 NiSb (600) 180.45 (17.43) 28.17 PhC, PPh,
[CIPd(0-Ph,P-C4H,)As]Cl 1036.10 (100) 300  Pd,As (475) 287.76 (13.89) 40.98 (600) PhCl, PPh,

Pd,As + PdAs, (600)
PdSb + Pd? (600)

[(CyNC)Pd(o-Ph,P-C¢H,),SbCL,] [SbF]
CIPd(o-Ph,P-C¢H,),SbCl,

1166.57 (100) 173
857.09 (100) 317

CIPt(o0-Ph,P-C4H,),SbCl 1171.59 (100) 270

(181.342)° (17.50)
228.18 (19.80) 21.53 CeHio

PdgSb; (380) 1216.64 (17.74) 38.22 (600) PhCl, PPh,
Pd,,Sb, (450) 2980.70 (17.39)

PdSb + PdgSb, (600)  (1444.82) (18.73)

PtSb (340) 316.84 (27.04) 42.43 (600) Ph,

PtSb + Pt? (450) 316.84 (27.04)

Pt (600) 195.08 (16.65)

Au,Bi + Bi (600) (811.89)° (47.02) 44.62 iPr,PPh

ClAu(0-iPr,P-C¢H,),BiCl 863.35 (100) 319

“Thermal decomposition onset from TGA/DSC; multiple steps were observed in all‘cases. YDifference between % mass left after TGA and
theoretical mass from inorganic binary alone (previous column): A = TGA! — theo™. “From IR—MS. “Minor impurity. “Average mass of
hypothetical 1:1 binary (unknown). “Sum of masses of two binaries (1:1 + 8:3).
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Figure 3. (a) TGA and DSC of CINi(o-Ph,P-C4H,);SbCl and (b)
sample mass spectrum (410 °C) and (c) IR of gases evolved during its
decomposition from 45 to 600 °C.

inorganic mass, calculated only from the content of group 10
or 11 transition-metal (M) and group 15 (Pn) elements, points
to the presence of some leftover organics in a few of the
intermetallic products (Table 1). Because only crystalline
inorganic compounds are observed by X-ray diffraction
(XRD), we conclude that these residues must be made of
either an amorphous or semicrystalline material. Interestingly,
despite thermolysis occurring in the absence of additional
solvents or surfactants, transmission electron microscopy
(TEM) shows that the intermetallic products are made of
nanocrystalline particles (Figure 4 and Supporting Informa-
tion).

Fate and Removal of Carbon. To probe the nature of the
excess mass observed after thermolysis, we used Raman
spectroscopy (Figure S). A Raman peak observed at about
1340 cm™' corresponds to disordered and structural defects
within the graphitic sp® carbons (known as the D or A, band),
whereas another at 1570 cm™' corresponds to the doubly
degenerate in-plane sp> C—C stretching mode (known as the
G or Ey band). A third Raman peak around 2680 cm™,
indicative of layered graphene (a D-band overtone known as
the 2D band) is absent from our samples. On the basis of this
information, we conclude that the residual organics observed
in some of the intermetallic compounds prepared here is
mostly made of graphitic carbon.**™*® Critically, there is a
good correlation between the amount of excess mass measured
by TGA and the relative intensity of the graphitic peaks, as
observed by Raman spectroscopy (Figure Sa).
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Figure 4. Representative TEM of 24 + 6 nm PtSb produced by
thermolysis of CIPt(o-Ph,P-C¢H,);SbCl at 340 °C. Observed lattice
fringes with d-spacings of 2.02 and 2.99 A correspond to (—120) and
(011) lattice planes of PtSb.
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Figure 5. Raman spectra of intermetallic compounds (a) containing
negligible (PdSb, 2%) vs noticeable (Pd,As, 24%) residual mass upon
thermolysis and (b) Pd,As before and after cleaning under an O,
plasma.

The presence of associated graphitic carbon could be
advantageous in some applications such as catalysis or
electrochemistry.””*® However, it can sometimes slow down
the further development of materials for other applications.
Therefore, we sought to remove this impurity from the surface
of the intermetallic compounds. To do this, we employed
plasma cleaning or “processing”, which was recently shown to
be superior to calcination in the removal of organic ligands and
other carbonaceous materials from the surface of nanocrystal
assemblies, without negatively impacting their structure.
Typically, the gases employed are O, or He. Both have been
shown to effectively remove carbon from the surface of various
nanogartides without detrimentally affecting their proper-
ties.””~>* Using Pd,As under an O, plasma as an example, we
find that the graphitic peak intensities greatly decrease after 24
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h and mostly disappear after 72 h of plasma processing (see
Figure Sb and Experimental Section). To avoid the risk of
oxidation, He plasma could be employed too, but carbon
removal was slower in this case.

B CONCLUSIONS

Atomically ordered intermetallics, often grown as single
crystals at relatively high temperatures, were recently made
by milder soft chemistry methods. However, phase segregation
or multistep reactions remain common challenges. A search in
the CCSD allowed us to identify a family of heterobimetallic
complexes containing the desirable SSP features, such as the
presence of a common and flexible ligand platform and the
presence of a pre-existing heterometal—metal bond.

Thermolysis of these heterobimetallic precursors consis-
tently produces crystalline binary phases containing both
metals, confirming our hypothesis that these complexes are
ideal single-source precursors to atomically ordered interme-
tallics. Control studies demonstrate that SSPs are superior to
separate precursors in producing the desired intermetallic
products under otherwise identical reaction conditions. The
specific ligand coordination environment affects the specific
product phase, suggesting that the mechanism and rate of
decomposition can be tuned by group substitution or
“molecular programming.” Additionally, heating the precursors
to different temperatures also affects the specific product
phase, providing more opportunities for tunability.

TGA—-DSC coupled with evolved gas analysis by MS—IR are
powerful tools to investigate the mechanism of thermal
decomposition of heterobimetallic precursors. Through
Raman analysis, we were able to determine that the excess
mass leftover after thermolysis of some of these precursors is
made of a thin layer of graphitic carbon on the intermetallic
surface. Conveniently, this carbonaceous residue can be
removed through plasma processing without negatively
impacting the structure of the intermetallic compound. This
new single-source precursor approach is a powerful addition to
the synthesis of binary intermetallics and will help speed up
their study and development for future applications.

B EXPERIMENTAL SECTION

Materials. The heterobimetallic complexes, [ CINi(o-Ph,P-
C¢H,)3As]CL*"  CINi(0-Ph,P-C¢H,);SbCl,**  ClAu(o-iPr,P-
CeH,),BiCL™ CIPt(0-Ph,P-C4H,);SbCL** and CIPd(o-Ph,P-
C¢H,),SbCl,,** were prepared according to literature
procedures. [(CyNC)Pd(o-Ph,P-C4H,),SbCl,][SbF,] and
[CIPd(0-Ph,P-C¢H,);As]Cl are synthesized as follows. NiCl,
(anhydrous, 98%), bis(1,5-cyclooctadiene)nickel (0) (Ni-
(COD),, 98+%), Ph,Sb (97%), cyclohexyl isocyanide
(CyNC, 98%), and AgSbF, (99%) were purchased from
Strem and used as received. CH,Cl,, Et,0, and tetrahydrofur-
an (THF) were purchased from Fisher Chemical, and celite
was purchased from MilliporeSigma. CD,Cl, and CDCl; were
purchased from Cambridge Isotope Labs and used as received.
CH,Cl, was dried over alumina using a column-based solvent
purification system from MBraun. Et,O and THF were
refluxed under N, over Na/K and distilled prior to use. All
precursor syntheses were carried out in air.

Synthesis. [(CyNC)Pd(o-Ph,P-C4H,),SbCl,][SbF]. (o-Ph,P-
C¢H,),SbCl (34 mg, 0.05 mmol) was mixed with
PdCL(COD) (14 mg, 0.0S mmol) in CH,Cl, (4 mL). After
2 h, cyclohexyl isocyanide (8 uL, 0.06 mmol) and AgSbF, (17
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mg; 0.05 mmol) were sequentially added, and stirring
continued for 16 h. The mixture was evacuated to dryness
and the residue washed with Et,O, taken up in CH,Cl, (2
mL), and filtered through celite. Solvent evaporation afforded a
yellow solid (33 mg, yield: 56%). Single crystals suitable for
XRD were obtained by slow diffusion of Et,O into a CH,Cl,
solution at ambient temperature (21 °C or RT). 'H NMR
(499.42 MHz; CD,Cl,): 6 8.33 (d, 2H, 3J,;_y = 7.7 Hz), 7.95
(dd, 2H, 3Jy_y = 10.7 Hz, 3Jy_y = 4.3 Hz), 7.72 (dd, 2H,
qen = 10.7 Hz, 3Jy_y = 4.3 Hz), 7.66—7.54 (m, 22 H), 3.82
(s, 1H), and 1.59-1.16 (m, 10H). “C{'H} NMR (125.58
MHz; CD,CL): 5 136.11 (s), 135.51 (s), 133.61 (t, Jo_p = 6.9
Hz), 13330 (s), 13237 (4, Jo_p = 3.3 Hz), 131.08 (br s),
130.32 (t, Jo_p = 5.7 Hz), 12843 (s), 31.71 (s), 24.73 (s), and
22.41 (s). *'P{"H} NMR (121.49 MHz; CD,Cl,): § 53.9.

[CIPd(0-Ph,P-C¢H,);AsICl. A solution of PACL,(COD) (70
mg, 0.25 mmol) in CH,Cl, (3 mL) was added dropwise to a
stirred suspension of (0-Ph,P-C¢H,);As (212 mg, 0.25 mmol)
in CH,Cl, (ca. S mL) Stirring for 12 h gave a red suspension.
The mixture was filtered, washed with THF (2 mL), and dried
in vacuo to afford a dark red powder (5SS mg, yield: 78%).
Single crystals suitable for XRD were obtained by slow
diffusion of Et,O into a chloroform solution at RT. 'H NMR
(499.42 MHz; CDCL): & 8.33 (d, 3H, ¥Jy_y = 8.0 Hz), 8.17
(t, 3H, *Jyy_g = 7.6 Hz), 7.65 (d, 3H, *Jg_y = 7.3 Hz), 7.42 (d,
3H, *Jy_p = 7.7 Hz), 7.22 (dd, 6H, *J5_1; = 8.0 Hz, ¥y = 7.2
Hz), 7.13—7.05 (m, 12H), and 7.02 (dd, 12H, ¥,;_y = 7.5 Hz,
3yon = 7.3 Hz). BC{"H} NMR (100 MHz; CDCl,): § 135.5
(s), 135.3 (s), 134.6 (br s), 132.9 (s), 132.4(s), 130.3 (s), and
128.8 (s). *'P{'"H} NMR (202.16 MHz; CDCL,): § 39.9.

Thermolysis. Single Source Precursors. TGA and DSC
were carried out on a Netzsch DSC/TGA (STA449 F1)
coupled with a mass spectrometer and an infrared spectropho-
tometer for the analysis of evolved gases. The heterobimetallic
precursor (5—20 mg) was placed in an alumina crucible,
inserted into the TGA—DSC furnace, and placed under an
inert Ar atmosphere. The temperature was increased from 45
to 600 °C at a rate of 10 °C/min. Mass spectra from 10 to 300
amu and FT-IR spectra of the evolved gases were measured at
a rate of 10 scans per min. After cooling to RT, the remaining
solids were removed and analyzed by powder XRD.

Separate Precursors.”” Equimolar amounts (0.1 mmol
each) of Ni (NiCl,, 16 mg or Ni(COD),, 21 mg) and Ph,Sb
(35 mg) were ground together in a mortar with a pestle. The
mixture was transferred to an alumina crucible, placed in a tube
furnace, purged with N, gas for 30 min, and heated from 21 to
600 °C at a rate of 10 °C/min under continuous N, flow. After
cooling to RT, the remaining solids were removed and
analyzed by powder XRD.

Plasma Processing. Samples deposited on a glass slide
were exposed to low temperature plasma using a Harrick’s
etcher (PDC-001) with PlasmaFlo gas mixer, O, as the feed
gas, and 30 W power at 500 mTorr." >

Structural Characterization. Single Crystal XRD. Single
crystal XRD measurements were performed at 110(2) K using
a Bruker APEX-II CCD area detector diffractometer (Mo Ka
radiation, 4 = 0.71069 A). In each case, a specimen of suitable
size and quality was selected and mounted onto a nylon loop.
The structures were solved by direct methods, which
successfully located most of the nonhydrogen atoms. Semi-
empirical absorption corrections were applied. Subsequent
refinement on F* using the SHELXTL/PC package (v. 6.1)
allowed location of the remaining nonhydrogen atoms.
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Powder XRD. Powder XRD was collected using a Cu K
radiation source on a Rigaku Ultima IV (40 kV, 44 mA)
diffractometer. Each sample was prepared by drop-casting
hexane suspensions onto a background-less quartz slide.

Spectroscopy. NMR. NMR spectroscopy was recorded at
RT on a Varian Unity Inova S00 FT NMR (499.42 MHz for
'H, 125.58 MHz for 3C, 202.16 MHz for 3!P), Inova 400 FT
NMR (100 MHz for 3C), and an Inova 300 FT NMR (121.49
MHz for *'P). 'H and C{'H} NMR chemical shifts are given
in ppm and referenced against SiMe* using residual solvent
signals as secondary standards. *'P{'"H} NMR chemical shifts
are given in ppm and referenced against H;PO, as an external
standard.

Raman Spectroscopy. Raman spectroscopy analyses were
performed using an XploRa Plus confocal Raman upright
microscope, equipped with a Synapse EMCCD camera
(Horiba Scientific/NJ, France). Diode lasers (532 and 785
nm) were used at 0.3 and 0.9 mW power, respectively. The
532 nm excitation laser was used for the analysis of PtSb, NiSb,
Pd,As, PdSb, and Au,Bi samples, whereas the 785 nm
excitation laser was used for the NiAs sample. A 50X air
objective (Olympus, LMPlanFL) with a 0.5 numerical aperture
was used to collect the Raman signal at five different locations
on the sample with a 30 s acquisition time and 2
accumulations. Reported spectra were recorded with a 600
grooves/mm grating.
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