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ABSTRACT
Efforts to search for better treatment options for cancer have been a priority, and due to these efforts,
new alternative therapies have emerged. For instance, clinically relevant tumor-suppressive
microRNAs that target key oncogenic drivers have been identified as potential anti-cancer therapeu-
tics. MicroRNAs are small non-coding RNAs that negatively regulate gene expression at the posttran-
scriptional level. Aberrant microRNA expression, through misexpression of microRNA target genes,
can have profound cellular effects leading to a variety of diseases, including cancer. While altered
microRNA expression contributes to a cancerous state, restoration of microRNA expression has
therapeutic benefits. For example, ectopic expression of microRNA-34a (miR-34a), a tumor suppressor
gene that is a direct transcriptional target of p53 and thus is reduced in p53 mutant tumors, has clear
effects on cell proliferation and survival in murine models of cancer. MicroRNA replacement therapies
have recently been tested in combination with other agents, including other microRNAs, to simulta-
neously target multiple pathways to improve the therapeutic response. Thus, we reasoned that other
microRNA combinations could collaborate to further improve treatment. To test this hypothesis miR-
34a was used in an unbiased cell-based approach to identify combinatorial microRNA pairs with
enhanced efficacy over miR-34a alone. This approach identified a subset of microRNAs that was able
to enhance the miR-34a antiproliferative activity. These microRNA combinatorial therapeutics could
offer superior tumor-suppressive abilities to suppress oncogenic properties compared to
a monotherapeutic approach. Collectively these studies aim to address an unmet need of identifying,
characterizing, and therapeutically targeting microRNAs for the treatment of cancer.
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Introduction

MicroRNAs (miRNAs) are small non-coding RNAs
that negatively regulate gene expression at the post-
transcriptional level [1–3]. Aberrant expression of
miRNAs is a hallmark of cancer that results in mis-
expression of miRNA target genes generating pro-
found cellular effects leading to a variety of diseases,
including cancer. For example, the tumor-suppressive
miRNAs, miRNA-34a (miR-34a), miR-34b, andmiR-
34c, that collectively belong to the miR-34 family are
downregulated in a variety of cancers including non-
small cell lung cancer (NSCLC) [4,5]. Downregulation
ofmiRNAs occurs via a variety ofmechanisms includ-
ing genetic alterations [6], aberrant oncogene- and
tumor suppressor-mediated transcription [7,8], epige-
netic mechanisms [9,10] and defects in miRNA bio-
genesis [11–13]. For instance, in both NSCLC and
breast cancer, the alleles encoding the three miR-34

family members are deleted due to their location in
fragile regions of the genome [14]. The three miR-34
family members are also subject to epigenetic inacti-
vation by CpG methylation [9,15]. Clinically, promo-
ter hypermethylation of miR-34a was found to be
a poor predictor of NSCLC patient relapse [5].
Reduced levels of miR-34a, miR-34b, and miR-34c
also occur due to mutations in p53, a tumor-
suppressive transcription factor that directly regulates
the three family members [7,16–19]. Thus, in p53
mutant tumors, miR-34 levels are markedly reduced.
In addition to miR-34, various other miRNAs are
depleted in human carcinogenesis, many of which
have tumor-suppressive function. Through concerted
efforts, many of these tumor suppressive miRNAs
have been tested as anti-cancer therapeutics with
some promising results [20,21].

MiRNA replacement therapeutics aim to restore
the expression of a miRNA that has been lost or
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downregulated in a cell, with multiple studies
reporting a therapeutic benefit [22–24]. For
instance, reintroducing miR-34a in various murine
models of cancer has clear effects on reducing cell
proliferation and increasing survival [20–
22,25,26]. While there are many mechanisms
used to reintroduce miRNAs in vivo [27], one
clinically feasible approach involves the use of
miRNA synthetic analogs that mimic mature
miRNAs (so-called mimics) obviating the need to
use the endogenous miRNA biogenesis machinery.
Indeed, miR-34a was the first miRNA mimic to
enter into clinical trial in early 2013 [28,29] and
although the trial was met with some unforeseen
severe immune-related adverse events, efforts are
still underway to advance miRNAs clinically
including their use as sensitizers to other standard-
of-care agents [30].

MiRNA replacement therapies have recently
been tested in combination with other agents,
small molecules and biologics, to simultaneously
target multiple pathways to improve the therapeu-
tic response [30–34]. In addition, miRNAs have
also been tested in combination with other
miRNAs [22,26]. Since miRNAs can regulate mul-
tiple gene targets [35,36] it is possible that two or
more miRNAs could collaborate to repress the
expression of numerous cancer-related genes in
various pathways. Our lab and others have
shown that it is possible to combine two small
RNAs to enhance the therapeutic response
[22,26]. For instance, we showed that miR-34a
can cooperate with let-7b, another tumor-
suppressive miRNA that targets Kras, in
KrasG12D/+;p53−/- murine non-small cell lung can-
cer (NSCLC) [22]. Thus, we reasoned that addi-
tional miRNAs could potentially collaborate with
miR-34a to repress the expression of other relevant
cancer-related genes affecting multiple pathways at
once, and thus further improving therapeutic
responses.

In this study, miR-34a was evaluated in the pre-
sence of 2,019 individually arrayed human-encoded
miRNAs for miRNAs that enhanced the miR-34a
effect in NSCLC cells. miR-34a was selected as the
candidate miRNA for multiple reasons. Firstly, miR-
34a is located in a fragile region of the genome often
deleted in NSCLC [14]. Because of this, NSCLC
patients often present with low levels of miR-34a.

Secondarily, all of the miR-34 family members are
transcriptionally regulated by p53 [7,16–19], argu-
ably the most mutated gene in NSCLC [37] and
globally in human carcinoma [38,39]. Thus, identi-
fication of miR-34a-synergistic miRNAs would not
only inform future NSCLC therapeutic potential but
also therapeutics for other p53-mutated cancers.
Thirdly, our previous data in NSCLC mouse models
highlight a striking therapeutic effect upon miR-34a
restoration at preventing NSCLC and reducing its
progression, whether miR-34a is delivered directly to
the lung in lentiviral particles [23], or systematically
by way of lipid vesicles [22] or ligand conjugates
[25,40]. Fourthly, miR-34a was the first miRNA-
restoration therapy to enter into clinical trial [29].
While the trial was ultimately not successful, it is
anticipated that future miRNA mimic-based trials
will include miR-34a due to its strong tumor-
suppressive activity in various tumor subtypes.

Herein, we used an unbiased cell-based approach
to identify combinatorialmiRNApairs with enhanced
efficacy over miR-34a alone. This approach allowed
us to identify a subset of miRNAs that was able to
enhance miR-34a antiproliferative activity in NSCLC
cell lines. Our evaluation of the top candidate pairs
identified synergistic interactions ofmiR-34a with five
miRNAs. KEGG analysis and target predictions for
these five miRNAs predicted multiple cancer-related
pathways that the miRNAs function in and a few
oncogenic targets that may to be shared between
a subset of the miR-34a-synergistic miRNAs. These
miRNA combinatorial therapeutics could offer super-
ior tumor-suppressive abilities to suppress oncogenic
properties compared to a monotherapeutic approach.
We propose that by targeting multiple oncogenic
drivers at the same time using miRNA combinations
that act synergistically, the development of drug resis-
tance is less likely due to the inability to accumulate
mutations in the various targets and due to a reduced
number of cancer-related bypass tracks available for
the cancer cell to engage.

Materials and methods

Cell culture

A panel of six non-small cell lung cancer (NSCLC)
cell lines: H441, A549, EKVX, Calu6, H460, and
H23, mycoplasma-free as determined by testing
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for mycoplasma contamination via MycoAlert
Mycoplasma Detection Kit (Lonza), were grown
in RPMI 1640 medium (Life Technologies) sup-
plemented with 10% fetal bovine serum (Sigma),
penicillin (100 U/ml), and streptomycin (100 g/ml)
(HyClone, GE Healthcare Life Sciences), and
maintained at 37°C in 5% CO2. Authentication of
cell lines was performed using short tandem repeat
profiling [American Type Culture Collection
(ATCC)].

H441-pmiR cell line generation for measuring
transfection efficiency

H441 cells were transfected with pmiR-Glo plas-
mid (Promega) and stable clones (H441 pmiR)
were isolated after G418 antibiotic selection.
Stable clones were grown in RPMI 1640 medium
supplemented with G418 (300 ug/mL), 10% fetal
bovine serum, penicillin (100 U/ml), and strepto-
mycin (100 g/ml), and maintained at 37°C in 5%
CO2. H441-pmiR clones were screened for lucifer-
ase activity using the Dual Glo Luciferase Assay
(Promega) following the instructions of the man-
ufacturer (Figure S1). Luciferase signal was mea-
sured in a GloMax plate reader (Promega). Firefly
luciferase is used as a measurement of the trans-
fection efficiency when cells are co-transfected
with a siRNA against firefly luciferase (siLuc2)
and it is calculated as a percentage of firefly activ-
ity in untreated cells. Wells with <90% knockdown
of firefly luciferase were excluded from analyses.
Renilla activity serves as a proxy for cell number
(Figure 1(a)).

miR-34a dose response studies

Transfections with miR-34a were performed to
determine the dose of mimic to be used in the
screen. Transfections were performed in 384-well
plates using a reverse transfection protocol with
Lipofectamine RNAimax (Invitrogen) using the
following concentrations: 0.5, 1.5, 3, 6, 12 and 25
nM. A scrambled RNA was used as a negative
control (PremiR-NC2, Ambion). Each transfection
was supplemented with negative control such that
all transfections were performed with a final con-
centration of 25 nM. Briefly, miRNA mimics were
diluted in serum-free medium (SFM) to a final

volume of 5 uL (per well). In a separate tube,
0.05 uL of Lipofectamine RNAimax were added
to SFM to a final volume of 5 uL (per well). Next,
5 uL of the miRNA mix and 5 uL of Lipofectamine
RNAimax solution were mixed and incubated at
room temperature for 30 min. H441 cells were
harvested and cells were resuspended at 4 × 104

cells/mL. Ten microliters of the miRNA/Lipid
cocktail were added to the bottom of the wells of
a 384-well plate (six wells per treatment). Next, 10
uL of the cell suspension was added to each well
(20 uL/well final total volume). Plates were incu-
bated at 37°C with 5% CO2 for five days. On day
five, cell proliferation was evaluated using lucifer-
ase signal as a proxy for cell number as described
previously.

miRNA library screening

The human mirVana miRNA Library (Invitrogen;
based on miRBase v. 21) was used to evaluate
2,019 human-encoded miRNAs in a cell-based
screen. First, each individual miRNA was assayed
in combination with miR-34a at equimolar con-
centration (3nM each, total RNA 6 nM).
Transfections were performed as previously
described in 384-well plates using the reverse
transfection protocol with Lipofectamine
RNAimax (Invitrogen) [41]. The following con-
trols were included in each plate: i) miRNA
being evaluated + miR-34a (3 nM each), ii) full
dose of miR-34a (6 nM), iii) the full dose of
a scrambled miRNA control (6 nM), and iv)
untreated. On day five, cell proliferation was eval-
uated using the luciferase signal as a proxy for cell
number as described previously. Outliers were
eliminated if transfection efficiency was deter-
mined to be lower than 90%. Cell proliferation
was normalized to negative control (PremiR-NC
2) transfected cells and miRNA combinations were
ranked according to the normalized values. To
identify putative positive hits, ± three standard
deviations of the full dose of mir-34a (6 nM) was
used as the threshold.

Secondary validation of putative hits

A secondary validation of putative hits identified
from the primary screening was performed using
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Figure 1. Screening approach. (a) Use of a dual luciferase expression vector to evaluate transfection efficiency and cell number. The
schematic depicts a model in which firefly luciferase is used as a measurement of the transfection efficiency when cells are co-
transfected with a siRNA against firefly luciferase (siLuc2) and a miRNA. Renilla activity serves as a proxy for cell number and its
activity is only affected when a miRNA that alters cell proliferation is transfected. (b) A linear response between cell number and
Renilla and Firefly luciferase activity (Error bars: mean ± s.d., n = 6). C) Firefly luciferase repression upon transfection with siLuc2.
Error bars: mean ± s.d. Each experiment corresponds to n = 6 per treatment. (d) miR-34a dose response in H441-pmiR cells. Error
bars: mean ± s.d. Each experiment corresponds to n = 8 per treatment. Statistical analysis performed with two-way ANOVA with post
hoc Bonferroni correction (***, P < 0.001). (e) Firefly and (f) Renilla activity following transfection with miR-34a or PremiR-NC2 in
presence of siLuc2. Error bars: mean ± s.d. Each experiment corresponds to n = 6 per treatment. Statistical analysis for B, C, D, E and
F performed with a one-way ANOVA with post hoc Bonferroni correction (*, P < 0.05; **, P < 0.01; ****, P < 0.0001). RLU: relative
light units.
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the sulforhodamine B (SRB) assay as a proxy for
cell number [41]. The following controls were
included in each plate: miRNA being evaluated +
miR-34a (3 nM each), ii) full dose of miR-34a (6
nM), iii) the full dose of a scrambled miRNA
control (6 nM, PremiR-NC2, Ambion) and iv)
the full dose of each miRNA being evaluated (6
nM). Each of the transfections was performed
using the following panel of non-small cell lung
cancer (NSCLC) cell lines: H441, A549, EKVX,
Calu6, H460 and H23. The Response Additivity
approach [42] was used to determine which
miRNA combinations were better than each
miRNA alone. The approach consists of showing
that the effect of a positive miRNA combination
occurs when the combination effect (Epair) is
greater than the expected additive effect given by
the sum of the individual effects (Combinatorial
index (CI) = (EmiR-34a + EmiR-X)/Epair) [43]. The
statistical significance is then given by the p-value
(p = 0.05) of the Student’s T-test comparing the
miRNA combination effect to the effect of miR-
34a as a single agent. Since this approach provides
limited evidence of synergy, additional experi-
ments were performed to evaluate cell prolifera-
tion of H441 cells transfected with different
concentrations of the miRNA combination and
the individual miRNAs. Transfections with
miRNA candidates were performed in 384-well
plates at a ratio of 1:1 (miR-34a + miR-X) using
the following concentrations: 0.5, 0.75, 1.5, and 3
nM. Each transfection was supplemented with
negative control to a final concentration of 6 nM.
Synergism was evaluated using Combosyn soft-
ware (Combosyn) based on the combination
index (CI)-isobologram equation [44]. The equa-
tion helps to gain a better understanding of drug
interactions, where CI < 1 indicate synergism, CI =
1 indicate an additive effect, and CI > 1 indicate
antagonism [44].

Bioinformatic analysis of miR-34a-synergistic
miRNAs

Predicted targets for the five miR-34a-synergistic
miRNAs were obtained using TargetScan [45]
(miR-4664-3p, miR-5100) or an overlap of targets
shared between TargetScan and miRDB [46]
(miR6715-5p, miR-3157-3p and let-7a-2-3p).

Each of the five miRNAs were also evaluated for
pathway enrichment using miRNA Pathway
Dictionary Database (miRPath DB v1.1). For
both analyses, significantly enriched pathways
were graphed using -Log (p-value).

Results

Cell line generation and response to miR-34a

To identify miRNAs that synergize with miR-34a,
an unbiased screen of miR-34a in combination
with 2,019 individually arrayed human-encoded
miRNAs was performed. Because miRNA mimics
were transfected into cells, it was essential to
develop a suitable assay that would allow for the
normalization of transfection variabilities between
wells (Figure 1(a)). To this end, H441 non-small
cell lung cancer cells were generated that expresses
both firefly and renilla luciferase (H441-pmiR).
Firefly was used to monitor transfection efficiency
following transfection of cells with a low concen-
tration of an siRNA targeting firefly (siLuc2).
Renilla was used as a surrogate for cell number
to monitor the effect the miRNA(s) had on cell
growth/death. Multiple H441-pmiR stable clones
were isolated (Supplemental Figure 1) and the
clone with the highest firefly and renilla levels
was selected for the screen. Using this clone, it
was determined that both renilla and firefly activ-
ity correlate with cell number reaching an R2 of
0.92 and 0.98, respectively (Figure 1(b)) and that
low doses of siRNA against luciferase (siLuc2)
cause a significant decrease in firefly activity
(Figure 1(c)). Based on this assessment, 0.5 nM
of siLuc2 was co-transfected with every miRNA
combination and firefly luciferase was used as
a measurement of the transfection efficiency mea-
sured as a percentage of firefly repression com-
pared to untreated cells. Renilla activity was used
as a proxy for cell number (Figure 1(a)). Next, it
was determined that when the dose of miR-34a
transfected into H441 cells exceeded 6 nM there
was no further reduction in cell proliferation
(Figure 1(d)). This dose is in stark contrast to
most published studies that often use doses of
50–200 nM to evaluate the effects of miRNA
mimics. These high doses are likely causing off-
target effects and/or effects that would not be
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achievable in a cell following a therapeutic dose.
Because we foresee future advancement of these
combinations into the clinic 6 nM was chosen as
the highest dose. The selected clone was further
evaluated for firefly and renilla activity in the pre-
sence of siLuc2 and/or miR-34a at the predeter-
mined concentrations that would be used in the
screen. As expected, co-transfecting siLuc2
reduced firefly activity (Figure 1(e)) while transfec-
tion of a tumor-suppressive miRNA, miR-34a
reduced renilla levels (Figure 1(f)), signifying
a reduction in total cell number in accordance
with the model in Figure 1(a).

Identification of miRNAs that synergize with
miR-34a

Using the H441-pmiR clone, miRNAs that enhanced
miR-34a activity were identified through a screen.
H441-pmiR cells were transfected with miR-34a at 6
nM (full dose) or with miR-34a (3 nM) and every
other individual miRNA (3 nM) and changes in
renilla activity were determined. Renilla activity was
then normalized to firefly activity to account for
inter-well variability in transfection. Data from all
2,019 miRNAs in combination with miR-34a are
arrayed from least (left) to most (right) effective
(Figure 2(a)). The effect of miR-34a combined with
itself (6 nM) is plotted with three standard deviations
above and below the miR-34a effect indicated. To
verify that the screen worked as intended, ~250
miRNAs from both the right- and left-most portions
of the graph were identified in the literature as
oncogenic, tumor suppressive, or inconclusive, color-
coded green, red, or orange, respectively, in Figure 2
(a). Some of the well-reported oncogenic miRNAs,
such as miR-9-5p, miR-21 and miR-155 were clus-
tered on the left side of the graph suggesting that
they may be antagonizing miR-34a function, while
tumor-suppressive miRNAs, such as let-7c, miR-98,
and miR-29c localized on the right side of the graph
clustering with miRNAs that reduced cell prolifera-
tion. There was a clear enrichment of previously
reported tumor-suppressive miRNAs clustering on
the right side of the graph (80% of the miRNAs
with reported function) relative to only 29% of pre-
viously reported tumor-suppressive genes being

identified on the left, again supporting the validity
of the screen.

The results of the primary screen indicate that
there is a subset of miRNAs that when combined
with miR-34a can reduce cell proliferation levels
compared to cells transfected with mir-34a alone (6
nM, Figure 2(a)). Since the 6 nM dose of each
miRNA from the library was not included in the
primary screen there was a possibility that the effect
of the combination could be due to the miRNA
alone, and not due to its combined activity with
miR-34a. Thus, the miRNA combinations that fell
below 3 standard deviations of the effect achieved by
miR-34a alone (6 nM, 333 combinations, blue-
shaded box Figure 2(a)) were re-evaluated. For the
validation assay, each miRNA was again tested with
miR-34a (3nM each) and the miRNA candidates
were evaluated alone (6 nM). A miRNA that worked
cooperatively withmiR-34a would have a better anti-
proliferative effect when combined with miR-34a
than the miRNA being tested on its own (111
miRNA pairs, blue box Figure 2(b)). To provide
further evidence of the superiority of the miRNA
combination relative to the individual miRNA an
additional functional assay was used to test the 111
miRNA pairs in a panel of six NSCLC cell lines
(H441, A549, EKVX, Calu6, H460, H23). An SRB
assay took the place of the luciferase assay to evaluate
cell proliferation. The assay was validated for linear-
ity with regard to cell density (Figure 3(a)) and miR-
34a response (Figure 3(a)). The Response Additivity
approach [42] was used to determine which miRNA
combinations were better than each miRNA alone.
MiRNA combinations that had a CI lower than 1, p <
0.05 and had normalized proliferation values of >1
when the miRNA was tested alone were shortlisted
for each of the cell lines. The lists of miRNAs
obtained from each NSCLC cell line was compared
and 12 miRNA combinations that enhanced miR-
34a effect in at least four different cell lines were
identified (Figure 3(c)).

Next, the top 12 miRNA combinations were
further evaluated by assessing the potencies of
the individual miRNA, miR-34a, or the combina-
tion and characterizing the possible existence of
synergistic or antagonistic effects. The data shows
that there are five miRNAs that have higher anti-
proliferative activity when combined with miR-
34a: miR-6715b, miR-4664-3p, miR-3157-3p,
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miR-5100 and let-7a-2-3p (Figure 2(b): labeled,
Figure 4(a–e)). In agreement with this observation,
the CI values for these combinations are <1, thus
suggesting the possibility of a synergistic interac-
tion (Figure 4(f)).

Various bioinformatic analyses were conducted to
support the experimental findings. Firstly, using lit-
erature-based software analyses (TargetScan [45]
alone or TargetScan andmiRDB [46]) miRNA targets
were predicted for the synergistic miRNAs. The pre-
dicted targets were then used for KEGG pathway
enrichment analysis to identify cellular pathways

that the predicted miRNA targets were enriched in
(Figure 5). For miR-4664-3p and miR-5100, overlap-
ping targets from TargetScan and miRDB did not
identify significantly enriched pathways; thus, to
gain insight into potential pathways that miR-4664-
3p and miR-5100 regulate only TargetScan was used
for KEGG analysis. For miR-6715b, miR-3157-3p,
and let-7a-2-3p overlapping targets identified in
both databases were used for the analysis. miRNA
Pathway Dictionary Database (miRPathDB v1.1)
[47,48] identified a similar, but a more extensive list

Figure 2. miRNAs alter miR-34a antiproliferative potential. (a) miRNA mimics ranked according to effect, normalized to negative
control (NC) transfected cells. Red dashed line = 3 s.d. of the effect of miR-34a alone. Black dashed line = effect of NC treated cells.
Blue shaded box = 333 miRNA mimics that were moved forward in B. n = 6. Each dot represents the mean effect of a miRNA
combination. (b) Validation of 333 miRNA mimics represented as the effect of the individual miRNA (Esingle) minus the effect when
combined with miR-34a (Epair). Values <0 indicate that the combination has a better antiproliferative activity than the miRNA by
itself. n = 6. Each dot represents the mean effect of a miRNA combination. Blue shaded box = 111 miRNA mimics with apparent
combinatorial activity. The five miRNAs subsequently determined to have synergistic activity with miR-34a are indicated.

1804 E. A. ORELLANA ET AL.



of KEGG pathways (Supplemental Figure 2), albeit
p-values were markedly lower. Notably, several can-
cer-related pathways were identified including focal
adhesion (cell motility), EGFR tyrosine kinase inhibi-
tor resistance, and proteoglycans in cancer, as well as
a number of growth factor signaling pathways such as
those involving RAS andHippo (major cancer-related

pathways/functions are depicted as gray bars in Figure
5). This implicates that miRNAs that synergize with
miR-34a likely regulate multiple facets of cancer cell
biology. Indeed, when the targets of the five miRNAs
were combined and Ingenuity Pathway Analysis
(IPA) was performed the findings were corroborated,
the targets overwhelming identified cancer as the top

Figure 3. Validation of a combinatorial effect of the 111 miRNA mimics in combination with miR-34a in a panel of NSCLC cell lines.
(a) Validation of sulforhodamine B (SRB) method for secondary verification of screen hits. Absorbance of SRB as a linear response to
H441-pmiR cell number. Error bars: mean ± s.d., n = 6. (b) Response of H441-pmiR to miR-34a measured by SRB. Error bars: mean ±
s.d., n = 6. (c) miRNA combinations evaluated in a panel of six NSCLC cell lines. miRNAs included in this comparison had a CI lower
than 1 (potential synergism), p < 0.05 and cell proliferation of the single miRNA was <1.
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disease modulated with a p-value of 8.88 × 10−31. In
line with the KEGG analysis, IPA identified the top
molecular functions of the targets as cellular move-
ment (p-value 8.86 × 10−7), gene expression (p-value
6.31 × 10−7), cell death and survival (p-value 8.86 ×
10−7) and cell cycle (p-value 8.94 × 10−6).

Secondarily, we sought to identify individual genes
that are predicted to be targets ofmore than one of the
five miR-34a-synergistic miRNAs. These genes repre-
sent potential critical target genes that may largely
contribute to the synergistic anti-proliferative effect.
Genes that were predicted to be the targets of at least
three miRNAs are defined in Table 1. Most of the
shared targets have reported functions as oncogenes

or are involved in therapeutic resistance, and have
been found to be upregulated in human cancers.
Because most of the miRNAs identified from the
combinatorial screen are presumably tumor-
suppressive miRNAs, it is expected that most of their
target genes should be promoting cancer cell prolif-
eration and/or resistance.

Discussion

The results of this study indicate that miRNA com-
binatorial therapeutics could offer superior tumor-
suppressive abilities in lung cancer cells compared to
a monotherapeutic approach. The combination of

Figure 4. Evaluation of synergism of positive hits. The possibility of synergism with miR-34a was evaluated for (a) miR-6715b, (b) miR-
4664-3p, (c) miR-3157-3p, (d) miR-5100 and (e) let-7a-2-3p. (For A-E. red lines: miR-34a alone, blue lines: putative synergistic miRNA alone,
green lines: combination) miRNA combinations have a stronger effect than each miRNA on its own. (f) Evaluation of synergism using the
(CI)-isobologram equation. The equation helps to gain a better understanding of drug interactions, where CI < 1 indicate synergism.
Statistical analysis performed with one-way ANOVA with post hoc Bonferroni correction (***, P < 0.001; ****, P < 0.0001).
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Figure 5. Pathway enrichment analysis of miR-34a-synergistic miRNA target genes. Predicted targets for the five synergistic miRNAs
were determined and used to identify pathways that the target genes are enriched in. Cancer-related pathways/diseases are in bold
text with corresponding bars depicted in grey.
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each of the top five candidate miRNAs with miR-34a
was able to enhance miR-34a antiproliferative activ-
ity and further reduce cell proliferation. Our evalua-
tion of these five candidate pairs showed that they
have a synergistic interaction, meaning that the com-
bination works better than each miRNA as a single
agent. It is likely that these miRNA combinations
could be used clinically in scenarios in which drug
resistance to monotherapies often develops due to
the accumulation of mutations. We propose that
targeting multiple oncogenic drivers with miRNAs
that act synergistically could be beneficial to cancer
therapy avoiding the development of resistance.

Indeed, the predicted targets of the top five miR-
34a-synergistic miRNAs are enriched for various
pathways that are involved in promoting cancer:
RAS, VEGF, WNT, HIPPO, EGFR, ErbB and others.
Shortlisting the targets resulted in the identification of
two predicted targets regulated by four of the five
miRNAs, both of which are genes involved in pro-
growth, regulating proliferation and cell-cycle. An
additional 13 targets are predicted to be regulated by
three of the five miR-34a-synergistic miRNAs, where
eight of the 13 have pro-tumorigenic functions. The
remaining five did not have any publications on their
cellular roles, so an accurate prediction of their func-
tion could not be made. In future studies, it will be
essential to determine if the miR-34a-synergistic
miRNAs are capable of regulating these predicted

targets and if downregulation of these specific targets
is involved in the synergistic response.

While this study shows that there are miRNAs
that could be used in combination with miR-34a to
enhance antiproliferative abilities in cell-based stu-
dies, further in vivo validation will be required, par-
ticularly focused on a comparison between the
monotherapies and the combinatorial miRNA ther-
apeutics. One possible model that could be used for
these types of studies is the Kras/p53 mouse model
that has been used in previous studies to access the
therapeutic potential of miR-34a [22,23]. Due to the
fact that some of these miRNA candidates are
reported to be the passenger strand, a transgene
overexpression approach (viral delivery for instance)
would not be feasible since it would require proces-
sing of the pre-miRNA into the mature form and
there is no guarantee that the correct strand would
be loaded into the RNA induced silencing complex
(RISC). Perhaps an approach using chemically
synthesized and modified miRNA mimics with
either a lipid- or ligand-based [21,36–38] delivery
platform would be useful to ensure delivery and
loading of the correct strand into RISC.

It is also important to take notice of the large
number of miRNAs that appear to antagonize miR-
34a activity (Figure 2(a)). This information certainly
brings into question the response of tumors to miR-
34a therapeutics based on the genetics of the tumor,
in particular with regard to the levels of other

Table 1. Genes predicted to be the targets of at least three miR-34a synergistic miRNAs.
Predicted targets of four/five
miRNAs Functional roles in cancer

APBB2 Processing of APBB2 promotes proliferation of human embryonic stem cells (hESC)49

CTDSPL2 Regulate cell cycle progression in multiple cancers50,51

Predicted targets of three/five
miRNAs

Functional roles in cancer

CNOT6L Promote cell proliferation and survival through prevention of cell senescence and death in breast cancer
cells52

PCSK1 Elevated in expression in human lung cancer53

RAD21 Important for cell growth of multiple cancers and recognized as a predictive biomarker for poor
prognosis54–56

ROBO2 Functions as a tumor suppressor in prostate cancer57

SP1 Recognized as an oncogene for many cancers including lung cancer58,59

PRLR Positively contributes to the initiation and progression of prostate cancer60

POU2F2 Promotes human gastric cancer and also been shown to be amplified in B cell lymphoma61,62

MTSS1 [Acts as a tumor and metastasis suppressor63,64

ACVR2B Not reported
REEP1 Not reported
INO80D Not reported
ZBTB44 Not reported
ZFAND5 Not reported
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miRNAs. In the future, a more personalized
approach to miR-34a-based therapeutics may be
essential to stratify responders from potential non-
responders and further argues that a combinatorial
approach may increase the number of responders.
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