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ABSTRACT: G protein-coupled receptors (GPCRs) constitute the key component of cellular signal transduction. Accurately
annotating the biological functions of GPCR proteins is vital to the understanding of the physiological processes they involve in.
With the rapid development of text mining technologies and the exponential growth of biomedical literature, it becomes urgent
to explore biological functional information from various literature for systematically and reliably annotating these known
GPCRs. We design a novel three-stage approach, TM−IMC, using text mining and inductive matrix completion, for automated
prediction of the gene ontology (GO) terms of the GPCR proteins. Large-scale benchmark tests show that inductive matrix
completion models contribute to GPCR-GO association prediction for both molecular function and biological process aspects.
Moreover, our detailed data analysis shows that information extracted from GPCR-associated literature indeed contributes to
the prediction of GPCR−GO associations. The study demonstrated a new avenue to enhance the accuracy of GPCR function
annotation through the combination of text mining and induction matrix completion over baseline methods in critical
assessment of protein function annotation algorithms and literature-based GO annotation methods. Source codes of TM−IMC
and the involved datasets can be freely downloaded from https://zhanglab.ccmb.med.umich.edu/TM-IMC for academic
purposes.

1. INTRODUCTION

G protein-coupled receptors (GPCRs), also known as seven-
transmembrane domain receptors, constitute a large protein
family of integral membrane receptors that detect molecules
outside the cell and activate internal signal transduction
pathways and, ultimately, cellular responses. GPCRs are
involved in many human diseases, such as central nervous
system disorders and diabetes.1 The GPCR database,
GPCRdb, has served the community for over 20 years and
has recently been extended to include a more multidisciplinary
audience. The accurate annotation of biological functions of
GPCR proteins is thus crucial for understanding the
physiological processes that they involve in. As GPCRs are
often unstable in vitro and difficult to be purified,2 it is hard to
obtain their functions via direct biological assays. Development
of advanced computational methods for automated GPCR
function annotation is therefore in great demand.

There are multiple ways to describe biological functions of
proteins; gene ontology (GO)3 is a major initiative unifying
the representation of gene and gene product attributes across
all species, and is the most widely used function annotation
vocabulary and also convenient for computer automation. GO
depicts biological functions from three aspects: molecular
function (MF), biological process (BP), and cellular
component (CC).3 As the CC of GPCRs is almost always
“plasma membrane”, this work focuses on the MF and BP
aspects.
There have been a large number of computational methods

developed for GO function prediction of general proteins.4

These methods can be divided into four categories.4 The first
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is based on the sequence homology transferal, in which a
similarity search is performed for the full-length sequence of a
target protein against the proteins with known biological
functions, as implemented by GoFDR,5 blast2GO,6 and BAR.7

The second is based on sequence composition: the DeepGO8

program and CAFA3 (CAFA, critical assessment of protein
function annotation algorithms) winner GoLabeler9 use
sequence composition as one of their features. The third
category of methods is based on structure templates, which are
designed to infer the function of the target proteins from
structurally similar function templates, with COFACTOR10

and ProFunc11 being classical examples. The fourth category is
based on biological networks, including protein−protein
interaction (PPI), genomic neighborhood, and co-expression
patterns. For example, Jones-UCL12 and MS-k-nearest
neighbor (KNN)13 in CAFA112 use PPI as one of their
features. The differences among these four approaches are
usually not distinct, as many state-of-the-art methods combine
multiple kinds of functional annotation information. For
example, most of the successful methods in CAFA, including
Jones-UCL,12 MS-KNN,13 and CombFunc,14 are meta
approaches that combine multiple categories of features.
Wang et al. (2013) introduce profile−sequence search,
profile−profile search, and domain co-occurrence networks
for protein function prediction.15 Cao and Cheng (2016)
introduce protein−protein and gene−gene interaction net-
works generated by Hi-C technique16 in protein function
prediction.17 Cao et al. (2017) for the first time converted the
protein function prediction problem into a language translation
problem, and propose a new way to describe the GO space and
sequence space, and finally use the neural machine translation
method for the protein function prediction problem.18

However, with the rapid development of sequencing
techniques, it is cheap and fast to produce protein sequences
but relatively expensive and slow to obtain valuable function
information from protein contents because of the shortage of
traditional biological experimental techniques. Protein function
prediction has faced a long outstanding challenge to fill the gap
between the massive amount of protein sequences and their
biological function.19 In addition, despite the significant effort
and success, most of these algorithms are developed for general
protein annotation and very few algorithms are available
specifically for GPCR function annotations, although the focus
on a specific protein family can enhance the specificity and
accuracy of the method development. This motivates our
development of a GPCR-specific function prediction algo-
rithm.
Distinct from the aforementioned function prediction

methods, our prediction approach is designed to take
advantage of the enormous growth of literature related with
GPCRs in public repositories. As more than 110 000
publications were returned by querying in PubMed using the
keyword of “GPCRs”, there is an increasing urgency to
improve the performance of GO annotations of GPCRs by text
mining (TM) to explore massive functional information among
these literature. Despite multiple attempts in the past, few
studies have proven to be useful with regard to assisting real-
world GO curation.20 A text-mining challenge for GO
annotation in BioCreative IV was organized with two subtasks:
(I) to automatically locate text passages that contain GO-
relevant information (a text-retrieval task) and (II) to
automatically identify relevant GO terms for the genes in a
given article (a concept-recognition task),20 and multiple

machine learning-based methods had been proposed, such as a
naiv̈e Bayes (NB) classifier, support vector machine (SVM),
and so forth.20 Wong and Shatkay (2013) had developed a
KNN classifier using text-based features for predicting protein
GO functions.21 You and Zhu (2017) proposed an ensemble
approach DeepText2GO, which integrates both text-based and
sequence homology-based methods, to large-scale GO
annotations of proteins.22

Although a few methods of mining GO functions from
literature have been put forward over the past decade, much
progress is still necessary for addressing the remaining
challenges to facilitate real-world GO curation. It mainly
includes: (1) in the literature-based GO annotation challenge
at BioCreative IV, only about 1/3 of the annotated GO terms
can be exactly matched in the corresponding articles.20 It
means that massive information related with GO terms is
hidden in literature; thus, it is important to design new
methods to mine these hidden information. (2) There are lots
of irrelevant mentions which share names with GO terms in
literature, for example, the GO term “growth” is a common
word, but additional contextual information should be needed
to determine if this high-level term could be used for GO
annotations.20 New GO annotation methods must be able to
filter irrelevant mentions automatically. (3) In the GO function
prediction of GPCR proteins, only “positive” labels are
observed and no experimentally verified negative samples,
that is, typically most entries are missing (“unlabeled”),
indicating that it is essentially a positive-unlabeled learning
problem rather than a traditional supervised learning problem
(positive−negative learning) which has been widely used in the
GO function prediction of proteins. Moreover, GPCR proteins
usually have multiple GO functions. Thus, the GPCR function
prediction can be equivalently formalized as the GPCR-GO
association matrix completion task. Here, text information of
GPCR proteins and GO terms are respectively named as the
GPCR feature space and the GO feature space, and the GO
label spaces of GPCR proteins are called as the GPCR-GO
association matrix in this paper. (4) Most related studies only
consider the protein information and ignore the information of
label space (GO terms) that are also critical to annotating the
biological functional terms.
In this work, we propose a novel approach, TM−IMC, for

automatically predicting GPCR’s biological functions, as
represented in GO terms, by combining TM and inductive
matrix completion (IMC). The approach consists of three
stages. First, vector presentation of text information is
implemented by the Word2Vec tool23 which uncovers
functional information of GO terms implied in literature and
automatically filter irrelevant words shared names with GO
terms in article. Then, we formulate the multiple vector
transformation for each GPCR protein or each GO term as a
multi-instance learning task, and adopt the novel multi-
instance learning algorithm miFV24 to obtain a single vector.
Finally, we convert the function prediction problem into the
GPCR-GO association matrix completion task, and construct a
positive-unlabeled IMC model25 where text information of
GPCR proteins and GO terms are taken into account
simultaneously. Experimental results show that text informa-
tion significantly contributes to the improvement of the model
performance. Source codes and datasets are made freely
available to the academic community at https://zhanglab.
ccmb.med.umich.edu/TM-IMC.
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2. RESULTS AND DISCUSSION

2.1. Contributions of IMC. In this paper, the GO function
prediction of GPCR proteins is converted into the GPCR-GO
association matrix completion task, and a positive-unlabeled
IMC model was constructed for this task. Here, the
contribution of the IMC model on the prediction of GPCR-
GO associations was examined in control with five state-of-the-
art matrix completion methods including ALM,26 SVT,27

FPCA,28 LMaFit,29 and Maxide.30 The ALM method applied
the augmented Lagrange multiplier method for exact recovery
of corrupted low-rank matrices.26 The FPCA method adopted
fixed point and Bregman iterative algorithms for solving the
linearly constrained matrix rank minimization problem.28 The
LMaFit method solved a low-rank factorization problem for
matrix completion by a nonlinear successive over-relaxation
algorithm that only requires solving a linear least squares
problem per iteration.29 The SVT method approximated the
matrix completion with minimum nuclear norm by a singular
value thresholding algorithm.27 The Maxide method speedups
matrix completion with side information by reducing the
requirement on the number of observed entries.30 The
programs of these methods can be downloaded online or
obtained from the original authors and most of them have been
successfully applied in similar studies.30,31 All the control
methods are run with the default parameter setting.
Figure 1 shows the contribution of IMC models in GPCR-

GO association prediction for MF and BP, in control with five
state-of-the-art matrix completion methods. The results also
show that our IMC-based methods TM−IMC can generate a
higher number of correct GPCR-GO association prediction
over all r range than all the control matrix completion
methods. For example, for the MF aspect, when the r value is

equal to 100 (i.e., the top-100 GPCR proteins with the highest
score for each GO term are evaluated), the recall of TM−IMC
is close to 0.40, whereas the runner-up method SVT is 0.35.
The worst method FPCA has a recall of 0.16, approximately
0.24 lower than TM−IMC (Figure 1). For the BP aspect, it is
shown that the recall of TM−IMC is about 0.48, which is
higher than that of the second and third best methods from
SVT (0.37) and FPCA (0.36), respectively. The worst
performance is reached by Alm (0.16), only one-third of that
of TM−IMC (Figure 1).

2.2. Contributions of GPCR Text Information. A critical
component of TM−IMC is the feature vectors representing
each GPCR (orange matrix in Figure 8). As explained in
previous sections, these feature vectors are constructed from
the text of GPCR-associated literature. In this section, we
demonstrate the usefulness of text features in comparison to
baseline features derived from sequence. To facilitate the
comparison, we group the appending GPCR features into four
groups of information: amino acid triplet information, amino
acid correlation (AAC) information, evolutionary information,
and secondary structure information, as discussed in detail in
the following paragraphs.

2.2.1. Amino Acid Triplet Information.We divide 20 amino
acids into 6 classes according to their dipole moment and side
chain volume of amino acids,32 that is, class A: Ala, Gly, Val;
class B: Ile, Leu, Phe, Pro; class C: Tyr, Met, Thr, Ser, Cys;
class D: His, Asn, Gln, Tpr; class E: Arg, Lys; F: Asp, Glu.
Then, the amino acid triplet frequency (conjoint triad) in a
GPCR protein is calculated by33

=
−
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n
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2
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where a, b, c ∈ {A, ..., F}; Nabc represents the number of each
kind of amino acid triplet that occurred in a protein; n is the
length of the amino acid sequence. For each GPCR, the
conjoint triad feature dimension is 216.

2.2.2. AAC Information. Given the 6 amino acid classes, the
AAC of each two classes of amino acids in a GPCR protein is
computed by
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where i, j ∈ {A, ..., F}; Pi and Pj represent the frequencies of the
i-th and j-th class of amino acids that occurred in a protein,
respectively; Pij(k) denotes the joint frequency of the i-th and
j-th class of amino acids with k interval residues that occurred
in a protein, and k ∈ {2, 4, 8, 16}. For each GPCR protein, the
AAC feature dimension is 144.

2.2.3. Evolutionary Information. Evolutionary information
of a GPCR protein in terms of its position-specific scoring
matrices (PSSMs) is generated using the PSI-BLAST
program34 against the NCBI-NR database by three iterations
with the expected value of 0.01. For each GPCR, the PSSMs
contain 42 × n elements, where n is the length of the amino
acid sequence. The PSSM elements are scaled to fall within the
range 0−1 by the standard logistic function

=
+ −

f x
x

( )
1

1 exp( ) (3)

As the length of the amino acid sequence is different for
different proteins, the sizes of the PSSM elements are diverse
for GPCR proteins. In this paper, the 42 elements for each

Figure 1. Contribution of IMC models in GPCR-GO association
prediction for (A) MF and (B) BP. The horizontal axis denotes the
top-r GPCRs with the highest score for each GO term that is
evaluated.
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residue are regarded as an instance, such that each GPCR can
be presented as a bag of n instances. Then, the miFV
algorithm24 is used to convert the bag of instances into a vector
with the dimension of 200 for each GPCR protein.
2.2.4. Secondary Structure Information. The PSIPRED

program35 is used to predict the secondary structures of GPCR
proteins. Here, the secondary structure consists of three types,
i.e., helix (H), sheet (E), and coil (C). The propensity of
secondary structure element correlation (SSC) can reflect the
motif information of secondary structures of GPCRs, which is
very important for understanding biological functions of
GPCRs. The SSC in a GPCR protein is calculated by

= ·k P k
P k

P P
SSC( ) ( ) log

( )
mn

mn

m n
2

i
k
jjjjj

y
{
zzzzz (4)

where m, n ∈ {H, E, C}; Pm and Pn denote the frequencies of
the m-th and n-th type of secondary structure elements in a
protein, respectively; Pmn(k) represents the joint frequency of
the m-th and n-th type of secondary structure elements with k
interval residues in a protein, and k ∈ {0, 2, 4, 8, 16}. For each
GPCR, the SSC feature dimension is 72.
Figure 2 represents the dependence of the recall of TM−

IMC on the combination of different feature sets. It is shown

that the performance of predicting the GPCR-GO associations
using GPCR text information is always better than those of the
models that solely relied on amino acid triplet information,
AAC information, evolutionary information or secondary
structure information. For example, for the MF aspect, when
r is equal to 100, the performance of our model is about 0.38,
which is 0.11 higher than the worst model that relied on the
secondary structure information; and for the BP aspect, when r

= 100, the performance of our model is about 0.48, which is
0.15 bigger than the worst model that relied on the secondary
structure information (Figure 2). Moreover, it is observed that
the predictive performance is higher when text information is
combined with other features. For example, for the MF aspect,
when r = 100, about 0.03 improvement is achieved for the
model based on amino acid triplet information, 0.06
improvement for evolution information, 0.07 improvement
for amino acid association information, and 0.12 improvement
for secondary structure information; and for the BP aspect,
when r is equal to 100, approximately 0.10 enhancement is
reached for the model that relied on amino acid triplet
information, 0.14 enhancement for amino acid association
information, 0.15 enhancement for evolution information, and
0.19 enhancement for secondary structure information (Figure
2). The results demonstrate that the GPCR text information
indeed contributes to the prediction of GPCR-GO associa-
tions, probably because GPCR text information provides
different classification clues from their sequences or structures.
This suggests a future direction for further improvement of the
TM−IMC program where we can supplement the current TM-
based features with sequence-derived information.

2.3. Impact of GPCR Text Information Entries. The
protein-level text information of GPCRs extracted from the
UniProt database contains multiple entries from protein name,
organism, keywords for MF or BP, and titles of related
publications. In Figure 3, we examine the contribution of each
entry of GPCR text information to the prediction accuracy of
the GPCR-GO associations.
As it is shown in Figure 3, the model performance will

become worse for both MF and BP aspects, when removing
each entry of GPCR text information from TM−IMC. This

Figure 2. Contribution of text information of GPCR proteins on the
prediction of GPCR-GO associations about (A) MF and (B) BP. The
legend shows various protein information. The horizontal axis denotes
the top-r GPCRs with the highest score for each GO term that are
evaluated. In all experiments, the same GO text information is used
for generating the GO features, whereas the GPCR features
respectively arises from the text information, the amino acid triplet
information (conjoint triad), amino acid association information
(AAC), evolution information (PSSMs), secondary structure
information (SSC), and their appending with the text information.

Figure 3. Contribution of various text information entries of GPCR
proteins on the prediction of GPCR-GO associations about (A) MF
and (B) BP. The legend shows various text information entries of
GPCR proteins. Name: removing of the entry of protein name;
organism: removing of the entry of organism; keywords: removing of
the entry of keywords for MF or BP; full: no entry is removed. The
horizontal axis denotes the top-r GPCRs with the highest score for
each GO term that is evaluated.
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suggests that all the entries have had a positive impact on the
TM−IMC models. We also tried to remove the entry of “titles
of related publications”; no results are returned for both MF
and BP aspects because most predictive scores in each column
of the association matrix are the same and the evaluation
criterion cannot be calculated. Thus, no data are listed for this
entry in Figure 3. This error happens as most of the GPCR text
information we extract belongs to the entry of “titles of related
publications”, and when it is deleted, the remaining
information cannot discriminate the differences among
GPCR proteins. Overall, based on the impact to the
performance of TM−IMC, the importance of the GPCR text
information to the prediction of GPCR-GO associations for
both MF and BP aspects can be approximately ranked as: titles
of related publications > protein name > keywords for MF >
organism.
2.4. Effect of Rank and Iteration Parameters and

Single Vector Converting. There are several critical
parameters and options in TM−IMC which have been
carefully determined in our training datasets. Here, we examine
how the performance of GPCR-GO predictions is affected by
these parameters and options in our testing dataset.
The first key parameter of TM−IMC is the rank k of the

association matrix, where Figures 4A and 5A present the

dependence of performance of TM−IMC on different k values
for MF and BP aspects, respectively. For the MF aspect, the
performance of TM−IMC increases when k increases from 10;
when k increases to 50, the model achieves a peak
performance, and when k increases to 200, the performance
remains almost unchanged. However, the performance
decreases when k = 300 (Figure 4A). Similar trends happen
on the BP aspect (Figure 5A). The default value for parameter
k was set to 50 in TM−IMC for both MF and BP aspects.

Another important parameter is the number of iterations
(Iter) for terminating the alternative optimization in the
induction matrix completion stage. As seen from Figures 4B
and 5B, with the increase of the parameter Iter (starting from
10), the model performance has obvious increases; when Iter
reaches 150, the improvement gets saturated. The default Iter
value was set to 150 in TM−IMC for both MF and BP aspects.
Finally, a critical step in the TM−IMC pipeline is the

transformation of the multiple instances into a single vector
(Figure 8). TM−IMC has three options to complete the vector
transformation, including the miFV algorithm, the miVLAD
algorithm,24 and the mean method. The miFV uses the Fisher
vector representation, whereas the miVLAD adopts the vector
of locally aggregated descriptors representation.24 In the mean
method, the single vector is generated by simply averaging
each dimension of all instances in one bag. The performance of
GPCR-GO predictions using each of the three methods is
displayed in Figures 4C and 5C, which shows that miFV
slightly outperforms miVLAD, and also outperforms the
average based method on both MF and BP aspects. The
default method for the transformation of multiple instances
into a single vector is set to miFV in TM−IMC for both MF
and BP aspects.

2.5. Comparison with Baseline Methods in CAFA. The
CAFA is an experiment designed to provide a large-scale
assessment of computational methods dedicated to predicting
protein function.12,36 Three baseline methods which were used
to predict protein function in CAFA include naiv̈e baseline,
BLAST, and PSI-BLAST.12,36 To illustrate the effectiveness of
our method in function prediction of GPCR proteins, these

Figure 4. Dependence of TM−IMC performance for predicting GO
MFs of GPCR proteins on the (A) rank k of the GPCR-GO
association matrix, (B) number of iteration of alternative optimization
(Iter), and (C) method for multiple instances to the single vector
conversion. The horizontal axis denotes the top-r GPCRs with the
highest score for each GO term that is evaluated.

Figure 5. Dependence of TM−IMC performance for predicting GO
BPs of GPCR proteins on the (A) rank k of the GPCR-GO
association matrix, (B) number of iterations of alternative
optimization (Iter), and (C) method for multiple instances to single
vector conversion. The horizontal axis denotes the top-r GPCRs with
the highest score for each GO term that is evaluated.
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baseline methods were compared in this paper. For naiv̈e
baseline, the prediction score for each term is assigned by the
prior probability of that term in the database of experimentally
annotated proteins. If a term “receptor activity” is with the
relative frequency of 0.067, each target protein was appointed
by the score 0.067 for that term. Therefore, the same
predictions were assigned to all targets by the naiv̈e
method.12,36 For BLAST, it relies on the BLAST hits by
querying the proteins with experimentally annotated functions.
The prediction score for a specific term was arranged by the
greatest sequence identity between the target protein and the
BLAST hits with that term experimentally verified. The highest
one was saved if a term was hit with multiple sequence identity
scores.12,36 For PSI-BLAST, a sequence profile was produced
by querying the UniRef90 sequence library37 by three
iterations under an E-value cutoff of 0.01. These profiles are
then searched for in the UniProt-GOA database of
experimentally annotated proteins to assign terms to the target
sequence.12,36 In order to validate the effectiveness of our
approach objectively, similar with the CAFA experiments, the
GO performance is mainly evaluated by the Fmax measure,14

which calls the maximum harmonic average between precision
and recall over all thresholds

=
· ·

+
F

t t
t t

max
2 pr( ) re( )
pr( ) re( )t

max

l
moo
noo

|
}oo
~oo (5)

where t is the decision threshold with the range from 0 to 1,
and pr(t) and re(t) denote the precision and recall value at the
threshold t. As it is shown in Figure 6, TM−IMC can achieve a

higher prediction performance in GO prediction of GPCRs for
MF and BP than all the baseline methods in CAFA, indicating
that our method is effective in predicting the GO biological
functions of GPCRs.
2.6. Comparison with Literature-Based GO Annota-

tion Methods. A text-mining task for literature-based GO
annotation in BioCreative IV challenge20 was organized and
multiple machine learning-based methods were proposed, such
as NB20 and SVM.20 In addition, KNN21 and an ensemble
approach22 had also been successfully applied in literature-
based GO annotation for proteins. Here, we compare with

these methods where random forest represents an excellent
ensemble learning method. Because of different datasets and
text-based features used in literature-based GO annotation
methods, performance comparison was implemented for
predicting GO functions of GPCRs by adopting the features
we extracted and the Fmax measure evaluated in CAFA.12,36 As
shown in Figure 7, our method TM−IMC has higher F-

measure than all literature-based machine learning methods in
predicting GO functions of GPCRs on both MF and BP
aspects. This is probably because our method TM−IMC has
taken into account both the text information of GPCR proteins
and GO terms simultaneously, whereas that of GPCRs is only
considered by the control methods.

3. CONCLUSIONS
In this paper, we propose a novel approach TM−IMC for TM-
based GPCR function prediction. The method includes three
stages. First, the text information is represented by using the
TM tool Word2Vec. Then, a bag of instances describing
specific function terms are transformed into single vector by
the multi-instance learning algorithm miFV. Finally, the
protein function prediction is formulated as the protein-
function association matrix completion problem, which can be
solved by the IMC method.
The approach is applied to the GO biological function

prediction of GPCRs. The results on the large-scale benchmark
tests show that TM−IMC can generate accurate and robust
function predictions. Detailed data analysis shows that GPCR
text information has the major contribution on the improve-
ment of the performance. The source codes and databases of
TM−IMC have been made freely available through the public
platform GitHub at https://zhanglab.ccmb.med.umich.edu/
TM-IMC, where users can use the package to predict the GO
MFs or BPs of GPCR proteins, as well as to design their own
models to solve their problems on the basis of our proposed
general learning framework, including creating models for the
function prediction of other proteins (Supporting Information
1). Also, function determination for GPCRs is ridiculously
difficult; thus, in the future more information should be taken

Figure 6. Performance of TM−IMC in GPCR-GO association
predictions for MF and BP in control with three baseline methods in
CAFA.

Figure 7. Performance comparison of TM−IMC in predicting GO
functions of GPCRs in control with literature-based GO annotation
methods. NB: naiv̈e Bayes; SVM: support vector machine; KNN: k-
nearest neighbor; RF: random forest.
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into consideration to help solve this task, especially for the de-
orphanization of GPCRs.

4. DATABASETS AND METHODS

4.1. Datasets. To prepare the dataset, we first download
the list of all 3052 GPCRs curated by the UniProt database
(https://www.uniprot.org/docs/7tmrlist).38 A sequence clus-
tering using blastclust34 is performed at a sequence identity
cutoff of 90%, to remove the redundant GPCR entries; this
results in 1874 nonredundant GPCR proteins.
Next, the “gene_association.goa_ref_uniprot” file is down-

loaded from the UniProt-GOA ftp site (ftp://ftp.ebi.ac.uk/
pub/databases/GO/goa/),38 from which the GO terms of all
proteins in the nonredundant GPCR dataset are obtained (but
ignoring the GO terms with inferred from electronic
annotation or no biological data available evidence codes).
For each GO term associated with a GPCR, its parent GO
terms, as defined by Jan 2018 version of obo format GO
(“go.obo” file from http://geneontology.org/page/download-
ontology), are also added for depicting its MFs or BPs.
Overall, the nonredundant GPCR protein dataset contains a

total of 479 and 3917 unique GO terms for MF and BP
aspects, respectively Here, GO terms associated with more
than 60% of GPCRs are removed, because they are mostly
noninformative terms such as “protein binding” or “GPCR
activity”. Finally, we obtained 1674 GPCR proteins with 209
GO terms for MF and 1277 GPCR proteins with 1406 GO
terms for BP, respectively, which constitutes the final GPCR
and GO set of this study.
4.2. TM−IMC Pipeline. The TM−IMC approach includes

three stages: vector representation of text information,
transformation of multiple instances into single vector, and
construction of IMC prediction models. A schematic
illustration of the pipeline is depicted in Figure 8.

4.2.1. Vector Representation of Text Information. For each
GPCR, the text information extracted from the UniProt
database includes four entries: protein name, organism,
keywords for MF or BP, and titles of related publications. A
query of literature is performed by entering the keyword
“receptor” in the biomedical literature database PubMed,
where more than one million articles will be retrieved. The
abstracts of these articles are treated as the vocabulary, where a
vector representation of text information of each GPCR
protein is implemented using the Word2Vec tool23 developed
by Google, which has been trained to reconstruct linguistic
contexts of words. Other keywords “G protein-coupled
receptors” and “GPCRs” were respectively implemented for a
query of literature in PubMed to check the performance
impact of the vocabularies. As shown in Table S1 in the
Supporting Information, there is little difference in perform-
ance when different keywords are used.
Word2Vec23 was used to train each word among the GPCR

text information into a vector of floats. It mainly includes two
model architectures to produce a distributed representation of
words: the continuous skip-gram model and the continuous
bag-of-words (CBOW) model. The skip-gram model predicts
its surrounding words given the current word, whereas the
CBOW model predicts the current word based on the context
surrounding.
The skip-gram model’s objective function is to maximize the

likelihood of the prediction of contextual words for GPCR
proteins when given the center word. Let ω = {ω1, ω2, ω3, ...,
ωT} be a sequence of training words for GPCR proteins; we
wish to maximize

∑ ∑ ω ω= |
= − ≤ ≤ ≠

+L
T

p
1

log ( )
t

T

c j c j
t j t

1 , 0 (6)

Figure 8. Schematic of TM−IMC. The approach consists of three stages: vector representation of text information by Word2Vec, transformation of
multiple instances into single vector by miFV, and construction of IMC prediction models.
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where c is the parameter indicating the window size of context
words, ωt is the center word and ωt+i is one of the surrounding
words. Then, the probability of predicting the word ωo given
the word ωi is defined as

ω ω
υ υ

υ υ
| =

′

∑ ′
ω ω

ω ω ω

Τ

=
Τp( )

exp( )

exp( )Wo i
1

o i

i (7)

where υω and υω′ are the “input” and “output” vector
representations of ω, and W is the number of words in the
vocabulary. This is referred to as the sof tmax objective.
However, for larger vocabularies it is inefficient to compute υωi

as it can be time-consuming. This problem can be addressed by
using the hierarchical sof tmax objective function and resorting
to negative sampling.39 The CBOW model in Word2Vec is
similar to the skip-gram model, which can predict the center
word ω0 given a representation of the surrounding words ω−c,
..., ω−1, ω1, ..., ωc.

23

Whereas Word2Vec is a tool for converting a word into a
vector, two entries of the GPCR text information, i.e., the
keywords for MF or BP and the titles of related publications,
mostly exist in the form of phrases or sentences. To obtain the
vector representation of these two entries, the vector for each
word among a phrase or sentence is obtained by Word2Vec,
and then the vector for each phrase or sentence is generated by
averaging all words’ vectors. Finally, a vector is depicted for
each entity, such that each GPCR protein can be represented
as a bag of instances.
The scheme of vector presentation for each GO term is

similar to that of a GPCR protein. First, the text information
for each term is obtained from the “go.obo” file, including
name, def, and synonym information. Then, a query of the
PubMed database is implemented using the keyword “gene
function”, and about 1.8 million papers are returned. The
abstracts of these returned papers are regarded as the
vocabulary, and the Word2Vec tool is performed to convert
the GO term text information into vectors. Finally, a vector is
presented for each entity, so that each GO term can also be
represented as a bag of instances.
4.2.2. Transformation of Multiple Instances into a Single

Vector. For each GPCR, it has a bag of instances. We can use
the miFV algorithm24 to convert the bag of instances of each
GPCR into a Fisher vector based on a Gaussian mixture model
(GMM). Let us assume that the i-th GPCR is Xi = {xi1, ..., xij,
..., xini}, where xij is its j-th instance. In the multi-instance
learning, we assume that the instances in Xi are independently
and identically distributed. Thus, a natural choice of getting the
probability of the i-th GPCR protein sample is a GMM. We
can estimate the parameters of the GMM on the training
GPCR bags using maximum likelihood estimation

∑ ∑ ∑λ λ ω λ| = | = |
= = =

L X p x p x( ) log ( ) log ( )i
j

n

ij
j

n

k

K

k k ij
1 1 1

i i

(8)

where the component pk denotes the k-th Gaussian
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and λ = {ωk, μk, ∑k, k = 1, 2, ..., K} is the parameter set of the
K-component GMM, and ωk, μk, and ∑k are the mixed weight,

mean vector, covariance matrix of the k-th Gaussian,
respectively.
Following eq 3, the Fisher vector of the i-th GPCR (Xi) can

be written as24
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Here, fλ
Xi is the Fisher vector of the i-th GPCR, where fωk

Xi, fμk
Xi,

and fσk
Xi represent their mixture weight, mean, and covariance

Fisher vector, respectively. γj(k) is the probability of xij
generated by the k-th Gaussian model. For the i-th GPCR,
assuming that it contains ni instances and the dimension of an
instance is d, the dimension of the Fisher vector for each
GPCR should be (2d + 1) × K, where K is the number of
Gaussian components in GMM models.
Similarly, for each GO term, we employ the miFV

algorithm24 to transform a package of multiple vectors into a
Fisher vector whose dimension is (2d + 1) × K.

4.2.3. IMC Prediction Models. To facilitate the description,
the above Fisher vectors of GPCR proteins and GO terms are
respectively named as the GPCR feature space and the GO
feature space, and the GO label spaces of GPCR proteins are
called as the GPCR-GO association matrix in this paper.
Let P ∈ RNgr×Ngo denote the GPCR-GO association matrix,

where Ngr and Ngo are the numbers of GPCR proteins and GO
terms, respectively. Pij = 1 means that the i-th GPCR protein
has the observed j-th GO MF, otherwise Pij = 0. Suppose that
X ∈ RNgr×fgr represent the GPCR feature space which contains
Ngr GPCR proteins, where xi ∈ Rfgr denotes the i-th GPCR
protein. Assume that Y ∈ RNgo×fgo denote the GO feature space
which contains Ngo GO terms, where yj ∈ Rfgo denotes the j-th
GO term.
We adopt the positive-unlabeled IMC method25 to learn the

GPCR-GO associations. This method intends to achieve the
whole associations Z = WHT through the observed association
matrix P, where Z ∈ Rfgr×fgo, W ∈ Rfgr×k and H ∈ Rfgo×k, and k is
small. IMC assumes that the GPCR-GO association matrix Z is
low rank, and the optimization problem we address is

∑ λ+ || ||

+ || ||

∈ ∈ ∈Ω
× ×

P x WH y W

H

min ( , )
1
2

(

)

W R H R i j
ij i j, ( , )

T T
F

2

F
2

f k f kgr go

(14)

where Ω are the observed entries of GPCR-GO associations;
the first term (. ) is the loss function, i.e., l(a,b) = (a − b)2,
which penalizes the deviation of estimated entries from the
observations. The second term is the regularization term to
control the model complexity and avoid overfitting, where λ is
the regularization parameter for balancing the loss function
term and the regularization constraint term. In TM−IMC, the
hyperparameter lambda is determined by threefold cross-
validation.
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The objective function (9) is nonconvex, which can be
solved by an alternating minimization scheme (i.e., fix W and
solve for H, and vice versa).40 When fixing W and updating H,
eq 9 can be written as

∑ λ
̃ + || ||

∈ ∈Ω
×

P x H y Hmin ( , )
2H R i j

ij i j
( , )

T T
F

2
f kgo

(15)

where x̃i = WT × xi ∈ Rk. When fixing H and updating W, eq 9
can be written as

∑ λ
̃ + || ||

∈ ∈Ω
×

P x Wy Wmin ( , )
2W R i j

ij i j
( , )

T
F

2
f kgr

(16)

where ỹj = HT × yj ∈ Rk. Equations 10 and 11 are convex
functions that can be solved using the conjugate gradient
iterative procedure.
Finally, for any association Zab ∉ Ω, we can predict the

association of the a-th GPCR protein and the b-th GO term by
calculating xa

TWHTyb.
4.3. Evaluation Criteria. The performance of TM−IMC is

examined in the standard threefold cross-validation procedure,
in which the known GPCR-GO associations are split into three
equally sized groups. The TM−IMC model is first trained in
two randomly selected groups, and then tested in the third
remaining sample group. This procedure is repeated three
times to ensure that each group is tested once, where the
average performance in the three repeats is reported.
For each GO term in our data set, we rank all GPCRs by

how strongly the method predicts them to be associated with
the GO term. We first compute the true positive associations in
the top-r GPCRs with the highest score for each GO term, and
then the recall value, that is, the ratio that the true positive
associations for all GO terms against all observed entries of
GPCR-GO associations, are adopted to assess the models, as
the measure of the performance of different matrix completion
methods.31,41 As wet lab biologists can usually only perform
experimental assays on a small number of proteins, that is a
small value of r is desired, we mainly report the result up to r ≤
100.
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