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Abstract

Objectives: To develop and compare an array of Machine Learning (ML) methods to predict in-

hospital mortality after TAVR in the United States (US).
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Background: Existing risk prediction tools for in-hospital complications in patients undergoing 

transcatheter aortic valve replacement (TAVR) have been designed using statistical modeling 

approaches and have certain limitations.

Methods: Patient data was obtained from the National Inpatient Sample (NIS) database from 

2012–2015. The data was randomly divided into a development cohort (n=7,615) and a validation 

cohort (n=3,268). Logistic Regression (LR), Artificial Neural Network (ANN), Naïve Bayes (NB) 

and Random Forest (RF) ML algorithms were applied to obtain in-hospital mortality prediction 

models.

Results: A total of 10,883 TAVRs were analyzed in our study. The overall in-hospital mortality 

was 3.6%. Overall, prediction models’ performance measured by Area Under the Curve (AUC) 

were good (> 0.80). The best model was obtained by LR, AUC=0.92 (95% CI, 0.89–0.95). Most 

obtained models plateaued after introducing 10 variables. Acute kidney injury was the main 

predictor of in-hospital mortality ranked with the highest mean importance in all the models. The 

NIS TAVR score showed the best discrimination among available TAVR prediction scores.

Conclusions: Machine learning methods can generate robust models to predict in-hospital 

mortality for TAVR. The NIS TAVR score should be considered for prognosis and shared decision 

making in TAVR patients.

CONDENSED ABSTRACT

Prediction tools for in-hospital mortality after transcatheter aortic valve replacement (TAVR) are 

limited. Machine learning (ML) application on TAVR-big data remains unknown. In this study we 

sought to develop and compare an array of ML methods to predict in-hospital mortality after 

TAVR in the United States. A total of 10,883 TAVRs were analyzed. Overall, prediction models’ 

performance measured by Area Under the Curve (AUC) were good (> 0.80). The best model was 

obtained by Logistic Regression, AUC=0.92. Our study highlights the potential utility of artificial 

intelligence in generating robust models to predict adverse outcomes in TAVR patients.
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INTRODUCTION

Transcatheter aortic valve replacement (TAVR) has recently emerged as the gold standard 

treatment for majority of the patients with severe symptomatic aortic stenosis (AS) [1]. 

Patients who are at high or prohibitive surgical risk have significant benefit over medical 

therapy and surgical aortic valve replacement (SAVR), respectively. Most recent evidence 

has expanded TAVR indication to include intermediate-risk patients [1,2], and the recent 

PARTNER 3 trial results suggest that TAVR will shortly become the preferred choice for the 

low-risk candidates [3]. Concerns related to periprocedural complications — particularly in-

hospital mortality, are increasing as TAVR becomes widely used.

Prediction models for cardiovascular procedures are critical for patient selection, risk 

stratification, and to tailor therapy and determine prognosis. The American College of 
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Cardiology (ACC) and the Society of Thoracic Surgeons (STS) have recently developed a 

model intended to predict the risk of in-hospital death based on the STS/ACC Transcatheter 

Valve Therapy (TVT) Registry data [4,5]. Other TAVR-specific risk models have been also 

produced in recent years [6–12]. However, these models have only relied on conventional 

statistical methods which carry inherent limitations that might affect its application and 

performance in large data sets with multiple variables and samples [13].

Machine learning (ML) is a discipline of computer science that focuses on predicting 

outcomes of complex datasets using algorithms that iteratively learn from data [13,14]. 

Rather than considering fixed assumptions on data behavior and variable preselection, ML 

algorithms allows the data to create the model by detecting or learning underlying patterns 

[15]. This concept has been already introduced in cardiovascular studies to obtain predictor 

models for adverse cardiovascular events [15,16]. They are yet to be applied in data derived 

from TAVR patients. We therefore aimed to compare an array of ML algorithms to predict 

in-hospital mortality after TAVR in the United States (US).

METHODS

2.1. Data source

Data was obtained from the National Inpatient Sample (NIS) database files. The NIS is a 

publicly available de-identified database of hospital inpatient stays, sponsored by the 

Agency for Healthcare Research and Quality as part of the Healthcare Cost and Utilization 

Project [17]. Further description of the NIS database has been previously published [18,19].

The International Classification of Diseases, Ninth Edition, Clinical Modification (ICD-9-

CM) codes were used to identify all patients aged >18 years undergoing TAVR (codes 35.05 

and 35.06) between January 1, 2012 and September 30, 2015. This last cutoff date was 

chosen because the new implementation of the ICD-10-CM took efect in October 1, 2015. 

Records with missing data on age, gender, or in-hospital mortality were excluded from 

analysis (n=10). The final study population (n= 10,883) was allocated into two groups: 1) 

Patients that survived hospitalization (Alive, n= 10,493) and 2) patients who died (Deceased 

n= 390). A list of ICD-9-CM codes used for selection of the study population is provided in 

Table 1S in the Data Supplement. Baseline characteristics were obtained either using the 

Elixhauser’s comorbidities [20] or the corresponding ICD-9-CM codes described in Table 

1S of the Data Supplement. The main endpoint of our study was all-cause in-hospital 

mortality. Unfortunately, other VARC-2 definitions are not well established in the NIS 

database and therefore, in-hospital complications were merely obtained using the ICD-9-CM 

coding system. A similar approach has been previously implemented by other authors [19, 

21].

2.2. Study Design

Four machine learning algorithms were applied to the TAVR cohort patients. Central 

Illustration shows the different methods for data extraction, preparation of training and test 

sets as well as development and testing of the ML algorithms. Initially, the data was 

extracted from the NIS database [17] and processed to obtain the patient cohort using a 
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tailored scripting developed in the programming language Python. The dataset was divided 

into training and testing sets for the development and validation of the ML algorithms, 

respectively. For this purpose, the study population was split into a 70% (7,342 alive and 273 

deceased) of the negative and positive classes for the development cohort (training set) and 

30% (3,151 alive and 117 deceased) of the negative and positive classes for the validation 

cohort (testing set). Since the training set was unbalanced for the negative and positive class 

values of the in-hospital mortality variable (i.e. 7,342 alive and 273 deceased, respectively) 

and the positive values were relatively rare, an unbalanced oversampling technique [22,23] 

was applied to obtain an equal representation for each value of the class. Consequently, the 

initial sample proportion of 96:4 (96% - ‘alive’ and 4% - ‘deceased’) was transformed to 

50:50 (50% - ‘alive’ and 50% - ‘deceased’) to later train the models. The total sample 

obtained after oversampling was n=14,442.

A feature ranking method (see section 2.3) was used to determine variable or feature values 

intended to be more informative and non-redundant. Features were then considered in 

groups of 5/10/15/20/30/All (All = 43 variables, as represented in Table 1) organized by the 

ranks obtained after the feature ranking method. Machine learning algorithms integrated in 

WEKA (v. 3-7-12, New-Zealand) data mining software [24] were applied for each group of 

variables or features (i.e. 5/10/15/20/30/All). The resulting models were validated using the 

test set, and different precision metrics were computed, focused on the area under of the 

receiver operating curve (AUC) values.

2.3 Feature ranking

The process of extracting or ranking features is an excellent strategy to reduce 

dimensionality and the complexity of machine learning algorithms [25]. In this study, a 

regularized logistic regression with an L2 norm penalty as a feature scoring function was 

used to rank the variables in the cohort datasets [26]. The goal was to determine the 

influence that each variable had on the primary outcome. This method added the coefficients 

square magnitude as a penalty term to spread the range of possible values equally. Using the 

regularized logistic regression coefficients, the variables or features were ranked in 

descending order and subset by the highest 5/10/15/20/30 ranking variables values. All 

variables were also included. To perform this feature ranking process, Python 3.5 was used 

in conjunction with the scikit-learn v0.20.2 [27, 28].

2.4. Machine learning algorithms

Five top supervised-learning classification algorithms are regularly used as a starting point 

for binary classification problems in Machine Learning [29]. These algorithms are Logistic 

Regression (LR), Artificial Neural Networks (ANN), Naive Bayes (NB), Random Forest 

(RF) and Support Vector Machine (SVM). All these algorithms were applied in this study; 

however, SVM was discarded because it failed to show a good fit for the dataset.

In all cases, the oversampled training sets for each set of variables or features 

(5/10/15/20/30/ALL) were used to develop the models. A separate test set (not included in 

the training of the models) was used to evaluate the models and compute the different 

accuracy metrics with a particular focus on the AUC values. For all cases we used the 
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implementation of the supervised-learning classification algorithms in WEKA software [24] 

for each group of variables or features. The parameters of these algorithms are illustrated in 

Table 2S.

Logistic Regression—Logistic regression is used to predict the probability of an event 

with a discrete dependent variable [30]. This model utilizes a sigmoid function to predict the 

logistic transformation of the probability for each class in the dependent variable. The 

logged odds classify the data points in a binary fashion. The lambda parameter used for the 

model was a ridge value of 1.0E-8 in addition to conjugate gradient descent. Conjugate 

gradient descent was applied to reduce the cost function in the model.

Artificial Neural Network—Inspired by biological networks, artificial neural networks 

are based on nodes and connections that loosely simulate the inner workings of a biological 

brain [31]. The model is learned based on multilayer perceptrons using a backpropagation 

algorithm [32], which is the standard algorithm for supervised-learning process. ANN 

models were obtained using the implementation of Weka software with the defaulted 

parameters. Parameters included the number of hidden layers as ‘a’, which means the total 

of variables plus the classes divided by 2, in our case (for ALL variables) it was (43+1)/2, 

for a total of 22 hidden layers.

Naïve Bayes—Based on Bayes theorem, naïve bayes is a probabilistic classifier with a 

strong assumption of independence among variables or features [33]. The results can be 

interpreted as a bayesian network, where nodes represent features that are connected to one 

another by directed arcs. The model outputs the probability that each feature belongs to a 

specific class independently and considers all of them in unison to determine the class. 

Similar to previous algorithms, Weka software was used to train NB algorithms with our 

training set. Default parameters that included the ‘batchSize’ for the preferred number of 

instances to process were used if the batch prediction was performed.

Random Forest—Random forest (RF) is a classification algorithm that applies an 

ensemble of decision trees and bootstrapping to sample training data and split branches in 

each tree [34]. The target in each split is to maximize the gained information from each 

random feature in each sample per tree. After evaluating the data points, the resulting class is 

the mode of the results of all trees. The algorithm was deployed in our dataset using the gini 

criterion for splitting with no pruning and an int(log_2(#predictors) + 1) number of features 

per split in each tree.

All these machine learning algorithms were compared using our dataset for each group of 

features (i.e. 5/10/15/20/30/all). Their performances were evaluated using the following 

metrics accuracy, precision, recall, f-score and area under of the receiver operating curve 

(AUC). We focused our decision for the best model on the AUC metric results. The obtained 

algorithm’s parameters are illustrated in Table 2S.

2.5 Statistical Analyses

Continuous variables were compared using the 2-tailed Student’s t-test while Chi-square or 

Fisher’s exact tests were used for categorical data as appropriate. The performance of 
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machine learning’s prediction algorithms was assessed by measuring the total AUC. 

Statistical analyses were performed with the use of R software, version 3.5.1 GUI 1.70 (R 

Core Team, 2018), and values of p <0.05 were considered statistically significant.

RESULTS

3.1 Baseline characteristics

Of the 10,883 adult patients who underwent TAVR between January 1, 2012 and September 

30, 2015 in the NIS database, 390 (3.6%) died before being discharged. Demographic and 

hospital characteristics of the study population are depicted in Table 1. Patients who died 

were more likely to be older, female, with prior history of heart failure, chronic kidney 

disease (CKD), coagulopathy, other valvular diseases, pulmonary circulation disorders, 

fluid/electrolyte disorders, admitted to a hospital located in the Southern US, undergo TAVR 

via transapical approach as well as having more hospital complications such as stroke, 

myocardial infarction (MI), conversion to SAVR, cardiogenic shock, cardiac arrest, major 

bleeding, vascular complications, acute kidney injury (AKI) and sepsis. In addition, they 

were less likely to have history of smoking, prior coronary artery disease, prior myocardial 

infarction, carotid artery disease, diabetes mellitus, hypertension and to have undergone 

angiography, percutaneous coronary intervention and coronary artery bypass graft before the 

procedure. A total of 7,615 (70%) and 3,268 (30%) patients were randomly assigned to the 

development and validation cohorts respectively. Patient’s characteristics were similar 

between the development and validation cohort with the exception of fluid and electrolytes 

disorders that were slightly increased in this latter.

3.2 Machine learning classifiers ‘ performance for in-hospital mortality.

From the four machine-learning algorithms applied to the NIS TAVR dataset patients, the 

model obtained by LR had the best discrimination (AUC=0.92; 95% CI, 0.89–0.95) (Figure 

1). However, all models showed a good AUC for predicting in-hospital mortality [ANN 

(0.85; 95% CI, 0.82–0.88), NB (0.90; 95% CI, 0.88–0.92) and RF (0.90; 95% CI, 0.87–

0.93). After including features iteratively, the performance in all ML algorithms increased up 

to the top 10 variables. Thereafter, models obtained by LR and NB had minimal 

performance’s improvement while ANN and RF had a transient performance’s decline 

(Table 3S) (Figure 2).

Each variable included in the study had varying importance over in-hospital mortality 

depending on the ML approach. Overall, AKI was the variable with greatest importance 

across all ML algorithms, followed by cardiogenic shock, fluid and electrolyte disorders, 

cardiac arrest, sepsis, dyslipidemia, hypertension, coagulopathy, current smoking, and 

vascular complications, respectively (Figure 3) (Online Table 4).

The prospective predictive performance of the studied models is illustrated in Table 2. 

Model’s sensitivity, specificity, positive predictive value, negative predicted and f-score 

ranged from 84.8–96.3%, 16.7–83.9%, 95.0–96.5%, 13.7–83.8% and 0.90–0.96, 

respectively.
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3.3 Characterization of available TAVR scores.

Established TAVR mortality prediction scores with AUC are represented in Table 3. Of note, 

the LR model obtained in our study (NIS TAVR) showed the best discrimination among all 

available in-hospital mortality (STS/ACC TVT [5]), 30-day mortality (FRANCE 2 [6], 

TARIS [7], OBSERVANT [8], CoreValve US [10] and UK TAVI [11]) and 1-year mortality 

(TAVI2 [9], CoreValve US [10] and CAPRI [12]) TAVR prediction scores.

DISCUSSION

This study represents the first report using artificial intelligence (AI) in the development and 

validation of a risk prediction model for TAVR-related outcomes. AI has significant 

advantages for predicting events based on machine learning algorithms, and the statistical 

improvement with its application is not unique to this work [14–16]. Our results are 

compelling since the NIS TAVR score is excellent at predicting in-hospital mortality (AUC 

0.92) with superior discrimination than other risk prediction models. With expanding 

indications for TAVR, a better predictor of periprocedural mortality is paramount for patient 

selection and prognosis. Our study is the second largest study to derive a risk prediction 

model in patients who underwent TAVR for management of aortic stenosis. The largest was 

the STS/ACC TVT score [5]. Both STS/ACC TVT and NIS TAVR scores look at in-hospital 

mortality as the primary outcome, and the covariates in each model include some aspects of 

patient comorbidity and the acuity of the hospitalization. STS/ACC TVT score includes a 

multivariable parameter (acuity status) to describe urgency of the procedure, the clinical 

status pre-procedure and cardiac arrest within 24 hours of the operation. Similarly, NIS 

TAVR score incorporates in-hospital cardiac arrest, shock, acute kidney injury, and sepsis 

into the score. While there are similarities, the main utility of the NIS TAVR score is to 

determine prognosis, due to the inclusion of post-procedural variables within the model. 

Given the differences in primary endpoints and that prior TAVR-related outcomes scores 

have been obtained using different populations, no statistical comparison can be performed 

among all the scores represented in Table 3. However, a first glance is enough to identify the 

outperformance of the NIS TAVR score, perhaps because of the inherent benefits of AI. 

Consequently, because the STS/ACC TVT registry has been designed with the VARC-2 

definitions and has a more structured data, there may be an opportunity to improve this 

model using AI.

Although STS/ACC TVT is the largest study to date, wide adoption has not occurred in 

clinical practice since its publication in 2016 [5]. There are several reasons for its slow 

adoption. First, TAVR operators were largely committed to the procedure once the decision 

was made to offer TAVR during the multidisciplinary heart team. In general, the discussion 

focused around technical feasibility once a decision not undergo SAVR was made based on 

the STS risk score, frailty, and comorbidities. As a procedure of last resort, TAVR would be 

offered unless it was deemed prohibitive. Second, guidelines have continued to expand with 

more compelling data showing favorable outcomes for TAVR in different populations. In 

addition to the 2017 American Heart Association (AHA)/ACC focused update which added 

a class IIa recommendation for intermediate surgical risk patients, PARTNER 3 trial 

established the safety and effectiveness of TAVR in lower surgical risk patients as well [1,3]. 
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These findings have led to the discussion regarding the appropriateness of SAVR as the first 

line therapy. Guidelines are likely to embrace broader recommendations supporting the 

superiority and durability of TAVR over SAVR [1,3]. Lastly, wide adoption may not have 

occurred because of the relative infancy of TAVR technology and ongoing exploration into 

long term durability and unknown predictors of clinical outcomes. Recent follow up studies 

show structural stability of TAVR as well as satisfactory clinical outcomes up to 10 years 

post-implantation; however, long-term clinical data remains insufficient at this time [35].

With the recent expansion to the lower surgical risk population, a TAVR risk predictor score 

has become critical for providers and patients for decision making. Our study highlights the 

potential of artificial intelligence to generate robust TAVR-related outcomes prediction tools. 

Machine learning for big data analysis has revolutionized the traditional way of conducting 

cardiovascular research. As a subset of AI, machine learning provides an innovative 

approach to data analysis and imaging interpretation beyond what is provided by 

conventional statistics [36]. The ability to automatically handle large multi-dimensional and 

multi-variety data could ultimately expose novel associations between specific features and 

important cardiovascular outcomes as well as identify trends and patterns that would not be 

apparent to investigators otherwise. In real life, this is akin to a taxi driver eagerly waiting at 

a busy street on Friday night which historically has been a safe spot for picking up 

passengers versus a driver receiving real time requests and the next client waiting at the end 

of the first trip. This ability to incorporate novel predictors from big data highlights the 

important applicability of AI in cardiovascular medicine. Rather than retrospectively 

developing models for risk prediction scores, real-time addition of newly discovered 

variable(s) can be feasible. As we continue to gather significant amount of patient data 

through the electronic medical record and increase the use of imaging in cardiology, AI is 

likely to become an essential tool for clinicians. Incorporation of AI into the expanding list 

of structural interventions will be a gift that keeps on giving as we are better able to predict 

the cutting edge of new innovations and interventions.

Limitations

NIS TAVR score is a risk prediction model that incorporates aspects of patient 

characteristics, hospital course, and the TAVR procedure. The main limitation of NIS 

dataset, by design, is the inability to restrict variables pre versus post procedure, which 

provides a dynamic nature to the NIS TAVR score. For example, using a variable such as 

cardiogenic shock may improve the prediction model when a cardiogenic shock occurs 

during the TAVR admission period. Yet, the use of covariates such as shock or arrest, are not 

exclusive to the NIS TAVR score and have been incorporated into different mortality risk 

scores for TAVR (Table 3) and other clinical scenarios [37]. Second, the NIS is an 

observational cohort using ICD-9 CM and procedure codes which relies on fidelity of 

hospital billing data and deriving clinical information from ICD-9 CM codes are an inherent 

limitation. Although procedures may be highly accurate for billing purposes, some non-

related clinical diagnoses may be omitted and may not represent the true prevalence of risk 

factors. Third, since only patients undergoing TAVR between 2012–2015 were included in 

our study, our results may better represent the extreme and high surgical risk patient 

population. Thus, the NIS TAVR score application for the intermediate and low-risk patients 
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remains unknown. Nevertheless, since our score includes in-hospital complications, patient’s 

surgical risk might not significantly affect its performance. Also, this score was not 

externally validated and therefore; future studies are necessary to better address the viability 

of this model. Finally, ML model complexity and difficult interpretation may hinder its 

reproducibility and application into the standard practice. However, given the growing 

amount of patient data - brought with the implementation of the Electronic Medical Record- 

as well as the rapid implementation of automated algorithms in other medical fields [38], we 

envision that the adoption of AI will shortly become inherent in clinical medicine.

CONCLUSIONS

Using a data meaning approach, we developed the NIS TAVR score to predict in-hospital 

mortality in TAVR patients. The good discrimination of this model reveals the potential of 

AI in the patient risk stratification process not just for TAVR but for any novel structural 

intervention. Further validation and application of ML into the day-to-day clinical practice is 

still warranted to better understand its true value in patients with severe aortic stenosis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS AND ACRONYMS

TAVR transcatheter aortic valve replacement

AS aortic stenosis

SAVR surgical aortic valve replacement

ACC American College of Cardiology

STS Society of Thoracic Surgeons

TVT transcatheter Valve Therapy

ML machine learning

US United States

NIS National Inpatient Sample

ICD-9-CM international classification of diseases, ninth edition, clinical 

modification

LR logistic regression

Hernandez-Suarez et al. Page 9

JACC Cardiovasc Interv. Author manuscript; available in PMC 2020 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ANN artificial neural networks

NB nai’ve bayes

RF random forest

AUC area under the receiver operating curve

CKD chronic kidney disease

MI myocardial infarction

AKI acute kidney injury

AI artificial intelligence

AHA American Heart Association

PROM predicted risk of mortality
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PERSPECTIVES

WHAT IS KNOWN?

Transcatheter aortic valve replacement (TAVR) has emerged as a safe and effective 

therapy for all patients with severe symptomatic aortic stenosis. Current risk prediction 

tools for in-hospital mortality in patients undergoing TAVR are limited.

WHAT IS NEW?

The National Inpatient Sample (NIS) TAVR score was developed and internally validated 

using a machine learning approach. The NIS TAVR score outperformed current available 

TAVR-related outcomes scores. Our study highlights the potential of artificial intelligence 

in generating robust models to predict adverse outcomes in TAVR patients.

WHAT IS NEXT?

Further validation and application of ML into the day-to-day clinical practice is required 

to better understand its true value in patients with severe aortic stenosis.

Hernandez-Suarez et al. Page 13

JACC Cardiovasc Interv. Author manuscript; available in PMC 2020 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Operating characteristic area under the curve (AUC) by machine learning model.LR, 

Logistic Regression; ANN, Artificial Neural Network; NB, Naïve Bayes; RF, Random 

Forest.
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Figure 2. 
Predictive performance of TAVR in-hospital mortality models by number of variables.

LR, Logistic Regression; ANN, Artificial Neural Network; NB, Naïve Bayes; RF, Random 

Forest.
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Figure 3. 
Machine learning model-based feature importance according to the mean ranking. * LR, 

Logistic Regression; ANN, Artificial Neural Network; NB, Naïve Bayes; RF, Random 

Forest.

*The variable’s importance is inversely proportional to the rank. The X-axis depicts the top 

10 variables ordered according to mean ranking.
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Central Illustration. 
Overview of the methods used for data extraction, training and testing. Data from the NIS 

database was extracted using a tailored scripting in Python to select patients with TAVR. 

Then the cohort was split into a training set (70% of the data, n=7,615) and test set (30% of 

the data, n=3,268). A feature ranking method was applied to the training set to determine the 

top 5,10,15,20,30 variables. Because of data imbalance the training sets were randomly 

oversampled and then the ML algorithms (i.e. LR, ANN, NB, RF) were trained to develop 

the models. The different set of variables (including All variables = 43) were used 
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independently to train each of the ML algorithms. The developed models were validated 

using the test sets and computing the precision metric results focused on the AUC.

NIS, National Inpatient Sample; TAVR, Transcatheter Aortic Valve Replacement; ML, 

Machine Learning; ANN, Artificial Neural Network; LR, Logistic Regression; NB, Naïve 

Bayes; RF, Random Forest; AUC, area under the curve..
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Table 1.

Demographic and hospital characteristics of TAVR patients.

Variables Overall n = 
10,883

Development 
cohort n = 

7,615

Validation 
cohort n = 

3,268
P-value Alive n = 

10,493
Deceased n 

= 390 P-value

Demographic characteristics

Age 81.0±8.5 80.9±8.6 81.2±8.4 .316 80.9±8.5 82.2±7.9 .002

Female 5,191 (47.7) 3,649 (47.9) 1,542 (47.2) .496 4,972 (47.4) 219 (56.2) <.001

Smoker 3,250 (29.9) 2,304 (30.3) 946 (29.0) .179 3,184 (30.3) 66 (16.9) <.001

Dyslipidemia 7,142 (65.6) 5,012 (65.8) 2,130 (65.2) .534 6,952 (66.3) 190 (48.7) <.001

Known CAD 7,798 (71.7) 5,472 (71.9) 2,326 (71.2) .483 7,554 (72.0) 244 (62.6) <.001

Prior MI 1,411 (13.0) 993 (13.0) 418 (12.8) .746 1,370 (13.1) 41 (10.5) .164

Prior PCI 2,110 (19.4) 1,495 (19.6) 615 (18.8) .338 2,069 (19.7) 41 (10.5) <.001

Prior CABG 2,354 (21.6) 1,640 (21.5) 714 (21.9) .736 2,304 (22.0) 50 (12.8) <.001

Prior TIA/stroke 1,455 (13.4) 1,025 (13.5) 430 (13.2) .694 1,416 (13.5) 39 (10.0) .055

Atrial Fibrillation 4,837 (44.5) 3,376 (44.3) 1,461 (44.7) .736 4,652 (44.3) 185 (47.4) .247

Carotid Artery Disease 815 (7.5) 547 (7.2) 268 (8.2) .070 803 (7.7) 12 (3.1) .001

Prior PPM 1,141 (10.5) 799 (10.5) 342 (10.5) .993 1,112 (10.6) 29 (7.4) .055

Prior ICD 353 (3.2) 246 (3.2) 107 (3.3) .953 346 (3.3) 7 (1.8) .134

Elixhauser comorbidities

Heart Failure 921 (8.5) 640 (8.4) 281 (8.6) .767 862 (8.2) 59 (15.1) <.001

Diabetes Mellitus 3,830 (35.2) 2,700 (35.5) 1,130 (34.6) .391 3,721 (35.5) 109 (28.0) .003

Hypertension 8,759 (80.5) 6,110 (80.2) 2,649 (81.1) .334 8,509 (81.1) 250 (64.1) <.001

Obesity 1,594 (14.7) 1,133 (14.9) 461 (14.1) .310 1,555 (14.8) 39 (10.0) .010

Peripheral vascular disease 3,154 (29.0) 2,209 (29.0) 945 (28.9) .941 3,028 (28.9) 126 (32.3) .156

Chronic kidney disease 3,812 (35.0) 2,657 (34.9) 1,155 (35.3) .667 3,637 (34.7) 175 (44.9) <.001

Anemia 142 (1.3) 92 (1.2) 50 (1.5) .206 139 (1.3) 3 (0.8) .470

Chronic Pulmonary Disease 3,598 (33.1) 2,534 (33.3) 1,064 (32.6) .479 3,471 (33.1) 127 (32.6) .875

Coagulopathy 2,430 (22.3) 1,719 (22.6) 711 (21.8) .361 2,286 (21.8) 144 (36.9) <.001

Liver disease 279 (2.6) 200 (2.6) 79 (2.4) .571 268 (2.6) 11 (2.8) .870

Cancer 399 (3.7) 263 (3.5) 136 (4.2) .081 390 (3.7) 9 (2.3) .188

Valvular disease 267 (2.5) 182 (2.4) 85 (2.6) .559 249 (2.4) 18 (4.6) .008

Pulmonary circulation disorder 292 (2.7) 201 (2.6) 91 (2.8) .716 264 (2.5) 28 (7.2) <.001

Fluid and electrolyte disorder 2,683 (24.7) 1,832 (24.1) 851 (26.0) .030 2,487 (23.7) 196 (50.3) <.001

Median household income 
(percentiles)

0 to 25th 2,323 (21.7) 1,641 (21.9) 682 (21.2) .942 2,240 (21.7) 83 (21.6) .648

26th to 50th 2,675 (25.0) 1,869 (24.9) 806 (25.1) 2,583 (25.0) 92 (23.9)

51th to 75th 2,723 (25.4) 1,904 (25.4) 819 (25.5) 2,632 (25.5) 91 (23.6)

76th to 100th 3,000 (28.0) 2,093 (27.9) 907 (28.2) 2,881 (27.9) 119 (30.9)

Hospital characteristics
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Variables Overall n = 
10,883

Development 
cohort n = 

7,615

Validation 
cohort n = 

3,268
P-value Alive n = 

10,493
Deceased n 

= 390 P-value

Demographic characteristics

Bed size

Small 517 (4.8) 345 (4.5) 172 (5.3) .257 498 (4.8) 19 (4.9) .991

Medium 2,054 (18.9) 1,439 (18.9) 615 (18.8) 1,980 (18.9) 74 (19.0)

Large 8,312 (76.4) 5,831 (76.6) 2,481 (75.9) 8,015 (76.4) 297 (76.2)

Hospital location

Rural 89 (0.8) 62 (0.8) 27 (0.8) .970 85 (0.8) 4 (1.0) .369

Urban non-teaching 1,071 (9.8) 746 (9.8) 325 (9.9) 1,025 (9.8) 46 (11.8)

Urban teaching 9,723 (89.3) 6,807 (89.4) 2,916 (89.2) 9,383 (89.4) 340 (87.2)

Hospital region

Northeast 2,817 (25.9) 1,991 (26.2) 826 (25.3) .615 2,725 (26.0) 92 (23.6) .004

Midwest 2,108 (19.4) 1,486 (19.5) 622 (19.0) 2,040 (19.4) 68 (17.4)

South 3,919 (36.0) 2,727 (35.8) 1,192 (36.5) 3,746 (35.7) 173 (44.4)

West 2,039 (18.7) 1,411 (18.5) 628 (19.2) 1,982 (18.9) 57 (14.6)

Transapical TAVR 1,692 (15.6) 1,182 (15.5) 510 (15.6) .935 1,603 (15.3) 89 (22.8) <.001

Endovascular TAVR 9,209 (84.6) 6,449 (84.7) 2,760 (84.5) .780 8,907 (84.9) 302 (77.4) <.001

Hospital complications

Stroke/TIA 322 (3.0) 234 (3.1) 88 (2.7) .312 286 (2.7) 36 (9.2) <.001

AMI 251 (2.3) 177 (2.3) 74 (2.3) .903 215 (2.1) 36 (9.2) <.001

PPM placement 851 (7.8) 602 (7.9) 249 (7.6) .638 831 (7.9) 20 (5.1) .055

Conversion to SAVR 18 (0.2) 12 (0.2) 6 (0.2) .961 14 (0.1) 4 (1.0) .003

Cardiogenic Shock 411 (3.8) 289 (3.8) 122 (3.7) .920 282 (2.7) 129 (33.1) <.001

Cardiac arrest 352 (3.2) 248 (3.3) 104 (3.2) .887 247 (2.4) 105 (26.9) <.001

Major bleeding 287 (2.6) 199 (2.6) 88 (2.7) .863 252 (2.4) 35 (9.0) <.001

Vascular complications 299 (2.8) 217 (2.9) 82 (2.5) .351 251 (2.4) 48 (12.3) <.001

AKI 1,893(17.4) 1,323(17.4) 570 (17.4) .953 1,672 (15.9) 221 (56.7) <.001

Sepsis 238(2.2) 164 (2.2) 74 (2.3) .771 151 (1.4) 87 (22.3) <.001

Data are presented as Mean ± SD or n (%). Abbreviations: CAD, Coronary Artery Disease; MI, Myocardial Infarction; PCI, Percutaneous 
Coronary Intervention; CABG, Coronary Artery Bypass Graft; TIA, Transient Ischemic Attack; PPM, Permanent Pacemaker; ICD, Implantable 
Cardioverter Defibrillator; SAVR, surgical aortic valve replacement; AKI, Acute Kidney Injury.
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Table 2.

Classifiers’ predictive performance in the validation cohort (testing set).

Classifier Sensitivity (%) Specificity (%) PPV (%) NPV (%) F-Score

Logistic Regression 87.7 83.9 96.5 83.8 0.92

Artificial Neural Networks 94.4 42.2 95.3 40.2 0.95

Naïve Bayes 84.8 79.7 96.2 79.5 0.90

Random Forest 96.3 16.7 95.0 13.7 0.96

PPV, Positive Predictive Value; NPV, Negative Predictive Value.

Sensitivity: Ability of the trained models (i.e. LR, ANN, NB, RF) to correctly identify patients WITH the event (i.e. ‘deceased’). Specificity: 
Ability of the trained models (i.e. LR, ANN, NB, RF) to correctly identify patients WITHOUT the event (i.e. ‘alive’). PPV: Proportion of patients 
identified WITH the event (i.e. ‘deceased’) that truly had the event. NPV: Proportion of patients identified WITHOUT the event (i.e. ‘alive’) that 
truly did not have the event.
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Table 3.

Characterization of currently available TAVR mortality risk scores.

Score(year) Population Primary outcome AUC

FRANCE-2 (2014)
Total: n=3,833
Derivation cohort: n=2,552
Validation cohort: n=1,281

30-day mortality
0.59

TARIS (2014)
Total: n=1,178
Derivation cohort: n=845
Validation cohort: n=333

30-day mortality 0.69

OBSERVANT (2014)
Total: n=1,878
Derivation cohort: n=1,256
Validation cohort: n=622

30-day mortality 0.71

TAVI2 (2015)
Total: n=511
Derivation cohort: n=511

Validation cohort: n=100†
1-year mortality 0.72

CoreValve US (2016)
Total: n=3,687
Derivation cohort: n=2,482
Validation cohort: n=1,205

30-day and 1-year mortality 0.75 and 0.79, respectively

STS/ACC TVT (2016)
Total: n=20,540
Derivation cohort: n=13,672
Validation cohort: n=6,868

In-hospital mortality 0.66

UK TAVI (2017)
Total: n= 6,339
Derivation cohort: n=6,339

Validation cohort: n=2,969†
30-day mortality 0.66

CAPRI (2019)
Total: n= 1,736
Derivation cohort: n=1,425
Validation cohort: n=311

1 -year mortality 0.68

NIS TAVR (2019)*
Total: n= 10,891
Derivation cohort: n=7,624
Validation cohort: n=3,667

In-hospital mortality 0.92

†
Validation sample was obtained from the derivation cohort.

*
Best model obtained in our study.
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