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Abstract

Complete ammonia oxidation (comammox) to nitrate by certain Nitrospira-lineage bacteria 

(CMX) could contribute to overall nitrogen cycling in engineered biological nitrogen removal 

(BNR) processes in addition to the more well-documented nitrogen transformations by ammonia-

oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB), and anaerobic ammonia-oxidizing 

(anammox) bacteria (AMX). A metagenomic survey was conducted to quantify the presence and 

elucidate the potential functionality of CMX in 16 full-scale BNR configurations treating 

mainstream or sidestream wastewater. CMX proposed to date were combined with previously 

published AOB, NOB, and AMX genomes to create an expanded database for alignment of 

metagenomic reads. CMX-assigned metagenomic reads accounted for between 0.28 and 0.64% of 

total coding DNA sequences in all BNR configurations. Phylogenetic analysis of key nitrification 

functional genes amoA, encoding the α-subunit of ammonia monooxygenase, haoB, encoding the 

β-subunit of hydroxylamine oxidoreductase, and nxrB, encoding the β-subunit of nitrite 

oxidoreductase, confirmed that each BNR system contained coding regions for production of these 

enzymes by CMX specifically. Ultimately, the ubiquitous presence of CMX bacteria and 

metabolic functionality in such diverse system configurations emphasizes the need to translate 

novel bacterial transformations to engineered biological process interrogation, operation, and 

design.
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INTRODUCTION

Biological nitrogen removal (BNR) is traditionally accomplished through the concerted 

action of nitrifying and denitrifying bacteria. During nitrification, the oxidation of ammonia 

to nitrate is mediated by two distinct groups of chemolithoautotrophs, ammonia-oxidizing 

bacteria (AOB) and nitrite-oxidizing bacteria (NOB).1 Nitrate is typically reduced by 

chemoorganoheterotrophic denitrifying bacteria to dinitrogen gas (N2) (Figure 1).2 However, 

alternate “shortcut” nitrogen removal pathways allow for potential cost savings of aeration 

energy for nitrification and external carbon for denitrification and have therefore been 

applied to mainstream and sidestream wastewater treatment processes in recent years.3–7The 

coupling of partial nitritation (fractional aerobic oxidation of influent ammonia to nitrite by 

AOB) with anaerobic ammonia oxidation (anammox) represents one such shortcut process. 

In such partial nitritation–anammox processes, the selective enrichment of AOB and 

anammox bacteria (AMX) with the concomitant out-selection of NOB can result in a 

significant reduction (≤62.5%) of aeration requirements relative to those of conventional 

BNR approaches, while eliminating the need to supply external organic carbon (Figure 1).8

In an exciting expansion of our current knowledge of the microbial nitrogen cycle, recent 

studies have uncovered the potential for complete ammonia oxidation (comammox) to 

nitrate by a single organism (CMX) rather than by distinct AOB and NOB (Figure 1).9,10 

Three CMX organisms related to Nitrospira spp., Candidatus “Nitrospira inopinata”, 

Candidatus “Nitrospira nitrificans”, and Candidatus “Nitrospira nitrosa”, have been 

proposed to date.9,10 However, understanding CMX metabolic activity and their interactions 

with other bacterial groups is still rather limited in natural and engineered systems, including 

BNR processes.

In conventional BNR processes, CMX may be a beneficial or equivalent alternative to AOB-

mediated nitritation and NOBmediated nitratation depending on the relative kinetics and 

substrate utilization of CMX-mediated nitritation and nitratation. Additionally, the coupling 

of ammonia and nitrite oxidation within CMX could potentially decrease production of the 

greenhouse gas nitrous oxide (N2O), as N2O production by classical AOB has been linked to 

an imbalance in electron flow due to transient dissolved oxygen (DO) concentrations, 
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accumulation of ammonia or nitrite, or limited inorganic carbon supply.11–14On the other 

hand, energy- and cost-effective alternates to conventional BNR processes such as those 

targeting full or partial nitritation (e.g., for coupling with denitrification or anammox) would 

be less effective as a result of direct conversion of ammonia to nitrate by CMX. Therefore, 

the abundance of CMX and their contribution to nitrogen turnover across different BNR 

process configurations need to be characterized to better understand and guide process 

design and operation. More broadly, with few publications describing the presence of CMX 

in drinking water15,16 and limited-scale discussion of CMX in wastewater treatment 

systems,17–20 much work remains to improve our understanding of the potential for CMX 

capabilities across different natural and engineered systems.

In this study, shotgun metagenomic analyses were conducted on 16 samples from six full-

scale wastewater treatment plants in the United States, Denmark, and Singapore. These 

plants employ conventional and shortcut BNR in mainstream and/or sidestream wastewater 

using varying reactor configurations (Table 1). This work aimed to identify and quantify the 

presence of CMX in each of these systems and to explore possible CMX functionality 

through phylogenetic analysis of metagenomic reads assigned to key nitrogen metabolism 

enzymes.

MATERIALS AND METHODS

Microbial Sampling and Sequencing.

Sixteen biomass samples from six full-scale wastewater treatment plants (WWTPs) were 

collected for analysis (Table 1). The following reactor configurations were covered: 

conventional BNR, moving bed biofilm reactor (MBBR), DEMON deammonification, 

ClearGreen cyclic low-energy ammonium removal (ClearGreen), and a hydrocyclone. These 

systems were operated in the United States (California and Virginia), Denmark, and 

Singapore. Approximately 50 mL was sampled directly from reactor granules, mixed liquor, 

or biofilm within each BNR process (Table 1) and stored at −80 °C after shipment on dry 

ice. DNA was extracted from the biomass samples with the MoBio PowerLyzer PowerSoil 

DNA Isolation Kit per the manufacturer’s instructions (Qiagen) and quantified using Qubit 

dsDNA HS assay kits and the Qubit 2.0 Fluorometer (Thermo Fisher). Extracted DNA was 

shipped on dry ice from Columbia University to the Cincinnati Children’s Hospital DNA 

Core Facility for next-generation sequencing. Shotgun metagenomic libraries were prepared 

using the Nextera XT Library Preparation Kit (Illumina) with the recommended input of 

DNA normalized to 5 ng/μL and the default protocol for barcoded whole-genome libraries. 

An Illumina MiSeq sequencer and pair-ended 2 × 250 bp Illumina MiSeq version 2 

sequencing kit were used (Illumina).

Taxonomic Classification.

Pair-ended reads were assembled into contigs and filtered for quality assurance (maximum 

homopolymeric region length of 10 bp, minimum length of 250 bp, maximum length of 450 

bp, maximum number of ambiguous bases of zero) using mothur version 1.36.1.21 The 

existing NCBI nonredundant protein nr database (version 123) was manually expanded as 

part of this work to include protein-coding sequences from the three currently published 
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CMX metagenome-derived genomes: Candidatus “Nitrospira inopinata”,9 Candidatus 

“Nitrospira nitrificans”, and Candidatus “Nitrospira nitrosa”.10 Protein-coding regions from 

two metagenome-derived AMX genomes that were previously unavailable in nr database 

version 123, Candidatus “Brocadia caroliniensis”22 and Candidatus “Scalindua profunda”,23 

were also included in the custom database. Filtered reads from each sample were then 

aligned against this custom database using NCBI’s BLASTX. Alignments were curated for 

minimum identity percentage (80%) and maximum e value (1 × 10−10). Resulting reads in 

each metagenome were assigned taxonomic classification according to an automated search 

of NCBI protein databases, with emphasis on the contributions of new and previously 

indexed CMX and AMX species, as well as AOB and NOB.

Phylogenetic Analysis of Key Nitrification Genes.

To confirm the potential for ammonia and nitrite oxidation by CMX rather than AOB, AMX, 

or NOB, unique representative sequences from each BNR system assigned through 

BLASTX to CMX amoA, haoB, and nxrB with at least 30× coverage were selected. Single-

nucleotide variants (SNVs) were calculated, and a distance matrix was generated using these 

unique sequences with MAFFT version 7.24 CMX (Candidatus “Nitrospira inopinata”, 

Candidatus “Nitrospira nitrificans”, and Candidatus “Nitrospira nitrosa”), AOB 

(Nitrosomonas europaea, Nitrosomonas eutropha, Nitrosospira multiformis, and 

Nitrosococcus halophilus), NOB (Candidatus “Nitrospira defluvii”, Nitrobacter 

hamburgensis, and Nitrobacter winogradskyii), and AMX (Candidatus “Brocadia 

caroliniensis”, Candidatus “Brocadia fulgida”, Candidatus “Brocadia sinica”, and 

Candidatus “Kuenenia stuttgartiensis”) reference genomes were also included in the MAFFT 

alignment to identify likely phylogenetic origins of sequences in the BNR systems studied 

here (see Table S1 for a complete list of accession numbers used). RAxML version 8.225 

was used to generate a maximum likelihood tree and calculate branch node support over 100 

bootstrap iterations under the GAMMA GTR substitution model.25 AOB (for amoA and 

haoB), NOB (for nxrB), and AMX (for haoB and nxrB) sequences were also included for 

the sake of completeness and to confirm whether the representative sequences from the 16 

BNR systems clustered with, and therefore likely traced to, CMX in each engineered 

process.

RESULTS AND DISCUSSION

Varying Degrees of Comammox Capability Detected in All Systems.

Even prior to the discovery of comammoxcapable bacteria, complete oxidation of ammonia 

to nitrate in a single organism had been previously theorized.26 Within the framework of 

engineered BNR and biological wastewater treatment systems, the potential for complex 

interactions among CMX, AOB, NOB, and AMX could be particularly interesting given the 

utilization of common substrates (ammonia, nitrite, and even inorganic carbon).9,10 While 

targeted 16S rRNA gene analyses can describe only the microbial community structure of a 

system, shotgun metagenomics can reveal both the community structure and functional 

potential of engineered bioreactors.
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The results reported here include a discussion of the relative abundance [in reads per 

kilobase mapped per million reads (RPKM)] of key genes involved in nitrification, related to 

the capability of each BNR process to produce key nitrifying enzymes encoded by these 

genes. This approach serves as a reference blueprint for similarly broad meta-

transcriptomics or meta-proteomics studies as well as more focused targeted studies. 

Additionally, phylogenetic analyses are used here to complement the metagenomics 

approach and provide improved resolution for taxonomic assignment of sequences from 

organisms with limited genomic reference availability.

Previous work has identified CMX in drinking water or wastewater systems through a 

combination of next-generation sequencing and phylogenetics.15,16,18,19 However, unique to 

this study is the characterization of the contribution of CMX to the overall protein-producing 

capability of full-scale wastewater treatment plant metagenomes in a wide variety of reactor 

configurations. The systems assessed here have been designed for conventional BNR or 

partial nitritation by AOB followed by deammonification by anammox (Table 1). 

Conventional BNR systems included those from Singapore (SG Biofilm, SG AS) and 

Virginia (VA BNR 1 and 2). DEMON and ClearGreen systems from California (EB 

DEMON, SF DEMON, and PDR 1 and 2) were designed and operated for partial nitritation, 

and the partial oxidization of ammonia to nitrite by AOB, followed by anammox. These 

systems used granules enriched with AMX due to resultant substrate and oxygen gradients 

formed therein and treated both sidestream (EB DEMON and SF DEMON) and mainstream 

(PDR 1 and 2) wastewater.27–29 The nitritation–anammox MBBRs from California and 

Virginia (EB MBBR, SF MBBR, and VA MBBR 1 and 2) similarly contained biofilms 

enriched with AMX and consisted of either single-stage simultaneous partial nitritation–

anammox treating sidestream wastewater (as in EB or SF) or two-stage decoupled operation 

treating mainstream wastewater (as in VA), in which an aerated nitritation process was 

followed by the anaerobic deammonification MBBR.30 The hydrocyclone-based process in 

Denmark (samples denoted DK ALT, overflow, and underflow) was utilized to selectively 

retain granular biomass in a mainstream BNR system.28

In total, 59.65 million filtered contigs were available for this study, with an average of 3.73 

million sequences and a 393 bp contig length across the 16 samples (Table S1). For each 

sample, the number of total coding DNA sequences (CDS) was calculated as the number of 

contigs aligned with the expanded protein database above the described score thresholds. 

According to this definition, the 16 samples contained on average 3.14 ± 0.48 million total 

CDS (Table S1).

Interestingly, despite high variability in microbial community profiles across the different 

samples [0.59–14.35% AMX, 2.25–7.98% AOB, and 2.39–3.47% NOB (Table 1 and Table 

S1)], CMX-assigned coding regions remained consistently between 0.28 and 0.64% of total 

CDS.

Phylogenetic analyses confirmed that each BNR process contained sequences aligned with 

key nitrification genes originating from CMX for amoA encoding the ammonia 

monooxygenase α-subunit, haoB encoding the hydroxylamine oxidoreductase β-subunit, 

and nxrB encoding the β-subunit of nitrite oxidoreductase. Each system also contained 
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AOB, NOB, and AMX functional gene sequences, but only contigs aligned with CMX 

through BLASTX are included here for evidence of potential CMX functionality. SF 

MBBR, SG BNR AS and Biofilm, and VA MBBR 2 contained amoA sequences clustered 

with Candidatus “Nitrospira inopinata” [P = 0.71 (Figure 2A)].

EB DEMON and MBBR, SF DEMON and MBBR, DK overflow and inoculum, and VA 

BNR 2 samples contained amoA sequences that clustered with Candidatus “Nitrospira 

nitrosa” (P = 0.99). Interestingly, many samples (EB DEMON and MBBR, SF DEMON and 

MBBR, PDR 2, DK overflow, ALT, and inoculum, and VA MBBR 1 and 2) contained amoA 

sequences clustered closely with Candidatus “Nitrospira nitrificans” (P = 1). EB DEMON, 

SF DEMON and MBBR, DK ALT and inoculum, and VA BNR 1 contained haoB sequences 

that clustered with Candidatus “Nitrospira inopinata” (P = 0.97) (Figure 2B). EB DEMON, 

SF DEMON, DK overflow and inoculum, SG BNR AS and biofilm, and VA MBBR 2 haoB 

clustered with Candidatus “Nitrospira nitrosa”, while EB MBBR, SF DEMON, PDR 1, DK 

underflow and inoculum, and VA MBBR 2 sequences clustered with Candidatus “Nitrospira 

nitrificans” haoB 1 and 2 (P = 0.83).

Previously, it was theorized that CMX have high growth yields rather than high specific 

growth rates associated with AOB and NOB, leading to a competitive advantage at low 

substrate concentrations and conditions favoring microbial aggregation.26 Additionally, 

previous work by van Kessel et al. suggested functional interplay between CMX and AMX 

due to tight clustering of functional gene sequences,10 which was also observed here to an 

extent (Figure 2). The data presented here may support these hypotheses, as the processes 

promoting biofilm growth, including nitritation–anammox, biofilm, and anammox inoculum 

samples, contained more unique CMX amoA and haoB sequences than the conventional 

BNR and hydrocyclone systems did (Figure 2A,B). Future analysis will be necessary to 

quantify the abundance of CMX amoA and haoB, aided partly by CMX amoA-targeted 

polymerase chain reaction primers.31

Each BNR process also contained contigs that clustered with CMX nxrB sequences rather 

than NOB or AMX (Figure 2C). EB DEMON and MBBR, SF DEMON and MBBR, DK 

overflow and inoculum, and VA BNR2 samples had nxrB contigs that clustered closely with 

Candidatus “Nitrospira nitrosa” nxrB 1 and 2 (P = 0.97). SF MBBR, SG BNR AS and 

Biofilm, VA BNR 1, and VA MBBR 1 and 2 contained contigs related to Candidatus 

“Nitrospira inopinata” nxrB (P = 0.82).

EB DEMON and MBBR, SF DEMON and MBBR, PDR 1 and 2, DK overflow, underflow, 

and inoculum, SG BNR AS and biofilm, and VA MBBR 1 and 2 all contained nxrB contigs 

that clustered with Candidatus “Nitrospira nitrificans” nxrB 1, 2, and 3 (P = 0.98). Of note, 

CMX-assigned nxrB contigs from EB MBBR, DK inoculum, VA BNR 1, and VA MBBR 1 

and 2 were revealed through phylogenetic analysis to be more closely related to the non-

CMX, canonical NOB Candidatus “Nitrosomonas defluvii” (P = 1). Thus, relying solely on 

BLASTbased alignment could lead to overestimation of CMX, highlighting the need for 

integrated metagenomics approaches that include phylogenetic interrogation for closely 

related organisms or those without published references. NOB outselection is important in 

deammonification systems primarily because of the competition between NOB and AMX 
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for nitrite.4 Similarly, CMX utilization of nitrite could impact deammonification by AMX. 

Therefore, it is critical to note the potential for each nitritation–anammox process to produce 

nxrB by CMX to develop and apply more accurate out-selection strategies.

Nitrification by CMX Is Possible in Engineered Water Systems.

The emergence of newly discovered microorganisms capable of full nitrification is 

understandably exciting. Detection of comammox in such a wide array of systems does 

reveal the need for re-evaluation and adjustment of current BNR models given these newly 

available metabolic pathways. Metagenomic analysis alone, though, cannot determine if 

comammox is active within engineered nitrogen removal systems, given the operation 

conditions and competitive microbial communities involved. Lab-scale enrichment of CMX 

under appropriate conditions could improve our understanding of CMX thermodynamics, 

biokinetic parameters, and electron flow.32 Subsequently, calculation of theoretical relative 

abundances of CMX, AOB, and NOB required for nitrification33,34 and improved CMX-

inclusive BNR modeling would be possible. Such directed studies will be required to 

compare the likelihood of comammox to that of conventional two-step nitrification or 

anammox under different conditions, link the presence of CMX and functionality to reactor 

operational parameters, and ultimately quantify the contribution of CMX to overall nitrogen 

turnover in BNR systems. These insights will be key in both the diagnosis of existing 

systems and the design of new nitrogen removal processes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Nitrogen cycling in engineered biological nitrogen removal (BNR) systems. In conventional 

BNR, autotrophic ammonia-oxidizing bacteria (AOB) convert ammonium (NH4+) to nitrite 

(NO2
−) through hydroxylamine (NH2OH), and nitrite-oxidizing bacteria (NOB) convert 

nitrite to nitrate (NO3
−). Ordinary heterotrophic denitrifiers (OHO) then convert nitrate to 

dinitrogen gas (N2) through nitrite, nitric oxide (NO), and nitrous oxide (N2O). 

Alternatively, anaerobic ammonia-oxidizing bacteria (AMX) convert ammonium and nitrite 

directly to dinitrogen gas through hydrazine (N2H4). Complete ammonia-oxidizing bacteria 

(CMX) have only recently been described and studied, and are capable of converting 

ammonium to nitrate through hydroxylamine and nitrite in a single organism.
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Figure 2. 
Phylogenetic relationships between published amoA, haoB, and nxrB sequences and CMX-

assigned sequences from each BNR process. Unique merged contigs from each BNR 

process that were assigned with ≥30× coverage as CMX amoA, haoB, and nxrB were 

included in the phylogenetic analysis, along with amoA, haoB, and nxrB sequences from 

representative published sequences (see Table S2 for a complete list of accession numbers). 

(A) CMX (red) and AOB (blue) reference amoA sequences compared through phylogenetics 

to CMX-assigned amoA in each BNR process. (B) CMX (red), AOB (blue), and AMX 
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(green) reference haoB sequences compared to CMX-assigned haoB from each BNR 

system. (C) CMX (red), NOB (orange), and AMX (green) reference nxrB sequences 

compared to CMX-assigned nxrB from each BNR system. Tree-scale units are average 

amino acid substitutions per site, and circles at each node are scaled to reflect P values at 

nodes with ≥50% support. Each BNR process contained at least one amoA, haoB, and nxrB 

sequence that clustered with CMX rather than AOB, NOB, or AMX, providing evidence of 

potential CMX functionality in each system.
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Table 1.

Full-Scale Wastewater Treatment Plants Surveyed

sample location reactor type biomass type feed type % CMX
g
 CDS/total CDS

EB DEMON
a California, USA DEMON granule

SS
b 0.46

EB MBBR
c California, USA MBBR biofilm SS 0.46

SF DEMON California, USA DEMON granule SS 0.49

SF MBBR California, USA MBBR biofilm SS 0.47

PDR 1 California, USA
ClearGreen

d mixed liquor
MS

e 0.38

PDR 2 California, USA ClearGreen mixed liquor MS 0.45

DK overflow Denmark hydrocyclone overflow MS 0.49

DK underflow Denmark hydrocyclone underflow MS 0.54

DK ALT Denmark hydrocyclone ALT (mixed liquor) MS 0.32

DK inoculum Denmark – inoculum – 0.64

SG biofilm Singapore
BNR

f biofilm MS 0.46

SG AS Singapore BNR activated sludge MS 0.57

VA MBBR 1 Virginia, USA MBBR biofilm MS 0.28

VA MBBR 2 Virginia, USA MBBR biofilm MS 0.45

VA BNR 1 Virginia, USA BNR mixed liquor MS 0.57

VA BNR 2 Virginia, USA BNR mixed liquor MS 0.36

a
DEMON, DEamMONification.

b
SS, sidestream wastewater.

c
MBBR, moving bed biofilm reactor.

d
ClearGreen, cyclic low-energy ammonium removal.

e
MS, mainstream wastewater.

f
BNR, (conventional) biological nitrogen removal.

g
CMX, complete ammonia-oxidizing bacteria; total CDS found in Table S1.
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