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Abstract

Group A Streptococcus (GAS; Streptococcus pyogenes) is a bacterial pathogen for which a 

commercial vaccine for humans is not available. Employing the advantages of high-throughput 

DNA sequencing technology to vaccine design, we have analysed 2,083 globally sampled GAS 

genomes. The global GAS population structure reveals extensive genomic heterogeneity driven by 

homologous recombination and overlaid with high levels of accessory gene plasticity. We 

identified the existence of more than 290 clinically associated genomic phylogroups across 22 

countries, highlighting challenges in designing vaccines of global utility. To determine vaccine 

candidate coverage, we investigated all previously described GAS candidate antigens for gene 

carriage and gene sequence heterogeneity. Only 15 of 28 vaccine antigen candidates were found to 

have both low naturally occurring sequence variation and high (>99%) coverage across this diverse 

GAS population. This technological platform for vaccine coverage determination is equally 

applicable to prospective GAS vaccine antigens identified in future studies.

Introduction

GAS causes >700 million cases per year of superficial diseases such as pharyngitis and 

impetigo, and >600,000 cases per year of serious invasive infection. Immune sequelae such 

as acute rheumatic fever (ARF) and acute post-streptococcal glomerulonephritis each 

account for >400,000 cases per year1,2. As a consequence of ARF, >30 million people live 

with rheumatic heart disease, involving mitral and/or aortic regurgitation3. GAS ranks within 

the top 10 infectious disease causes of deaths worldwide1. Despite over 100 years of 

research, a commercial vaccine has not been developed2. Obstacles that have hindered 

development of a GAS vaccine include serotype diversity, GAS antigen carriage and 

variation, and vaccine safety concerns due to the immune sequelae caused by repeated GAS 

infection2,4. A limited number of Phase I clinical trials have since been conducted, focused 

primarily on multivalent N-terminal M protein vaccine candidates5,6. Other candidate GAS 

vaccine antigens that have demonstrated efficacy in preclinical (animal) vaccine studies 
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include the J8 peptide incorporated in the C-terminal repeats of M protein7, and non-M 

protein candidate vaccine antigens such as the group A carbohydrate8,9 and other surface or 

secreted proteins (Supplementary Table 1)2,4. While a number of GAS antigens have been 

selected to avoid autoimmune concerns10,11 or specifically engineered to remove potential 

autoimmune-involved epitopes7,9, the capacity to investigate issues of serotype diversity, 

antigen carriage and antigenic variation is impeded by the considerable genetic diversity 

within the global GAS population12. To address this issue, we have developed a 

compendium of all GAS vaccine antigen sequences from 2,083 isolates employing high-

throughput genomic technology.

Results

GAS population genetics

We have compiled the most geographically and clinically diverse database of GAS genome 

sequences to date, comprising 2,083 strains, of which 645 isolates are reported for the first 

time (Supplementary Table 2). Extracting the classical GAS epidemiological and genotypic 

markers of differentiation from 2,083 genome assemblies, the database constitutes 150 emm 
types (347 emm sub-types)13, 39 known M-protein clusters14 and 484 multi-locus sequence 

types (MLSTs)15.

To assess the genome-wide relationships within this global database, we identified the core 

genome of GAS to be 1,306 coding DNA sequences (CDS), based on an 80% nucleotide 

sequence coverage threshold and presence in >99% of the 2,083 genomes. To examine 

signatures of recombination within the core 1,306 genes, we analysed each core gene 

separately for evidence of mosaicism using the homologous recombination detection tool 

fastGEAR16. Using this algorithm, we found 890 core genes with a recombinatorial 

evolutionary history (Supplementary Fig. 1, Supplementary Table 3), leaving 416 non-

recombinogenic core genes (Supplementary Table 4) encoded by 266,960 bp of sequence 

(~15% of a complete GAS genome). This number is likely to be an under-representation of 

the total levels of GAS core genome recombination based on the limitations in sampling (for 

example, the potential donor genome not being represented in the collection and/or larger 

recombination blocks encompassing multiple genes may be missed). A pseudo-core 

sequence alignment was generated using these 416 core GAS genes. After removal of repeat 

sequences that can confound read mapping, a total of 30,738 single nucleotide 

polymorphisms (SNPs) and 23,923 parsimony informative sites were identified within the 

266,960 bp pseudo-reference. Phylogenetic analysis of the 416 gene pseudo-core GAS 

genome identified a deep branching star-like population structure indicative of an early 

radiation of GAS into distinct lineages (Fig. 1a). While the overall branching topology of the 

tree is supported by comparing genome-specific and lineage-specific SNPs (Supplementary 

Fig. 2), low bootstrap support towards the polytomous root of the tree prevents accurate 

inferences regarding the evolutionary relationships of lineage-specific radiations (Fig 1a). 

Comparative analyses of the core phylogenetic tree topologies prior (1,306 genes) and post 

(416 genes) removal of the predicted recombinogenic CDS, did not affect the overall 

clustering of the isolates at the terminal branches of the tree (Supplementary Fig. 3), 

indicating that recombination events within the ‘core’ GAS genome have blurred the 
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ancestral evolutionary relationships between GAS lineages, yet have not introduced 

sufficient homoplasy to disrupt recent evolutionary signals.

Applying the population network approach of PopPUNK17, we identified 299 distinct 

genetic clusters of evolutionarily related lineages, herein termed phylogroups (Figure 1a, 

Supplementary Fig. 4, Supplementary Fig. 5a). This clustering approach is derived from 

core and accessory genetic distances between all 2,083 genomes using optimisation of a 

clustering network score to find a global distance boundary to define phylogroups 

(Supplementary Fig. 4a, b), and is designed to be iterative, meaning that new genomes can 

be added to this database using the same parameters and nomenclature as presented in this 

study without needing to refit the model. The median nucleotide divergence between 

phylogroups was 0.47% (range 0.25 – 0.56%), whereas genomes within the same 

phylogroup differed by a median divergence of 0.01% (range 0 – 0.14%). Of the 299 

phylogroups, 206 phylogroups were represented by 2 or more isolates (Supplementary Fig. 

4c). Overlaying the geographical origin of the isolates suggests that over half these 206 

phylogroups have a diverse geographical distribution (Fig. 1a). The maintenance of so many 

distinct genetic lineages of GAS not appearing to be restricted by geographical boundaries is 

suggestive of rapid international spread followed by diversifying selection likely driven 

through immune selection and/or strain competition between phylogroups. Furthermore, 

these lineages do not appear to be restricted by clinical association. For example, 172 of the 

206 phylogroups (83%) contain at least one clinically defined invasive GAS isolate 

(Supplementary Fig. 5b). The imbalanced nature of geographical and clinical sampling in 

this study prevents formal statistical inferences, and such phylogroup informed associations 

would require representative genomic epidemiological surveillance of the underlying 

population of GAS worldwide which, to-date, does not exist. Examination of the distribution 

of the classic GAS molecular epidemiological markers relative to the 206 multi-isolate 

phylogroups revealed that 179 (87%) carried a single emm sequence type, 140 (68%) carried 

a single emm sub-type, and 129 (63%) were of a single multi-locus sequence type 

(Supplementary Fig. 6). Only 3 (1.5%) of the emm sequence types and 55 (27%) of the emm 
sub-types were unique to a single phylogroup of 2 or more isolates, inferring extensive 

heterogeneity within GAS emm types. To further investigate these associations, we plotted 

the pairwise genetic distance of isolates based on common GAS epidemiological markers 

(emm type, emm sub-type, M-cluster and MLST). Greater than 66% of emm types (84/128 

multi-isolate representatives) and 32% of the emm sub-types (65/204 multi-isolate 

representatives) exceeded the minimal median nucleotide divergence between any two 

phylogroups (0.25% which equates to 655 SNPs within 416 core genes), showing that many 

emm types, emm sub-types and M-clusters do not share a close evolutionary history and in 

many cases represent different genetic lineages (Supplementary Fig. 7). Conversely, <1% of 

MLST (2/269 multi-isolate representatives) exceeded the minimal median nucleotide 

divergence between phylogroups, yet MLST was a defining marker in only 27% of 

phylogroups. Furthermore, 6 of the 7 MLST genes (murI, xpt, gtr, gki, recP, and mutS) had 

evidence of homologous recombination within their evolutionary history while another 

MLST gene (yqiL) is not part of the core GAS genome (Supplementary Tables 3 and 4). 

Additionally, 3 emm18 genomes were also identified to have a deleted xpt gene18, and have 

been assigned the null allele xpt0 by MLST database curators. While emm-type and MLST 
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have served as important markers for clonal associations within high income settings, our 

data suggest that emm-type and MLST may have limited capacity for assigning evolutionary 

relationships within a globally evolving GAS population.

The identification of hundreds of distinct genetic lineages (299 phylogroups) represents a 

challenge to unravelling the microevolution of dynamically evolving bacterial populations. 

Indeed, only 32 of the phylogroups identified in this study contain a complete GAS 

reference genome (n = 68). Furthermore, the vast majority of publicly available GAS 

reference genomes are of strains and emm-types from North America and Europe, with very 

few reference types from high-disease burden geographical regions. Moreover, the emm-
types circulating in these high-burden settings are often rarely encountered within high-

income regions. To enable future research into global and regional GAS population and 

evolutionary dynamics, 30 geographically and genetically distinct isolates were completely 

sequenced using the long-read PacBio platform (Supplementary Table 5). Based on our 

estimated structure of the global GAS population, these reference genomes represent 27 

previously unsampled phylogroups (Fig. 1a). These high quality geographically, clinically 

and evolutionary diverse genomes will act as an important reference tool for new studies into 

the context of global GAS genome evolution, transmission and disease signatures.

To further assess the relative contribution of recombination on individual phylogroups, we 

quanitifed the genome-wide rate and fragment length of recombination within 36 of the most 

highly sampled phylogroups (constituting 1,062 genomes). The microevolution of each 

lineage was assessed by mapping to a phylogroup specific reference genome and 

recombination assessed by Gubbins19, a tool previously shown to exhibit high concordance 

with other recombination detection approaches20. The average number of SNPs observed 

within the 36 phylogroups was 5,536 SNPs (range 191 to 24,899 SNPs) of which an average 

20.5% of SNPs (range of 0.1 to 100%) were found to be vertically inherited within a 

phylogroup (Supplementary Table 6). Overall the mean ratio of recombination derived 

mutation versus vertically inherited mutation (r/m) was found to be 4.95 (median of 3.12), 

and noteably, is significantly greater than 1 (one-sample Wilcoxon test p-value of 7 x 10-7) 

suggesting that recombination is the primary driver of SNP derived variation in GAS 

(Supplementary Fig. 8). The average number of recombination events per phylogroup was 

58.9 (range 0 to 299) (Supplementary Table 6). Plotting the length of recombination blocks/

fragments revealed that the majority of the events were small in length (< 5000 bp) with 

large events occurring infrequently (Supplementary Fig. 9). The average recombination 

fragment length in each of the 36 phylogroups was 5,437 bp, ranging from 0 bp (phylogroup 

23) to 101,894 bp (phylogroup ‘0’). Removal of recombination events associated with 

putative mobile genetic elements had a limited effect on the total number of recombination 

events per phylogroup (Supplementary Fig. 9b), suggesting that hertitable heterogeneity is 

largely mobile genetic element (MGE) independent. These data highlights that evolution 

across the core genome of GAS lineages is not uniform and is primarily driven by small 

homologous recombination events.

Analysis of the variable gene content (defined as protein coding genes present in less than 

99% of the 2,083 genomes) across the entire 2,083 genomes identified 3,672 ‘accessory’ 

genes when homologues were clustered at a conservative 80% amino acid identity using 
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Roary21 (average of 1,717 protein coding genes per genome). Plotting of unique protein 

counts per new genome added shows that GAS has an ‘open’ pangenome (Fig. 1b), 

indicating that further genes will continue to be identified as new GAS genomes are 

sequenced. Annotation of the accessory genome derived from prophage analysis of the draft 

genome assemblies estimated ~50% of the accessory gene pool of GAS to be phage-related. 

Plotting of the accessory content relative to the core genome phylogenetic structure of the 

global population revealed extensive variation both in total overall, and prophage content, 

within and between GAS core genome lineages (Supplementary Fig. 10), in-line with 

observations from GAS microevolutionary analyses22–25. Collectively, this high level of 

heterogeneity both in the context of core genome sequence and accessory gene content 

provides a unique database for the examination of disease signatures as well as exploring 

conservation and sequence variation within GAS proteins such as vaccine antigens.

Disease signatures within global GAS database

The lack of correlation between evolutionary lineages and clinical association such as 

invasive infection, suggests that disease propensity is not restricted to an evolutionary 

lineage or clone. The interrogation of genomic databases enables an assessment on whether 

there are common genetic factors over-represented with a clinical phenotype, within a 

globally disseminated genetically diverse bacterial population. Invasive propensity in GAS 

has been linked with a number of bacterial genetic factors and regulatory mutations2,26. To 

ascertain statistical support of gene content, gene polymorphisms or combinations thereof 

with clinical GAS invasiveness within this global genomic framework, we used the bacterial 

GWAS method of pyseer27. In this study, we defined invasiveness as those GAS isolated 

from a normally sterile site (blood, cerebrospinal fluid, bronchopulmonary aspirate) or 

severe cellulitis with positive GAS culture as invasive (n = 1,048); and those from clinical 

superfical infections such as throat, skin or urine as non-invasive (n = 896). We included 

country of origin as a regression covariate, to correct for geographical bias as previously 

defined26. Through this approach, we identified 184 hits provisionally associated with GAS 

invasiveness. The underlying population structure was identified as a cofounder, even though 

correction was applied. The confounding effect caused associations at the same p-value 

across the entire genome (Supplementary Fig. 11). The top five k-mers which exceeded this 

confounder threshold include a GAS virulence marker isp (immunogenic secreted 

protein)28; a LacI family transcriptional regulator; and a hypothetical open reading frame 

neighbouring the cysteine protease speB (Supplementary Table 7). Further studies are 

required to ascertain a link between genotype and an invasive phenotype. This analysis 

demonstrates the utility of the global database for generating new disease insights.

GAS vaccine target variation

To examine natural variation of proposed GAS vaccine antigens within this genetically 

diverse GAS population, antigen carriage (gene presence/absence) and amino acid sequence 

variation of 29 proteinaceous GAS antigens, including 4 peptide fragments, was determined 

(Supplementary Table 1). The list of identified vaccine antigens analysed in this study have 

all been shown to convey protection in various murine models (reviewed by Henningham et 

al. 20124) but little is known about the conservation of these antigens within the global GAS 

population. Applying a sequence homology-based screening approach to the 2,083 GAS 
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genome assemblies, 13 antigen genes were identified in >99% of isolates (Fig. 2a) at a 70% 

BlastN cut-off. The group A carbohydrate antigen is derived from a 12 gene biosynthetic 

cluster (gac) that has displayed protective properties in an animal model9. 2,017 GAS 

genomes (97%) shared all 12 protein coding genes with high DNA sequence conservation. 

Some genomes harboured frameshift mutations in several gac genes suggesting that not all 

12 genes are critical for GAS survival, commensurate with previous findings on 520 gac 
loci29.

In addition to being omnipresent within the GAS population, an ideal GAS vaccine 

candidate would exhibit low levels of naturally occurring sequence variation within a 

genetically diverse dataset. To examine this question, pairwise BlastP cut-off values for 25 

protein antigens were calculated. Eighteen antigens exhibited low levels (<2%) of amino-

acid sequence variation (Supplementary Fig. 12). When plotted relative to overall carriage 

within 2,083 genomes, 13 of the 25 antigens were not only carried by >99% of the 2,083 

genome sequences but also exhibited low levels of allelic variation (<2% sequence 

divergence) (Fig. 2b, Supplementary Fig. 12). Furthermore, 11 of these 14 core genome 

vaccine antigens had signatures of homologous recombination in their evolutionary history 

(Supplementary Fig. 13). The highest level of sequence heterogeneity in pre-clinical vaccine 

antigens was observed within the M-protein. Collectively only 33% of genomes had an N-

terminal emm sub-type (685 out of 2,083) represented within the 30-valent M-protein 

vaccine formulation30 (Fig. 2a). We also examined the prevalence of other GAS peptide-

based vaccine antigens, namely the C-terminal M-protein sequences of J831 and 

StreptInCor32; and the S2 peptide from the serine protease SpyCEP33. Carriage of these 

peptide antigens were assessed at an exact 100% match with the query peptide sequence 

within the 2,083 GAS genomes. The analyses revealed that 37% of the 2,083 isolates 

harboured the J8.0 allele of the M-protein; 17% carry the conserved overlapping B and T 

cell epitope of the StreptInCor M-protein vaccine candidate; and 56% of isolates encode the 

S2 peptide from SpyCEP protein. Further interrogation of known J8 sequence variants 

within the multi-copy M- and M-like C-repeat sequences represented in the 2,083 genome 

assemblies identified J8.12 (79%) and J8.40 (76%) as the most frequently encountered 

variants (Supplementary Fig. 14).

The characterisation of core gene products under different selection pressures may be used 

to identify potential novel vaccine antigen targets. Using the ratio of non-synonymous to 

synonymous codon subsititutions (dN/dS ratio) of each of the non-recombinogenic 416 

genes, we identified that the average dN/dS ratio across the core GAS genome was greater 

than expected under a neutrality ratio of 1 (1.16), consitituing 49% of core genes (205 out of 

416), suggestive of an overall positive selection across the GAS genome (Supplementary 

Table 4). Of the 3 ‘non-recombinogenic’ core vaccine targets analysed in this study, the 

streptococcal hemoprotein receptor (Shr) had signatures of positive selection (dN/dS 1.22) 

while the hypothetical membrane associated protein Spy0762 and the nucleoside-binding 

protein Spy0942 both exhibited signatures of purifying selection with dN/dS ratios of 0.57 

and 0.66 respectively (Supplementary Table 4).
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Antigenic heterogeneity within GAS vaccine antigens

The ascertainment of antigenic variation within genome sequence databases allows such data 

to be overlaid onto protein structures, yielding important insight regarding potential sites of 

structural plasticity or immunodominance, which in turn can be used to inform vaccine 

design through identification of invariant surface regions and/or structurally constrained 

domains or subdomains. Two crystal structures are publicly available for GAS proteins that 

fulfil the criteria of global vaccine antigen coverage as defined in this study (>98% carriage 

and <2% amino acid sequence variation): Streptolysin O34 and C5a peptidase35. 

Identification of polymorphism location and polymorphism frequency within the 2,083 GAS 

genomes for the Streptolysin O (Fig. 3a, Supplementary Table 8) and C5a peptidase (Fig. 3b, 

Supplementary Table 9) proteins were determined. Using this data, we derived the consensus 

amino acid sequence for each protein. We then modelled the consensus sequence and 

population derived polymorphisms onto the corresponding crystal structures of the mature 

Streptolysin O protein (amino acids 103-501, Fig. 3b, c)34 and C5a peptidase (amino acids 

97-1032; Fig. 3b, d)35. Using data extracted from the 2,083 genomes, further examination of 

amino acid heterogeneity present within the mature Streptolysin O protein revealed 5 

sequence diversity hotspots (Fig. 3c). All hotspot polymorphisms were bimorphic in nature 

indicating restrictions in Streptolysin O plasticity (Supplementary Table 10). In comparison, 

we identified 20 sequence diversity hotspots within the mature C5a peptidase protein of 

which half were bimorphic (Fig. 3a, Supplementary Table 11), indicating more plasticity can 

be accommodated within the C5a peptidase than Streptolysin O. To ascertain the functional 

consequence of the most common protein variations, we examined mutational sensitivity 

and structural integrity of these amino acids variants using Phyre236 and the SuSPect 

platform37. All substitutions in both Streptolysin O and C5a peptidase were at locations 

where it was predicted that a change in the amino acid would not likely impact protein 

structure or activity (Supplementary Tables 10 and 11). To further examine selective 

pressures within these antigens, we assessed the selective constraints at each codon position. 

We found that 10.5% (60/571) of amino acid residues had higher diversity at first and second 

codon positions than at third codon positions for Streptolysin O and 16.5% (170/1032) for 

C5a peptidase, indicating that these sites are undergoing positive selection (Supplementary 

Tables 8 and 9). Of the diversity hotspots, 40% (2/5) of the Streptolysin O sites and 60% 

(12/20) of the C5a peptidase sites demonstrated signatures of positive selection. These data 

may reflect immune selection and/or the amount of plasticity that can be encompassed 

without compromising protein function.

Discussion

There is a strong case for the development of a safe and efficacious GAS vaccine1,2. One of 

several hurdles to be addressed in the development of a GAS vaccine suitable for worldwide 

use is the extensive genetic diversity of the global GAS population. To address issues of 

vaccine antigen gene carriage within the global GAS population and the extensive variation 

of antigen amino acid sequences between isolates, we have developed a platform for the 

interrogation of candidate antigens at unprecedented resolution. We have demonstrated that 

GAS is a genetically diverse species containing a large dispensable gene pool. Within the 

core or ‘conserved’ genome we have identified extensive evidence of recombination that will 
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initiate future research into the biology and underlying drivers of such dynamic evolution. 

This diversity also has consequences for vaccine induced evolutionary sweeps of bacterial 

populations and subsequent emergence of vaccine escape clones, as has been observed in 

serotype-specific Streptococcus pneumoniae 38 and Bordetella pertussis 39 vaccination 

programs. Our findings identify that selection pressures are variable across the core GAS 

genome and proposed vaccine candidates, likely reflective of distinct and ongoing 

evolutionary adaptation. Collectively, within an evolving global bacterial pathogen such as 

GAS, we have identified that a number of proposed pre-clinical GAS vaccine antigens fulfil 

the criteria for a global vaccine. It is tempting to speculate that multi-antigenic formulations 

would provide an ideal approach against a rapidly evolving pathogen as well as increasing 

global coverage. Indeed, the incorporation of additional antigens to existing serotype-

specific approaches in GAS enhances theoretical vaccine coverage40 (Supplementary Table 

12).

We reveal that the global population structure of GAS is one of extensive genetic diversity, 

likely to be reflective of rapid international spread of genetically diverse lineages driven by 

diversifying selection from the immune system and/or competition between lineages. This 

may lead to negative frequency-dependant selection as has been proposed for other human 

bacterial pathogens such as S. pneumoniae and E. coli 41,42. Recombination has previously 

been identified to be high in GAS43,44 and at a genome-wide population level, our findings 

suggest a major role for homologous recombination of small DNA fragments in driving the 

evolutionary dynamics of GAS, indicating that evolution of GAS lineages is more likely to 

arise by recombination rather than by mutation43. All GAS lineages do not evolve at the 

same rate and this is likely to have key, yet undefined, biological significance. Similar 

impact and rates of homologous recombination have been observed in other bacterial 

pathogens such as S. pneumoniae 45 and Legionella pneumophila 46. A comparison of the 

relative rates of recombination versus mutation, based on whole-genome and gene-restricted 

MLST approaches, places S. pyogenes with other highly recombinogenic species such as K. 
pneumoniae and S. pneumoniae (Table 1).

The generation of high quality, well-curated reference genomes acts as a landmark for 

understanding the evolutionary context of a species, especially given the high levels of 

genetic diversity encountered in bacterial populations such as GAS and the contrasting 

epidemiology of infection observed between high-income countries and lower 

socioeconomic regions of the world which accounts for the overwhelming burden of GAS 

disease. The availability of new GAS reference genomes will enable targeted evolutionary 

and pathobiological studies of this genetically diverse pathogen. The 30 new GAS reference 

genomes reveal that despite an open pangenome where accessory gene content varies 

significantly across the population and recombination appears frequent, the overall size of 

the GAS genome remains at a steady state. Only recently have plasmids been characterised 

within the GAS genome19,47,48. We have identified a further 5 small plasmids in GAS 

ranging in size from 2,645 bp to 6,485 bp, harbouring bacteriocin-like genetic markers that 

are suggested to play a role in inter-bacterial inhibition49. In the context of vaccination, the 

availability of a globally representative reference database will provide a platform for 

examining the effect of future vaccination programs38,39.
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Modelling of population based antigenic variation against protein crystal structures enables 

the identification of residues that may be under functional or structural constraints, or 

alternatively, selection pressure. This population-derived sequence approach could be 

assessed alongside immunological studies to define protective epitopes. Such information 

can be incorporated into further refinement of vaccine antigens such as peptide-based 

approaches that factor in naturally occurring population heterogeneity, enabling the targeting 

of immunogenic epitopes within antigens that are less amenable to variation.

This platform for population genomics-informed vaccine design is equally applicable to all 

known GAS antigens and those that remain to be defined. Thus, informed selection of 

putative vaccine antigens for human trial evaluation will now be possible, allowing 

identification of highly conserved antigens or combinations of antigens that ensure complete 

vaccine coverage across GAS emm types from differing geographic regions. For example, 

GAS vaccine antigens such as SLO, SpyCEP, ADI, TF and C5a peptidase, found here to be 

highly conserved across geographic regions, protect against multiple GAS emm types in 

animal models10,50,51. An approach similar to that used in this study would also be 

applicable to other pathogens that exhibit high levels of global strain diversity.

Online Methods

Bacterial isolates

The global collection of 2,083 Streptococcus pyogenes isolates examined in this study 

included short read genome sequence data from population-based studies that we have 

generated within Kenya59 and Fiji26, and other disease specific population-based studies of 

invasive GAS from Canada60, USA18 and the United Kingdom61,62 that was available as of 

1st July 2018. We selected a small subset of isolates from published microevolution 

(outbreak) studies to avoid biasing the collection on single genetically related lineages. 

Sixty-eight GAS reference genomes and publicly available draft genomes from Lebanon63 

were also included. To increase genomic representation from regions endemic for GAS 

infection and other under-sampled geographical regions, we collected a further 271 isolates 

from Australia, 279 isolates from New Zealand, 50 isolates from Brazil, 45 isolates from 

India and 7 isolates from Belgium. The rationale underpinning isolate selection was 

difference in epidemiological markers (emm type), anatomical site of isolation (skin, throat, 

blood) and clinical presentation, all key factors in GAS vaccine design. Metadata pertaining 

to the database of isolates are provided in Supplementary Table 2.

Genome sequencing and assembly

Genomic DNA was extracted and paired-end multiplex libraries were created and sequenced 

using the Illumina Hi-seq 2500 platform at the read-length between 75 to 125 bp (Wellcome 

Trust Sanger Institute, UK). Draft genome sequences were generated using an iterative 

Velvet-based assembly pipeline with secondary read mapping validation64 or using SKESA 

v2.3.065 with default parameters. Gene predictions and annotations were generated using 

PROKKA66 and streptococcal RefSeq specific databases64. Annotations pertaining to the 

mga locus (including emm and emm-like genes) were manually curated using in-house 

databases due to ambiguity when using pipeline procedures. The assembly pipeline 
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generated assemblies of an average length of 1,791,171 bp (range 1,641,039 bp – 1,986,343) 

and an N50 of 252,789 bp (range 2,276 – 1,953,601 bp). On average, 1,711 coding 

sequences were identified per draft genome (range 1,495 – 1,976 coding sequences [CDS]). 

All draft genome assemblies are publicly available through GenBank. Accession numbers 

are listed in Supplementary Table 2.

Sequence mapping

To examine the genetic relationship of the 2,083 GAS genome sequences, we employed a 

single reference based mapping approach using sub-sampled Illumina fastqs at an estimated 

coverage of 75x. Published reference and draft genome datasets accessed from public 

databases were each shredded into an estimated 75x coverage of paired-end 100 bp reads 

using SAMtools wgsim. Sequence reads were mapped to the M1 GAS reference genome 

MGAS5005 (GenBank accession number CP000017)67 with BWA MEM (version 0.7.16) 

and read depth calculated with SAMtools (version 1.6) with a Phred quality score ≥20. 

Single nucleotide polymorphism (SNPs) with a Phred quality score ≥30 were identified in 

each isolate using SAMtools pileup with a minimum coverage of 10x. Core genes were 

defined as a minimum 80% of the MGAS5005 reference gene with a minimum 10x 

coverage. Using this approach, we identified 1,306 MGAS5005 genes with 99% carriage in 

2,083 genomes. A core SNP genome alignment of 171,273 SNPs was generated by 

concatenating the SNPs located within the 1,306 core genes, giving a total of 1,201,767 bp. 

SNPs residing within repeat regions (minimum length of 20 nucleotides) and mobile genetic 

elements are considered evolutionary confounders and were identified as previously 

described68 or identified using PHASTER69. SNPs within these regions were excised from 

the core alignment, reducing the length from 1,201,767 bp to 1,197,326 bp and the SNP 

count from 171,273 to 170,653. Therefore, a total of 170,653 SNPs were aligned for 

phylogenetic analysis of the 1,306 ‘core’ genome (Supplementary Fig. 3).

Recombination detection

To examine evidence of recombination within the core GAS genome, FastGEAR16 was run 

on 1,306 individual gene alignments, comprising all 2,083 GAS strains included in the 

study. This method infers population structure for each alignment allowing for detection of 

lineages that have ancestral and recent recombinations between them. Default parameters 

were used with a minimum threshold of 4 bp applied for recombination length. A total of 

890 genes had signatures of recombination and were excluded from evolutionary analyses. 

The remaining 416 genes were concatenated, corresponding to 268,003 bp of sequence. 

SNPs residing within repeat regions were removed as described above, resulting in 266,960 

bp of sequence used as a best estimate for the global GAS population structure.

For intra-phylogroup recombination analyses, 36 most highly represented PopPunk 

phylogroups were chosen to investigate the influence of recombination (1,062 isolates). For 

each phylogroup, core genome alignments were performed using Snippy v4.3.5 (https://

github.com/tseemann/snippy), against a reference strain within each phylogroup 

(Supplementary Table 6), maximum likelihood trees were inferred using IQtree v1.6.570, 

which were used as inputs for the recombination detection tool Gubbins v.2.3.419. Gubbins 

was run with maximum number of iterations of 20 with the minimum number of 5 SNPs to 
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identify a recombination block, with a window size of 100 to 10,000 bp, with any taxa with 

more than 25% gaps filtered from the analysis. Recombinogenic blocks that overlapped with 

predicted mobile genetic elements (MGEs) in the reference genome were discarded. Phage 

regions were determined using PHASTER69 and integrative conjugative elements (ICE) 

were determined by manual inspection of reference genomes based on similarity of blast hits 

from known ICE. Recombination versus vertically inferited mutation (r/m) ratios for each 

lineage were calculated as the average r/m including all isolates within the phylogroup. For 

the species values of r/m was determined by the average across all 36 phylogroups (Table 1).

Phylogenetic analysis

Maximum-likelihood trees were generated for the 416 and 1,306 core genome alignments 

using IQ-tree v1.6.570. The generalized time-reversible nucleotide substitution with gamma 

correction for site-specific rate variation was performed with 100 bootstrap random 

resampling’s of the alignment data to support for maximum-likelihood bipartitions. For 

figure generation, phylogenetic trees and associated metadata were collated using the web 

portal, Interactive Tree of Life71.

Population genomics and cluster designation

To define evolutionary related clusters (phylogroups) in the population we used PopPUNK 

(Population Partitioning Using Nucleotide K-mers), which has previously been shown to 

give high quality clusters in a subset of S. pyogenes isolates included in this study17. We 

used k-mers between 15 and 29 nucleotides long in steps of two to calculate core and 

accessory distances between all pairs of isolates (Supplementary Fig. 4a). We clustered these 

distances first with the default two-component Bayesian Gaussian Mixture Model, then used 

the 'refine fit' mode to move the boundary of this fit such that the network was highly 

transitive and sparse, obtaining a network score (ns) of 0.980 (Supplementary Fig. 4b, 4c). 

To increase the utility of the GAS population clusters defined here, we created a database so 

that others can assign sample clusters using the same model and nomenclature as we present 

here. To do this we used PopPUNK to extract one sample per clique in the network, giving a 

reduced size query database containing 359 sequences. This database can be accessed at 

https://doi.org/10.6084/m9.figshare.6931439.v1 and contains an example command for 

database query and future expansion. The PopPUNK cluster designation (“phylogroup”) for 

each of 2,083 genomes have been added to Supplementary Table 2 and to the Microreact72 

interative web application (https://microreact.org/project/5DEFpeck4).

Nucleotide divergence was derived by calculating the pairwise hamming distance from the 

416 core genome alignment (266,960 bp). For pairwise hamming distance plots based on 

epdemiological markers (Supplementary Fig. 7), a reference genome was assigned for each 

marker based on the most representative distance within each type (minimum combined 

hamming distance) from the 416 core genome alignment.

Pangenome analysis

The pangenome was defined using Roary v3.11.221 without splitting paralogs and with 

clustering at 80%. Accessory genome was defined as the pan less the core, totalling 3,672 

genes. Identification of prophage CDS within each of the 2,083 genomes was performed 
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using PHASTER69. Clustering with CD-HIT-EST73 at ≤90% nucleotide homology resulted 

in 1,438 gene clusters. 584 core genes and 1,567 accessory genes hit these phage regions 

with blastn v2.3.0+ with a 90% nucleotide cut-off over 90% of the gene length. These data 

were then processed to generate a binary gene content matrix in which the presence of a 

gene is defined as >90% coverage to a corresponding phage gene cluster.

Vaccine antigen screening pipeline

To examine naturally occurring antigenic variation of proposed GAS vaccine targets within 

this genetically diverse GAS population, carriage of 29 vaccine antigens (Supplementary 

Table 1) and the group A carbohydrate biosynthesis loci was determined. The list of vaccine 

antigens screened have been shown to convey a significant level of protection in murine 

models4, but less is known about the conservation of these antigens within a global context. 

The presence of vaccine antigen genes was determined by BlastN analysis of 2,083 genome 

assemblies based on a 70% nucleotide cut-off over 70% of the gene length. Nucleotide 

sequences of whole and N-terminal regions of the M-protein were extracted using publicly 

available databases to account for known higher levels of allelic variation. This data was 

then converted into a binary gene content matrix in which gene presence was defined as 

>70% homology across a minimum 70% of the query gene length. Allelic variation was 

examined by plotting tBlastN (or BlastN for group A carbohydrate genes) scores relevant to 

the query reference sequence. To facilitate future studies assessing vaccine antigen carriage 

and sequence variation within GAS genome sequences, we have generated a bioinformatics 

pipeline for assessing antigenic variation from genome assemblies. This script, as used in 

this study, is available at https://github.com/shimbalama/screen_assembly and requires a 

query sequence (such as a vaccine antigen) and will run BlastN, tBlastN or BlastP at a user 

defined cut-off generating numerous outputs and plots as represented in this study (see Fig. 

3a, Supplementary Fig. 13 and Supplementary Tables 8 and 9). Futhermore, this screening 

approach is applicable to any pathogen where genome assemblies are supplied.

Streptolysin O and C5a peptidase surface variation

Protein sequences of streptolysin O and C5a peptidase were chosen for further analyses as 

well characterised crystal structures exist for each of these GAS antigens. A protein 

alignment corresponding to the published crystalised structures of streptolysin O (amino 

acid residues 103 – 571, Protein Data Bank [PDB] accession number 4HSC34) and C5a 

peptidase (amino acid residues 97 - 1032, PDB accession number 3EIF35) was generated. 

Using this data, we derived the consensus amino acid sequence for each protein as defined 

by the most common amino acid identified within the global GAS genome database and 

modelled the consensus against the mature crystal structures. Amino acid polymorphic sites 

were converted into a binary matix and presented as a percentage of 2,083 genomes in Fig. 

3. Visualisation of polymorphic sites on the crystal structure was determined using Chimera 

(version 1.11.2)74. Mutational sensitivity and structural integrity analyses was performed 

using Phyre236 that incorporates the SuSPect platform37.

Signatures of molecular adaptation

We investigated molecular signatures of selective constraints in all non-recombinogenic core 

genes (n = 416) by fitting a codon model to each of the individual genes and estimating the 
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ratio of synonymous to nonsynonymous substitutions, dN/dS (also known as ω). 

Recombinogenic core genes (n = 890), as identified by fastGEAR, were excluded from 

analyses as such evolutionary processes invalidate phylogenetic codon model fitting. For 

each gene alignment, ambiguous codon sites were first excluded, before fitting the M0 

codon model in CODEML, part of the PAML v4.0 package75. This model estimates a global 

dN/dS which allows for straight-forward comparison between genes. For the Streptolysin O 

and C5a peptidase protein coding genes we conducted more detailed analyses, by assessing 

selective constraints across codon sites. To do this we counted the number synonymous and 

nonsynonymous substitutions in each codon position, to obtain a similar quantity to the 

dN/dS value above76. Although this method does not explicitly use a codon model, it is 

scalable for the large number of samples used here. Despite the objective of this study being 

centered around global diversity, our database does contain sample bias in the context of 

clinical and geographical sampling, and the selection analyses should be interpreted 

carefully, as they may not represent current global selective trends.

Generation of 30 new GAS reference genomes

The vast majority of publicly available completely sequenced reference genomes are of 

emm-types from North America and Europe and very few are of emm-types from high-

disease burden geographical regions. To facilitate the expansion of studies within the highest 

disease burden regions, 30 isolates were completely sequenced using long-read sequencing 

technology. Long-read sequences were obtained using the Pacific Biosciences RS II 

platform from a single molecule real-time (SMRT) cell as described previously77. Briefly, 

genome sequences were assembled using the SMRTpipe version v2.1.0 using the 

Hierarchical Genome Assembly Process (HGAP.2) and Quiver for post-assembly consensus 

validation. Secondary validation of the assemblies was performed using the Canu 

assembler78. To correct long-read sequence errors, primarily around homopolymeric regions, 

Illumina short read sequences from each of the 30 genomes were mapped using BWA MEM 

v0.7.16. Single contigs were achieved for all genomes and associated plasmids where 

present, with an average coverage depth of 80x. Genomes were annotated using the same 

pipeline as for the Illumina draft genomes64 with putative prophage regions defined using 

the PHASTER server69. The average size of these new reference genomes was 1,810,671 bp 

(ranging from 1,701,466 bp to 1,950,606) with 5 strains containing circular plasmids 

ranging from 2,645 bp to 6,485 bp in size (Supplementary Table 5).

Genome-Wide Association of GAS Invasiveness

To identify genomic signatures within the global GAS population overrepresented with 

severe GAS infection (‘invasive’) we ran pyseer27 on 1,944 samples (1,048 defined as 

invasive) using the linear mixed model. A total of 87M k-mers between 9 and 100 bases long 

were counted using fsm-lite. We only tested common k-mers, those with a minor allele 

frequency >1% (of which 18M were counted in our dataset). We created a kinship matrix 

from our recombination-free core phylogenetic tree of 2,083 genomes (416 genes, Figure 

1a). The country of isolation was used as a covariate in pyseer’s model to account for 

geographical signal as defined previously26. All k-mers were mapped to the MGAS5005 

GAS reference genome using bwa and visualised with R. We used a Bonferroni correction to 

adjust the significance threshold passed the number of unique patterns tested, which gave 
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9.4x10-7 for a 0.05 family-wise error rate. 184 k-mers were significantly associated with 

severe infection.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Population structure and pangenome of 2,083 globally distributed GAS strains.
(a) Maximum-likelihood phylogenetic tree of 30,738 SNPs generated from an alignment of 

416 core genes. Branch colours indicate bootstrap support according to the legend. Distinct 

genetic lineages (n = 299) are highlighted in alternating colours (blue and grey) from the tips 

of the tree. Coloured asterisks refer to the relative position of complete GAS reference 

genome sequences (existing references are shown in brown; 30 new reference genomes are 

shown in dark blue). Colour coded around the outside of the phylogenetic tree is the country 
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of isolation for each isolate. (b) Pangenome accumulation curve of 2,083 GAS genomes 

based on clustering of protein sequence at 70% homology.
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Figure 2. Antigenic variation within vaccine targets from 2,083 GAS genomes.
(a) Gene carriage (presence/absence) of vaccine antigens. (b) Amino acid sequence variation 

within 25 protein antigens for each of the 2,083 GAS genomes. Each ring represents a single 

antigen with protein similarity colour coded according to pairwise BlastP similarity: Black 

(>98%); Blue (between 95 – 98%); Red (between 90 - 95%); Pink (80 - 90%); Yellow (70 - 

80%); Grey (<70%); and White (protein absence). Rings correspond to: 1) R28; 2) Sfb1; 3) 

Spa; 4) SfbII; 5) FbaA; 6) SpeA; 7) M1 (whole protein); (8) M1 (180bp N-terminal) 9) 

SpeC; 10) Sse; 11) Sib35; 12) ScpA; 13) SpyCEP; 14) PulA; 15) SLO; 16) Shr; 17) OppA; 
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18) SpeB; 19) Fbp54; 20) SpyAD; 21) Spy0651; 22) Spy0762; 23) Spy0942; 24) ADI; and 

25) TF.
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Figure 3. Global amino acid variation mapped onto the protein crystal structure of the mature 
GAS Streptolysin O34 and C5a peptidase35.
(a) Frequency of amino acid variations within 2,083 genomes. (b) Schematic of the 

Streptolysin O and C5a peptidase open reading frame representing the location of amino 

acids within the mature enzymes (blue block). Model of the consensus sequence of the 

Streptolysin O (c) and C5a peptidase (d) mature enzymes. Plotted against the structure is the 

amino acid variation frequency within the 2,083 GAS genomes as represented in the colour 

gradient from 1% variable (blue) to 42% variable (red); invariant sites are coloured in light 
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grey. Position of the top 5 most variable surface hotspots (“HS”) are annotated (as defined in 

Supplementary Tables 10 and 11). Active sites for each enzyme are indicated (cyan arrow).
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Table 1
Comparative ratio of nucleotide changes resulting from recombination relative to point 
mutation (r/m) in selected bacterial pathogens

Species r/m ratio
(genome-wide)

r/m ratio
(MLST-derived) *

References

Streptococcus
pyogenes

4.95 17.2 This Study and Enright et al. 15

Streptococcus
pneumoniae

6.36 23.1 Chaguza et al. 53 and Hanage et al. 54

Staphylococcus
aureus

0.6 0.1 Driebe et al. 55 and Enright et al. 56

Legionella
pneumophilla

47.8 0.9 David et al. 46and Coscolla and Gonzalez-Candelas 57

Klebsiella
pneumoniae

4.75 0.3 Diancourt et al. 58and Wyres et al. 59

*
Multi-locus Sequence Type (MLST) allele-derived r/m ratios as defined by Vos and Didelot44.
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