Abstract
The laboratory tests recommended by the World Health Organization for detection of rabies virus and evaluation of specific antibodies are performed with fluorescent antibodies against the virus, the ribonucleoproteins (RNPs), or by monoclonal antibodies. In this study, we purified the rabies virus RNPs for the production of a conjugate presenting sensibility and specificity compatible with commercial reagents. The method employed for the purification of RNPs was ultracentrifugation in cesium chloride gradient, the obtained product being used for immunizing rabbits, from which the hyperimmune sera were collected. The serum used for conjugate production was the one presenting the highest titer (1/2,560) when tested by indirect immunofluorescence. The antibodies were purified by anion exchange chromatography (QAE‐Sephadex A‐50),conjugated to fluorescein isothiocyanateand separated by gel filtration (Sephadex G‐50). The resulting conjugate presented titers of 1/400 and 1/500 when assayed by direct immunofluorescence (DIF) and simplified fluorescence inhibition microtest, respectively. Sensibility and specificity tests were performed by DIF in 100 central nervous system samples of different animal species, presenting 100% matches when compared with the commercial reagent used as standard, independent of the conservation state of the samples. The quality reached by our conjugate will enable the standardization of this reagent for use by the laboratories performing diagnosis of rabies in Brazil, contributing to the intensification of the epidemiological vigilance and research on this disease. J. Clin. Lab. Anal. 23:7–13, 2009. © 2009 Wiley‐Liss, Inc.
Keywords: rabies, diagnostic, immunofluorescence, conjugate, purification, ribonucleoproteins
REFERENCES
- 1. WHO . World Health Organization. Rabies. Fact Sheet No 99. Available at: www.who.int/mediacentre/factsheets/fs099 (access 15/10/07). 2007.
- 2. Meslin F‐X, Kaplan MM. An overview of laboratory techniques in the diagnosis and prevention of rabies and in rabies research In: Meslin F‐X, Kaplan MM, Koprowski H, editors. Laboratory Techniques in Rabies, fourth edition Geneva: World Health Organization; 1996. p 9–27. [Google Scholar]
- 3. Rupprecht CE, Hanlon CA, Hemachudha T. Rabies re‐examined. Lancet Infect Dis 2002;2:327–343. [DOI] [PubMed] [Google Scholar]
- 4. Heidelberger M, Kendall FE, Soo Hoo CM. Quantitative studies on the precipitin reaction. J Exp Med 1933;58:137–152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5. McQueen JL, Lewis AL, Schneider NJ. Rabies diagnosis by fluorescent antibody. I. Its evaluation in a public health laboratory. Am J Publ Health 1962;50:1743–1752. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6. Dean DJ, Abelseth MK. The fluorescent antibody test In: Kaplan MM, Koprowski H, editors. Laboratory Techniques in Rabies, third edition Geneva: World Health Organization; 1973. p 73–84 (WHO monograph series no 23). [PubMed] [Google Scholar]
- 7. Perrin P. Techniques for the preparation of rabies conjugates In: Meslin F‐X, Kaplan MM, Koprowski H, editors. Laboratory Techniques in Rabies, fourth edition Geneva: World Health Organization; 1996. p 433–442. [Google Scholar]
- 8. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975;256:495–497. [DOI] [PubMed] [Google Scholar]
- 9. Rudd RJ, Smith JS, Yager PA, Orciari LA, Trimarchi CV. A need for standardized rabies virus diagnostic procedures: Effect of cover‐glass mountant on the reliability of antigen detection by the fluorescent antibody test. Virus Res 2005;111:83–88. [DOI] [PubMed] [Google Scholar]
- 10. Tordo N, Kouknetzoff A. The rabies virus genome: An overview. Onderstepoort. J Vet Res 1993;60:263–269. [PubMed] [Google Scholar]
- 11. Wunner HW. Rabies virus In: Jackson CA, Wunner HW, editors. Rabies. San Diego: Academic Press; 2002. p 23–77. [Google Scholar]
- 12. Kuzmin IV, Orciari LA, Arai YT, et al. Bat lyssa viruses (Aravan and Khujand) from Central Asia: Phylogenetic relationships according to N, P and G gene sequences. Virus Res 2003;97:65–79. [DOI] [PubMed] [Google Scholar]
- 13. Joustra M, Lundgren H. Preparation of freeze‐dried, monomeric and immunochemically pure IgG by a rapid and reproducible chromatographic technique In: Peeters H, editor. Protides of the Biological Fluids (Proceedings of the 17th colloquium) Bruges: Arrtchap; 1969. p 511–515. [Google Scholar]
- 14. Dietzschold B. Techniques for the purification of rabies virus, its subunits and recombinant products In: Meslin F‐X, Kaplan MM, Koprowski H, editors. Laboratory Techniques in Rabies, fourth edition Geneva: World Health Organization; 1996. p 175–180. [Google Scholar]
- 15. Perrin P, Lafon M, Versmisse P. Aplication d'une méthode immunoenzymatique au titrage des anticorps rabiques neutralisants en culture cellulaire. J Biol Stand 1985;13:35–42. [DOI] [PubMed] [Google Scholar]
- 16. Delagneau JF, Perrin P, Atanasiu P. Structure of rabies virus: Spatial relationships of the proteins G, M1, M2 and N. Ann Inst Pasteur Virol 1981;32E:473–493. [Google Scholar]
- 17. Bollog DM, Edelstein SJ. Protein Methods, first edition New York: Wiley‐Liss, Inc; 1991. p 230. [Google Scholar]
- 18. Goldwasser RA, Kissling RE. Fluorescent antibody staining of street and fixed rabies virus antigens. Proc Soc Exp Biol Med 1958;98:219–223. [DOI] [PubMed] [Google Scholar]
- 19. Dean DJ, Abelseth MK, Atanasiu P. The fluorescent antibody test In: Meslin F‐X, Kaplan MM, Koprowski H, editors. Laboratory Techniques in Rabies, fourth edition Geneva: World Health Organization; 1996. p 88–95. [Google Scholar]
- 20. Favoretto SR, Carrieri ML, Tino MS, Zanetti CR, Pereira OAC. Simplified fluorescence inhibition microtest for titration of rabies neutralizing antibodies. Rev Inst Med Trop Sao Paulo 1993;35:171–175. [DOI] [PubMed] [Google Scholar]
- 21. Smith J, Yager PA, Baer GM. A rapid reproducible test for determining rabies neutralizing antibody In: Meslin FX, Kaplan MM, Koprowski H, editors. Laboratory Techniques in Rabies, fourth edition Geneva: World Health Organization; 1996. p 181–192. [Google Scholar]
- 22. Trimarchi CV, Debbie JG. The fluorescent antibody in rabies In: Baer GM, editor. The Natural History of Rabies, second edition Boca Ratón: CRC Press; 1991. p 220–229. [Google Scholar]
- 23. Lopez IR, Fernandez VR. Produccion del primer lote de conjugado antirrabico de origin caprino en el Peru. Ver Méd Exp INS 1997;XIV:43–44. [Google Scholar]
- 24. Iseni F, Barge A, Baudin F, Blodel D, RuigroK RWH. Characterization of rabies virus nucleocapsids and recombinant nucleocapsid‐like structures. J Gen Virol 1998; 79: 2909–2919. [DOI] [PubMed] [Google Scholar]
- 25. Atanasiu P, Tsiang H, Virat J. Obtention D'IgG anti‐nucléocapsides rabiques. Purification et conjugaison à la peroxydase ou à l'isothiocyanate de fluorescéine. Ann Microbiol 1974;125B:85–98. [PubMed] [Google Scholar]
- 26. Larghi OP, Oliva‐Pinheiro O, Gonzalez‐Luarca E. Evaluation of an antirabies conjugate by a titration using various fluorescent microscopes. Rev Inst Med Trop Sao Paulo 1986;28:2–5. [DOI] [PubMed] [Google Scholar]
- 27. Larghi OP. Prueba de anticuerpos fluorescentes para rabia. Organizacion Panamericana de la Salud, Oficina Sanitária Panamericana–Oficina Regional de la Organizacion Mundial de la Salud 1971;8:1–23. [Google Scholar]
- 28. Albas A, Ferrari CIL, Da Silva LHQ, Bernardi F, Ito FH. Influence of canine brain decomposition on laboratory diagnosis of rabies. Rev Soc Bras Med Trop 1999;32:9–22. [DOI] [PubMed] [Google Scholar]
- 29. Soares RM, Bernardi F, Sakamoto SM, et al. Heminested polymerase chain reaction for detection of Brasilian rabies isolates from vampires bats and herbivores. Mem Inst Oswaldo Cruz 2002;97:109–111. [DOI] [PubMed] [Google Scholar]
- 30. Flamand A, Wiktor TJ, Koprowski H. Use of monoclonal antibodies in the detection of antigenic differences between rabies and rabies‐related virus proteins. I. The nucleocapsid protein. J Gen Virol 1980;48:97–104. [DOI] [PubMed] [Google Scholar]