
Serendipity—A Machine-Learning Application for Mining 
Serendipitous Drug Usage from Social Media

Boshu Ru,
Department of Software and Information Systems University of North Carolina at Charlotte 
Charlotte, NC, USA

Dingcheng Li,
Big Data Lab Baidu USA, Inc Bellevue, WA, USA

Yueqi Hu,
Department of Computer Science University of North Carolina at Charlotte Charlotte, NC, USA

Lixia Yao
Department of Health Sciences Research Mayo Clinic Rochester, MN, USA

Abstract

Serendipitous drug usage refers to the unexpected relief of comorbid diseases or symptoms when 

taking a medication for a different known indication. Historically, serendipity has contributed 

significantly to identifying many new drug indications. If patient-reported serendipitous drug 

usage in social media could be computationally identified, it could help generate and validate 

drug-repositioning hypotheses. We investigated deep neural network models for mining 

serendipitous drug usage from social media. We used the word2vec algorithm to construct word-

embedding features from drug reviews posted in a WebMD patient forum. We adapted and 

redesigned the convolutional neural network, long short-term memory network, and convolutional 

long short-term memory network by adding contextual information extracted from drug-review 

posts, information-filtering tools, medical ontology, and medical knowledge. We trained, tuned, 

and evaluated our models with a gold-standard dataset of 15,714 sentences (447 [2.8%] describing 

serendipitous drug usage). Additionally, we compared our deep neural networks to support vector 

machine, random forest, and AdaBoost.M1 algorithms. Context information helped reduce the 

false-positive rate of deep neural network models. If we used an extremely imbalanced dataset 

with limited instances of serendipitous drug usage, deep neural network models did not 

outperform other machine-learning models with n-gram and context features. However, deep 

neural network models could more effectively use word embedding in feature construction, an 

advantage that makes them worthy of further investigation. Finally, we implemented natural-

language processing and machine-learning methods in a web-based application to help scientists 

and software developers mine social media for serendipitous drug usage.
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I. INTRODUCTION

Drug repositioning is the identification of novel indications for marketed drugs and for drugs 

in the late stages of development [1]. A well-known example of drug repositioning is 

sildenafil, which was originally developed to treat angina and was repurposed to treat 

erectile dysfunction [2]. Repositioned drugs have a better safety profile than compounds in 

the early stages of discovery and development because they have already passed several 

preclinical tests. Therefore, some time and cost associated with preclinical testing can be 

saved, making repositioned drugs more readily available to patients with improperly treated 

diseases, as well as more cost-efficient for pharmaceutical companies [3]. These advantages 

are of interest to biomedical researchers, who have examined various computational methods 

to generate and verify drug-repositioning hypotheses by assessing chemical and biological 

data, literature, and electronic health records [1, 4–10].

In the past decade, fast-growing social media websites have reached a critical mass of 

patient discussions about diseases and drugs [11], primarily in the form of unstructured, 

casual human language. These data cover various medication outcomes such as 

effectiveness, adverse effects due to medication, adherence, and cost [11]. Recent research 

has examined this new data source primarily for pharmacovigilance purposes [12–17]. In 

social media posts, some patients have also mentioned that comorbid diseases or symptoms 

unexpectedly improved while they were taking a certain drug for a common or known 

indication. We refer to these events as serendipitous drug usage. Fig. 1 shows an example of 

serendipitous drug usage: a patient reported that her symptoms of irritable bowel syndrome 

were alleviated when taking sulfasalazine, which was prescribed for rheumatoid arthritis. 

Such information could be helpful for generating and verifying drug-repositioning 

hypotheses if these statements could be computationally detected from the overwhelming 

amount of noise in social media data.

In previous work[18], we explored natural language processing (NLP) and machine-learning 

methods to identify serendipitous drug usage from patient health forums (social media). We 

collected drug-review posts from WebMD and designed information filters to eliminate 

noise in the data. We developed the first gold-standard dataset for predicting serendipitous 

drug usage; it consisted of 447 sentences from WebMD that mentioned serendipitous drug 

usage and 15,267 sentences that did not. Then, we constructed machine-learning features 

from n-grams, outputs from information-filtering tools, medical knowledge, and other 

information from the drug-review posts. We used machine-learning algorithms, namely 

support vector machine (SVM), random forest, and AdaBoost.M1, to detect serendipitous 

drug usage. Our best model had an area under the receiver operating characteristic curve 

(AUC) of 0.937, precision of 0.811, and recall of 0.476. Several of our predictions, including 

metformin and bupropion for obesity, tramadol for depression, and ondansetron for irritable 

bowel syndrome with diarrhea, were also supported by recent biomedical research 

publications.

Deep neural networks such as the convolutional neural network (CNN), long short-term 

memory network (LSTM), and convolutional LSTM (CLSTM) recently have demonstrated 
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superb performance in text-classification tasks [19–23]. For example, Zhou et al. [20] 

designed CLSTM to predict the sentiment of sentences and achieved an accuracy of 0.878 

on the Stanford Sentiment Tree Bank dataset. Jia et al. [23] ensembled multiple CNNs to 

automatically assign products to 1 of 3,008 categories and reported a weighted F1 score of 

0.8295. These studies typically used word embedding that was trained by unsupervised 

learning algorithms such as word2vec [24] to construct features from texts, and these 

features were then classified by using convolutional filters or recurrently connected neurons. 

Several papers reported that deep neural networks outperformed traditional machine-

learning algorithms such as SVM, logistic regression, and random forest on a number of 

well-known annotated text corpora [20, 25]. These promising results motivated us to 

investigate deep neural networks for detecting serendipitous drug usage in social media. If 

successful, these efforts would potentially accelerate drug discovery and development, 

particularly for therapeutic areas with insufficient financial investment.

For this study, we trained a word embedding from 800,000 drug-review sentences that we 

collected from WebMD and used it to construct features for the 15,714 sentences in the 

gold-standard dataset that we previously developed [18]. We redesigned the well-known 

deep neural networks of CNN by Kim [19], LSTM [26], and CLSTM [20] by adding a fully 

connected neural network (FCN) to predict serendipitous drug usage by considering social 

media text and contextual information. We used cost-sensitive learning to reduce the impact 

of imbalanced data. We compared original and redesigned deep neural networks to SVM, 

random forest, and AdaBoost.M1 algorithms. Additionally, we developed Serendipity, an 

easy-to-use, web-based software application, to effectively extract serendipitous drug usage 

from social media. Unlike the computational pipeline that we used in the current study and 

our previous research, this web application takes only drug-review comments and the drug 

name as inputs, making it adaptive to broader sources of patient-generated health data. The 

NLP and machine-learning methods are integrated into an automated workflow. Serendipity 
provides a graphic user interface (GUI) for scientists working in drug discovery and 

development who have limited programming experience, and it also has an application 

programming interface (API) for software developers who want to integrate Serendipity into 

other programs.

II. METHOD

A. Data

We used the gold-standard dataset from our previous study [18] to build and evaluate our 

deep neural network models. This dataset contains 15,714 sentences from WebMD, 

including 447 that mention serendipitous drug usage. In addition to drug-review sentences 

and annotation labels, the dataset also includes 169 context information fields (Table I) that 

were constructed from WebMD, natural language processing (NLP) tools (MetaMap [32], 

Stanford CoreNLP [33]), clinical ontology (SNOMED CT [34]), and our knowledge of drug 

therapeutic areas where repositioning opportunities often arise.

Ru et al. Page 3

IEEE Trans Nanobioscience. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



B. Word embedding

A word embedding represents words as dense vectors in a high-dimensional vector space 

(usually 50–300 dimensions). Recent studies have trained neural networks with a large, 

unannotated text corpus to construct word embeddings [24, 30]. In the vector space of such 

word embeddings, words with syntax and semantic relations tend to be close to each other 

[24, 31].

We began training a word embedding from 800,000 drug-review sentences that we collected 

from WebMD; the word embedding was trained with the word2vec algorithm [24] from the 

Gensim Python library [32]. Sentences were preprocessed to remove non-English characters, 

convert letters to lower case, and stem words to their basic form. We set the dimension of 

word vectors d to be 200 and specified the context window size to be 50 because more than 

99% of sentences in the WebMD corpus are shorter than 50 words. The resulting WebMD 

word embedding contained 67,659 word vectors, and the dimension of each vector was 

equal to 200.

We then used the WebMD word embedding to construct machine-learning features for 

sentences in the gold-standard dataset. These features are commonly constructed by 3 

methods. The first method sums vectors for each word in a sentence and optionally divides 

the aggregation results by the number of words in the sentence [33]. The second method 

uses clustering [17], which groups (clusters) all words in the word embedding with 

algorithms such as K-means and then represents each sentence as a vector, with values 

indicating the distribution of words across clusters. Both methods transform word vectors of 

each sentence into a set with a fixed number of attributes that can then be the input features 

for machine-learning models such as SVM and random forest. A third method, however, 

concatenates word vectors to a sentence vector. For a sentence of i words ω1, w2, …, ωi, it 

concatenates word vectors υω1, vω1, …, υωi, each with d dimensions, to form a concatenated 

feature vector of dimension i×d. This method is not immediately applicable to machine-

learning models such as SVM and random forest because the location of each word varies 

across different sentences and so as the features. However, such feature vectors keep 

information about word sequence [33], which can be captured by deep neural networks [19, 

20] using special filters (convolution and max-pooling filters in CNN, information gates in 

LSTM; see section II-C). We used the vector concatenation approach and set feature vectors 

to be 50 words × 200 dimensions by padding zeros to shorter sentences and trimming 

excessive words from longer sentences.

C. Deep Neural Network Models

CNN: Several recent studies examined CNN-based neural network models and showed 

outstanding performance in text-classification tasks [19, 22, 23]. We began with Kim’s CNN 

model [19] and used our WebMD word-embedding features. The model (Fig. 2) transformed 

the input sentence to a matrix by using the concatenation approach (see section II-B) and 

contained parallel convolution filters of 3 different sizes (k−1, k, and k+1 with nc filters), 

max-pooling filters, and a fully connected layer of neurons for prediction. The convolution 

filters were trained to extract informative patterns from a subarea of the input data. The 
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kernel size (k) of the filter determined the magnitude of the subarea. In the case of text, k is 

the number of continuous words in a sentence. By mixing convolution filters of 3 continuous 

sizes (k−1, k, and k+1), the network can learn patterns in the sentence at 3 different scales 

(the Hyperparameter Tuning section describes how we selected k; see section II-D). This 

design is similar to combining n-gram features of different scales (e.g., unigram, bigram, and 

trigram).

The max-pooling filter moves a “window” over outputs of convolution filters and preserves 

only maximum values in the current scanning area. The dimension of the scanning area was 

determined by the pooling-window size parameter. This operation eliminates information 

that is less relevant to the classification task, such as random patterns and blank (padding) 

areas, and reduces the dimensionality of features extracted by convolution filters. The output 

was further processed by 1 layer of fully connected neurons (dense 0 in Fig. 2) before it was 

submitted to a single neuron for prediction.

Additionally, we added dropout layers (dropout 0 and dropout 1 in Fig. 2) and an l2 kernel 

regularizer [34] to prevent the CNN model from overfitting. The dropout layers randomly 

intercepted output of previous neurons in the training process and the l2 kernel regularizer 

penalized large-magnitude weights while fitting the network. These 2 methods were also 

used in other deep neural network models.

LSTM: Although convolution filters are good at processing data in the matrix or grid 

representation, they capture only sequential patterns in a local area and sometimes miss 

long-range dependencies between words in the same sentence [35]. The LSTM network, a 

special type of recurrent neural network that uses LSTM units, was introduced to solve this 

problem [36]. While processing sequential data, each LSTM unit leverages 4 information 

gates to decide which new and existing information should be added or removed from the 

information flow [36]. Our second model used a 1-directional LSTM network along with 2 

dropout layers and 1 layer of fully connected neurons to process drug-review posts (Fig. 3).

CLSTM: The third model adapted the approach of Zhou et al. [20], which added LSTM to 

the CNN (Fig. 4). This design leverages convolution and max-pooling filters to extract the 

most discriminative patterns from local areas of the word-embedding feature matrix and 

continuously feeds the signals to LSTM, which focuses on learning sequential patterns in the 

information flow. The rest of the CLSTM model is similar to the CNN model.

Deep neural networks with context information features: Drug-review comments 

in social media often include context information fields that describe the patient, disease, 

and drug. Such information can be used with medical knowledge and NLP methods to 

enrich the context of social media data. For example, our gold-standard dataset integrated 

drug-review sentences with the patient’s basic demographic information, ratings for the 

drug, drug therapeutic areas, and outputs from the filtering tools (Table I). To combine social 

media text and context information for making predictions, we designed new models (Fig. 5) 

with a deep neural network and an FCN. For text features, we used the architecture of the 

original CNN, LSTM, and CLSTM networks but removed the prediction layer. For context 

information features, we designed a neural network containing 3 layers of fully connected 
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neurons (dense 1–3). Each layer had half the neurons of the previous layer to condense the 

output. We then combined outputs from text features and context information features 

together to an additional layer of fully connected neurons (dense 4) and another dropout 

layer (dropout 2) before making the prediction. We named these new models as CNN+FCN, 

LSTM+FCN, and CLSTM+FCN.

D. Model Implementation

Platform: We implemented the original and redesigned deep neural network models in an 

Ubuntu 16 Linux system with Python 3.6.2, Keras 2.0.8 (a well-known deep neural network 

library for Python) [37], and TensorFlow 1.3.0 math library [38] for high-efficiency neural 

network computing.

Model configuration: We chose the rectified linear unit [39] as the activation function for 

all neural network nodes, except the single neuron for prediction. The rectified linear unit 

computes the function of relu(x)=max(x,0), where the input variable x is a weighted sum of 

real value numbers from previous neurons in the network. It has been a popular approach in 

recent deep neural network research because it does not saturate (the gradients do not 

diminish when x approaches positive infinity) and is less computationally expensive than 

functions that involve the exponential calculation. For the prediction layer, we chose the 

sigmoid function sigmoid(x)=1/(1+e−x), which projects a weighted sum of previous neurons 

to a range from 0 to 1 [40]. We selected Adam as the kernel optimizer [41] and binary cross-

entropy as the loss function [42].

Data preprocessing: Data preprocessing: All numeric features were linearly rescaled 

to the range of [−1, 1], and all categorical features were converted to binary vectors. We then 

split the 15,714 annotated sentences by posting date into training, validation, and test 

datasets. Of the sentences, 60% (9,429 sentences) were posted from September 18, 2007, 

through December 7, 2010, and were used as the training dataset to fit deep neural networks. 

Next, 20% (3,142 sentences) that were posted from December 8, 2010, through October 11, 

2012, were used as the validation dataset to tune hyperparameters of the networks. The 

remaining 20% (3,143 sentences) were posted from October 12, 2012, through March 26, 

2015, and were used as the independent test dataset. In the 3 datasets, the proportion of 

serendipitous drug usage ranged from 2.0% to 3.2%.

Hyperparameter tuning: We tuned hyperparameters, including the kernel size (k) and 

number of convolution filters (nc), the size of the pooling window for max-pooling filters, 

the number of neurons for each dense layer, the drop ratio for each dropout layer, the 

constant parameter for the l2 kernel regularizer [34] that was applied to the prediction 

neuron, and the number of units in the LSTM network. We also searched for the best method 

to initialize the weights of the neural network among 6 commonly used initializers: random 

uniform, random normal, Xavier uniform, Xavier normal, He uniform, and He normal [40, 

43]. Moreover, neural networks are sensitive to imbalanced data [44]. Keras provides a cost-

sensitive learning solution by allowing us to specify the importance of each class while 

fitting the neural network. To fully leverage this feature, we treated class weights as an 

additional tunable hyperparameter.
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We fit models on the training dataset with different sets of hyperparameters and tracked each 

model’s performance on the validation dataset. We used Hyperas [45], a parameter-tuning 

library for Keras. Unlike grid search, Hyperas does not exhaustively search the entire 

hyperparameter space. Instead, it leverages search algorithms such as tree of Parzen 

estimators [46] to partially search the parameter space for a relatively good parameter 

setting. Hyperas has been widely used in recent deep neural network research and 

applications because the search spaces for hyperparameters are often too big to complete a 

grid search in a manageable amount of time.

Evaluation: We evaluated 6 deep neural network models on the test dataset, namely CNN, 

LSTM, CLSTM, CNN+FCN, LSTM+FCN, and CLSTM+FCN, in terms of AUC, precision, 

and recall [47]. Additionally, we compared deep neural network models to models built from 

3 widely used machine-learning algorithms, namely SVM, random forest, and 

AdaBoost.M1. For each nonneural network algorithm, we built 2 models, one with n-gram 

and context features [18] and the other with word-embedding features and context features.

E. Web Application Design and Implementation

We implemented Serendipity by using Flask, a lightweight Python framework for web 

development [48]. The implementation also depended on third-party tools and libraries, 

including Stanford CoreNLP [28], MetaMap [27], Scikit-learn [49], Keras [37], and several 

commonly used JavaScript libraries [50–52]. The system architecture followed the design 

pattern of Model-View-Controller [53]. The view layer provides 2 user interfaces. One is a 

GUI written in HTML5 [54] and the other is a RESTful API [55]. The model layer conducts 

NLP and machine-learning tasks to extract serendipitous drug usage. The controller layer 

coordinates information flow between the view and model layers and visualizes 

serendipitous drug usage mining results. The major components and workflow of the system 

are shown in Fig. 6.

User interfaces: We recognized that scientists with knowledge in drug discovery and 

development but limited computer programming skills are potential users of this software. 

For these users, we built a GUI with HTML5, a webpage markup language that is 

compatible with most recent web browsers on computers, smart phones, and tablets [54]. 

The GUI (Fig. 7) has 2 input fields, one for social media text and the other for the drug 

associated with the text. When the user types in the drug name, the GUI automatically shows 

a list of drugs to choose. These are drugs in the databases that match the input. Then, the 

user can submit the social media text for analysis (select the “Go” button) or clear all inputs 

(select the “Reset” button). After submission, the model layer will mine serendipitous drug 

usage and the controller layer will generate a new interactive webpage for visualizing the 

results.

Other potential users of Serendipity are software developers with proficiency in computer 

programming but limited experience with NLP and machine-learning tools. For users who 

want to integrate Serendipity into their own software applications, we provided a RESTful 

API [55] that accepts social media text and drug ID from the user as HTTP requests (Fig. 8). 

The drug ID are assigned by our system, and a separate file shows the mapping between the 
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identification number and drug name. After the model layer finishes NLP and machine-

learning prediction steps, the RESTful API returns results as a JavaScript Object Notation 

(JSON) object [56], which is a commonly used structured format for exchanging data 

between software applications.

The model layer: Our system used SQLite [57] database to store common usages (known 

indications) and therapeutic area information for 1,963 drugs that we assessed in a previous 

study [18]. The common usages were saved in plain text and by using the corresponding 

concept unique identifiers (CUIs) in the Unified Medical Language System (UMLS) [58]. 

The model layer used Stanford CoreNLP to split social media text into sentences and assign 

a sentiment score (very negative, negative, neutral, positive, or very positive) [59] to each 

sentence. Then, sentences were processed by MetaMap to map diseases and symptoms 

mentioned in the sentence to the CUI in UMLS (CUIsocial media drug usage in Fig. 6). To 

quantify the difference between diseases and symptoms mentioned in the social media text 

and those of known drug indications, the model layer retrieved UMLS concepts associated 

with known indications of the drug (CUIknown indications in Figure 6) from the SQLite 

database. Next, it calculated the semantic difference between CUIsocial media drug usage and 

CUIknown indications based on the distance between them in a directed acyclic graph 

constructed from SNOMED CT [18, 29]. In addition to the sentiment and semantic 

difference analyses, the model layer also extracted the n-grams (n=1, 2, and 3) and 

concatenated word-embedding vectors from each sentence, using the method described in 

[18] and section II-B. Finally, features extracted from the drug information database, 

sentiment analysis, semantic difference calculation, and social media text were passed 

through 6 machine-learning models to predict the probability that serendipitous drug usage 

would be mentioned in the sentence. These models included traditional models (SVM, 

random forest, and AdaBoost.M1) that we explored previously [18] and the new models 

CNN+FCN, LSTM+FCN, and CLSTM+FCN described above (see section II-C).

Visualization: The GUI (Fig. 9) can display 9 types of information that might be of 

interest to scientists working in drug discovery and development. The name and common 

usages (known indications) of the drug in the SQLite database are presented at the top. The 

lower area is divided into left and right panels. The UMLS-preferred disease names and 

symptoms mentioned in the social media text are listed as clickable tags in the left panel; 

tags are presented in descending order of their average Serendipity score, as determined by 

prediction models. Each tag can be expanded (by clicking) to display the CUI, semantic 

type, trigger word (the original word in the sentence that was mapped to the UMLS 

concept), and the average Serendipity score from the prediction models. To limit the number 

of tags in the left panel, disease and symptom tags are excluded if they meet any of the 

following criteria: 1) the part of speech for the trigger word is not a noun; 2) the average 

model prediction score is less than 3%; 3) the semantic difference to common usages of the 

drug is less than 3 steps in the SNOMED CT graph; and 4) the sentiment is not positive. The 

latter 2 conditions reflect the nature of serendipitous drug usage. The usage cannot be the 

same as or too similar to known indications. The sentiment cannot be negative because 

negative feelings are often associated with adverse drug effects. The right panel displays the 

social media text verbatim, sentence by sentence. Red dots appear under a sentence if the 
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sentiment is negative or very negative. Green dots appear if the sentiment of the sentence is 

positive or very positive. All trigger words in the right panel are highlighted in yellow. When 

the user clicks a tag in the left panel, the right panel will automatically scroll to the location 

of corresponding sentence, and the trigger word will be highlighted in red.

RESTful API output: For software developers, the RESTful API returns NLP and 

machine-learning results as a JSON object. Because these users may have diverse ideas 

about how they to use these results, we constructed the JSON object to include 19 data 

elements; Table II shows the description and source for each element. Additionally, the 

results are not filtered.

A prototype of the web application is accessible at https://github.com/boshuru/serendipity 

for demonstration.

III. RESULTS AND DISCUSSION

A. Hyper parameters

Using Hyperas and the validation dataset, we tuned hyperparameters for each model (Table 

III). The kernel sizes of convolution filters were higher for CNN and CNN+FCN than for 

CLSTM and CLSTM+FCN. Convolution filters were used primarily to extract informative 

patterns from local areas of a matrix. The kernel size determined the scale of the local area, 

which was defined as the continuous number of words in a sentence. In the WebMD dataset, 

75% of sentences contained fewer than 19 words and 50% contained fewer than 13 words. 

For CNN and CNN+FCN models, the optimal kernel sizes is relatively large (7 to 13 words) 

to cover a sufficient number of words in each sentence. After adding LSTM to the CNN, the 

optimal convolution kernel sizes ranged from 3 to 7. With LSTM learning sequential 

patterns between words, CNN could focus on patterns in smaller areas (3 to 7 words).

We next determined how much the hyperparameter tuning affected the performance of deep 

neural networks. Table IV lists the minimum, average, and maximum values for AUC, 

precision, and recall on the validation dataset for various hyperparameter sets. The spread 

between the minimum and maximum was wide for all machine-learning performance 

metrics and deep neural networks, highlighting the importance of tuning hyperparameters.

B. Model evaluation

We evaluated deep neural network models in terms of AUC, precision, and recall on the test 

dataset (Table V) and set true serendipitous drug usage as the positive class. Among deep 

neural network models, the highest AUC (0.919) was from CNN and the lowest (0.815) was 

from CNN+FCN. The precision for deep neural network models ranged widely (0.156 from 

CNN to 0.783 from LSTM+FCN). The precision for redesigned deep neural network models 

was higher than that of the original models, indicating that context information such as the 

patient’s demographic information and drug therapeutic areas could greatly reduce the false-

positive rate in predicting serendipitous drug usage. The recall ranged from 0.286 (LSTM

+FCN) to 0.683 (CNN). Although CNN and CLSTM models had higher AUC and recall, 

their precision (0.156 and 0.172, respectively) was markedly lower than that of the other 

models, implying high false-positive rates in their predictions.
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Our deep neural network models had higher AUCs (0.815–0.919) than SVM, random forest, 

and AdaBoost.M1 models that were trained with word embedding and context features 

(0.532–0.670) (Table V). These differences might be due to the difference in constructing 

word-embedding features. Deep neural networks are capable of processing unstructured 

features such as concatenated word-embedding vectors. However, SVM, random forest, and 

AdaBoost.M1 cannot handle unstructured input features, and we had to aggregate word 

vectors to structured machine-learning features. Drug-review comments on social media 

with phrases such as “it also helps” and “I used this for” were often associated with 

serendipitous drug usage. Therefore, losing such signals in the feature construction can 

impact the model performance (see section II-B).

Our deep neural network models did not perform better than SVM, random forest, and 

AdaBoost.M1 models that were trained with n-gram and context features. All except the 

CNN model had AUCs (0.815–0.866) lower than that of their counterparts (0.9–0.937) 

(Table V). The AUC of the CNN model (0.919) was higher than SVM with n-gram and 

context features, but the model had low precision (0.156), which is unfavorable for drug 

discovery. This finding is different from findings of several recent studies that evaluated 

deep neural networks and nonneural network machine-learning algorithms [19, 20]. We do 

not know specifically why the results differ; however, we cautiously suggest 2 possible 

reasons.

First, deep neural networks become increasingly complex with an increasing number of 

trainable parameters, e.g., weights (Table VI). Weights determine the importance of the 

connections among neurons in a neural network. The number of weights can be used to 

quantify the complexity of a deep neural network because more-complex networks have 

more connections between neurons. The role of weights is equivalent to the support vectors 

of SVM. Deep neural networks typically connect hundreds to thousands of neurons, causing 

the number of weights to far exceed the number of equivalent components in other machine-

learning algorithms. A large number of weights requires a large volume of annotated data to 

train the model. Although our gold-standard dataset contained 15,714 annotated sentences, 

only 447 sentences were in the positive class, which might be insufficient for training CNN, 

LSTM, and CLSTM networks to extract patterns associated with true serendipitous drug 

usage. We expect that our deep neural network models will exceed their current intermediate 

performance if more annotated data, especially true serendipitous usage cases, become 

available.

Second, we used a grid search (a complete search) to find optimal hyperparameter sets for 

SVM, random forest, and AdaBoost.M1 algorithms. A complete search in hyperparameter 

space has a better chance of reaching an optimal point than a partial search approach, which 

we used when tuning the deep neural networks. In other words, other sets of 

hyperparameters may exist that would perform better with our deep neural networks than 

with nonneural network models with n-gram features. However, many configurations and 

hyperparameters can greatly affect the performance of deep neural networks by causing the 

search space to be too large for a complete search.
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C. Potential Use of Web Applications

Serendipitous drug usage in social media can be valuable information for drug discovery and 

development, but they need to be manually verified to exclude false-positive cases, i.e., 

when patients inaccurately describe their medication outcomes. However, the massive 

volume of social media data makes verification challenging and time consuming. 

Serendipity can help scientists in drug discovery and development to tag, assess, filter, sort, 

and visualize potential serendipitous usages, so that their time and efforts can be prioritized 

for more promising cases.

Software developers can integrate Serendipity into their own applications such as patient 

health forums. If a user submits a drug review, the comments could be passed to our 

RESTful API. If the serendipitous usage prediction score exceeds a certain threshold, the 

patient forum could ask the user to verify whether the drug also improved a comorbid 

condition. In this scenario, our application could seamlessly collect and verify serendipitous 

drug usage from website users.

IV. CONCLUSION

The recent success of deep neural networks in computer vision has inspired researchers to 

apply these new methods to text classification [19, 20, 22, 23]. Results achieved with deep 

neural networks such as CNN, LSTM, and CLSTM are reported to exceed those of 

nonneural network algorithms such as SVM, logistic regression, and random forest [19, 20]. 

In the current study, we examined the ability of CNN, LSTM, and CLSTM to detect 

serendipitous drug usage in a gold-standard dataset that we established from a WebMD 

patient forum in a previous study [18]. The main challenges of this study included the use of 

context information from patient drug-review comments and the handling of imbalanced 

data (<3% of the data were positive for serendipitous drug usage).

To include context information in the analysis, we added an FCN to the original deep neural 

network. The 2 networks paralleled each other, with the deep neural network processing 

social media text and the FCN processing context information. We tried deep neural 

networks with n-gram features and aggregation-based word-embedding features. For the 

data imbalance issue, we conducted cost-sensitive learning by tuning the class weight in the 

model training. We also tried undersampling, oversampling, and the synthetic minority 

oversampling technique [60] but did not discuss them in detail because they were inferior to 

the other approaches described. The complex, unstructured form of natural language and the 

small number of serendipitous usages might be a reason, which requires future investigation.

We used our gold-standard dataset to compare original and redesigned deep neural networks 

with SVM, random forest, and AdaBoost.M1 algorithms. The results indicated that context 

information regarding a patient, disease, and medication is important for reducing false-

positive rates of deep neural networks. Although deep neural networks did not perform 

better than the combination of the above 3 algorithms, n-grams, and context information 

features, they could more effectively use unstructured inputs such as concatenated word-

embedding vectors. This advantage makes deep neural networks worthy of further 

investigation and improvement.
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Our findings need to be considered in light of limitations. First, we used the default 

parameters of some software tools or used those explored in previous research. For example, 

we set the dimension of each word vector to 200 and chose convolution filters of 3 

continuous sizes (k−1, k, and k+1). These settings and designs might be suboptimal for 

mining serendipitous drug usage from social media text. Second, we explored only CNN, 

LSTM, and CLSTM, but other deep learning methods are worthy of further investigation, 

including attention mechanism [61], transfer learning [62], and generative adversarial 

networks [63].

Additionally, we implemented Serendipity, a web-based application for people interested in 

mining serendipitous drug usage from social media. The application uses NLP and machine-

learning models from our current and previous research [18] and currently supports 1,963 

drugs. It provides a GUI to take user inputs (English-language drug reviews from various 

social media websites) and to visualize analytic results; it also has a RESTful API that can 

be integrated with other software applications. However, these efforts are just the initial 

phase of software development. The current implementation can be improved in several 

ways. First, more drugs can be added to the drug information database, possibly through 

integration with RxNorm [64]. Second, the GUI can provide additional options to change 

program behavior, such as adjusting the thresholds for sentiment and semantic difference 

filters or the inclusion or exclusion of certain prediction models. Finally, we recognized 2 

general user groups without further validation. The next step is to more specifically identify 

users and generate business or real-world use cases for user studies and potential customer 

interviews should proceed.
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Fig. 1. 
Serendipitous drug usage in social media
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Fig. 2. 
CNN model for text classification – Conv indicates convolution.
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Fig. 3. 
CLSTM model.
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Fig. 4. 
LSTM model
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Fig. 5. 
Deep neural networks with context information features

Ru et al. Page 20

IEEE Trans Nanobioscience. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
System components and workflow
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Fig. 7. 
Graphic user interface
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Fig. 8. 
RESTful API for user input
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Fig. 9. 
Graphic user interface for result visualization
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TABLE I

FIELDS OF THE GOLD-STANDARD DATASET

Name Source

Drug-review sentence WebMD

Class label Human annotator

Auxiliary information fields

User rating of effectiveness WebMD

User rating of ease of use WebMD

User rating of overall satisfaction WebMD

Number of users who felt the review was helpful WebMD

Number of reviews for the drug WebMD

The day of review WebMD

The hour of review WebMD

User’s role (e.g., patient, caregiver) WebMD

User’s sex WebMD

User’s age group WebMD

Time on the drug WebMD

Semantic types of medical concepts mentioned in the sentence MetaMap

Semantic distance between the mentioned medical concepts
and the drug’s known indications SNOMED

Sentiment score Stanford CoreNLP

Therapeutic areas (155 columns of binary values) Medical knowledge
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