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Abstract

Eukaryotic genes are regulated by multivalent transcription factor complexes. Through cooperative 

self-assembly, these complexes perform non-linear regulatory operations involved in cellular 

decision-making and signal processing. Here, we apply this design principle to synthetic networks, 

testing whether engineered cooperative assemblies can program non-linear gene circuit behavior in 

yeast. Using a model-guided approach we show that specifying strength and number of assembly 

subunits enables predictive tuning between linear and non-linear regulatory response for single- 

and multi-input circuits. We demonstrate that assemblies can be adjusted to control circuit 

dynamics. We harness this capability to engineer circuits that perform dynamic filtering, enabling 

frequency-dependent decoding in cell populations. Programmable cooperative assembly provides a 

versatile way to tune nonlinearity of network connections, dramatically expanding the 

engineerable behaviors available to synthetic circuits.

Cooperativity is a widespread biological phenomenon by which coordinated behavior within 

a molecular system emerges from energetic coupling between its components (1, 2). In 
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eukaryotic gene networks, cooperative assembly occurs when core initiation machinery is 

recruited to basal promoter regions through multivalent, mutually-reinforcing interactions 

between transcription factors (TFs) and associated co-factors (3) (Fig 1A). The resulting 

nucleoprotein complexes play a critical signal processing and decision-making role (4–11); 

they convert analog TF inputs into switch-like transcriptional outputs (12, 13), or incorporate 

multiple TFs to carry out decision functions by activating transcription only in the presence 

of TF combinations (4, 14).

To date, most synthetic gene circuits have been constructed using TFs that bind to promoters 

in one-to-one fashion (15–17), constraining the ability to tune circuit cooperativity and 

potentially imposing limits on engineerable behavior (18) (Fig. 1A, top). Here, we ask 

whether circuits with expanded signal processing function can be implemented using 

engineered multivalent assembly (Fig. 1A, bottom). We establish theoretical and design 

frameworks for programming cooperative TF assembly based on the configuration and 

strength of intra-complex interactions, and construct synthetic gene circuits composed of 

interconnected regulatory assemblies.

In our scheme for engineering cooperative TF assemblies (Fig. 1B), transcription is activated 

when synthetic zinc-finger (ZF) proteins fused to transcriptional activator domains (synTFs) 

bind tandem DNA binding motifs (DBMs) located upstream of a core promoter (19, 20). 

Assembly is mediated by a “clamp” protein: multiple covalently-linked PDZ domains that 

bind peptide ligands located on the C-termini of adjacent DBM-bound synTFs. Complex 

free energy can be adjusted by varying either the number of clamp/synTF/DBM repeats (nc), 

or the affinity of synTF-DBM and PDZ-ligand interactions (Kt and Kp, respectively), which 

is enabled by affinity variants for both domains (15 ZF-DNA and 13 PDZ-ligand 

interactions) (fig. S2–3).

In order to directly test whether the synTF/clamp/DBM module can support cooperative 

assembly, we conducted in vitro fluorescence anisotropy binding experiments on purified 

complex components (fig. S2–3, Supplementary Materials and Methods). synTF binding to a 

nc=2 probe showed a non-cooperative dose response profile, while presence of a two-PDZ 

clamp lowered the synTF binding threshold and steepened the dose response; an effect not 

observed for a non-binding synTF or for an nc=1 probe (Fig. 1C). Complex formation using 

an nc=3 probe (and three-PDZ clamp) demonstrated a still sharper, lower-threshold response. 

Thus, synTF binding cooperativity is enhanced by the clamp and scales in magnitude with 

complex size.

We next demonstrated in vivo complex assembly in yeast cells by constructing a 

transcriptional circuit in which a nc=2 synTF assembly drives a GFP reporter, with synTF 

and clamp levels controlled via non-cooperative, small-molecule inducible expression 

systems (Fig. 1D, fig. S4): ncTET (for synTF expression) (21), induced with 

anydrotetracycline (ATc), and ncZEV (for clamp expression) (22), induced by estradiol 

(EST). A dose response surface was obtained by titrating ATc against EST and recording 

GFP fluorescence output using flow cytometry (Fig. 1E, upper left). Consistent with clamp-

enhanced synTF binding, ATc dose response threshold was reduced in the presence of 

increasing EST (Fig. 1E).
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To quantitatively describe complex formation, we formulated a simple statistical 

thermodynamic model (14, 23, 24) relating intracellular synTF and clamp expression to 

promoter occupancy and resulting GFP output (fig. S7–10, see Supplementary Text for full 

model description). The model was fit to experimental two-input dose response data for 

seven complex configurations, where Kt, Kp, and nc were experimentally adjusted (Fig. 1E). 

Parameter fitting was constrained by in vitro-measured PDZ and ZF interaction affinities 

(fig. S2–3) and inducible component expression data (fig. S4). The fitted model can be used 

to guide circuit engineering, enumerating potential circuit behaviors (behavior space) based 

on input-output functions calculated for available configurations of parts (configuration 

space) (Fig 2A, fig. S2–4).

We examined dose response behavior for a single-input (2-node) circuit motif consisting of 

an inducible upstream input node (driving synTF production) and a downstream reporter 

node where the synTF assembles with constitutively expressed clamp (Fig. 2B). We asked 

whether features of the circuit dose response—half-maximal dose response (EC50) and Hill 

coefficient (nH)—could be systematically tuned by adjusting complex Kt, Kp and nc (Fig. 

2B, fig. S11). Dose responses for all part-allotted configurations (603) were computed, and 

EC50 and nH values plotted as a two-dimensional behavior space (Fig. 2B, fig. S12). Low 

valency configurations conferred linear (lower nH) dose responses, while those with higher 

nc were broadly distributed, including configurations exhibiting the most switch-like (nH > 

3.0) behavior (fig. S12). Circuit configurations with different predicted nH values were 

tested experimentally (fig. S12), and showed good correspondence with the model (Fig. 2B, 

fig. S12C).

We next assessed the relationship between assembly and Boolean computation for 

complexes integrating multiple synTF inputs (TF1 and TF2 respectively controlled by 

ncTET and ncZEV) (Fig. 2C). We calculated dose response surfaces for two-input circuits 

containing complexes ranging from nc = 2 to 6, for all possible combinations of TF1 and 

TF2 occupancy and interaction affinity (8,424 in total) (fig. S13A). We used Kullback-

Leibler (K-L) divergence to compare idealized digital AND- and OR-like logic functions 

and simulated circuit behavior (fig. S13B, C). Plotting K-L divergences as a scatter revealed 

that regions of behavior space containing the most non-linear, Boolean-like circuits 

generally contained higher-order (nc > 3) assemblies (Fig 2C, fig. S14). Circuits were 

constructed and experimentally tested for configurations representing different regions of 

configuration space, with most performing in model-predicted fashion (fig. S15), including 

those from AND- and OR-like regions (Fig. 2C).

Since the timing of complex assembly is dependent on the rate of synTF accumulation, we 

hypothesized that assembly configuration could be adjusted to control circuit dynamics (Fig. 

3A). Using time-lapse fluorescence microscopy of microfluidic device-cultured yeast 

(Supplementary Materials and Methods), circuit GFP expression was measured in response 

to transient doxycycline (Dox) inducer pulses (fig. S16). We extended our model to account 

for temporal circuit behavior by fitting the model to time course experiments (fig. S17A, B, 

Supplementary Text). We highlight two fitted circuits: a nc=2 complex that exhibits a non-

cooperative steady-state dose response, and one with a more cooperative nc=4 complex (Fig. 

3A). The later exhibits a delayed activation onset and rapid decay upon Dox removal, 
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demonstrating that the timing of circuit activation and deactivation phases can be tuned by 

adjusting complex cooperativity.

We analyzed circuit dynamics behavior space for three-node cascades in two distinct synTF 

assemblies connected in series (Fig. 3B), examining the basis of apparent half-time for 

circuit activation (τa) and decay (τd). We consider circuits with two middle node 

configurations: one with a single-synTF assembly and the other where the promoter is also 

under positive auto-regulation by its own output synTF. Plotting of simulated dynamics for 

part-permitted three-node behavior space (12,774) revealed a broad distribution of temporal 

behaviors (Fig. 3B, fig. S18), with circuits composed of cooperative, higher nc assemblies 

demonstrating the broadest τa and τd tuning (fig. S19). Only positive feedback 

configurations could access both slow activation/slow decay behavior and stable memory 

(no decay), suggesting circuit sensitivity to TF integration at the middle node of the cascade 

(Fig. 3B). We selected circuit configurations located throughout the behavior space to test 

experimentally; performance of these circuits confirmed the model’s ability to describe the 

range of temporal behaviors that can be achieved (Fig. 3B, fig. S20, movies S1–2).

Cellular networks are capable of responding to information encoded in the dynamics of an 

input signal (25, 26), responding to inputs of a specific duration (27), or decoding features of 

an input time series (e.g., frequency) (28). To demonstrate that cooperative assemblies could 

facilitate engineering of dynamic filtering behavior, we computationally identified two- and 

three-node motifs (fig. S21A) capable of persistence filtering—activation only in the 

presence of a sufficiently long duration input (Fig. 4A). Filtering behavior with steep 

duration-dependent threshold was exhibited by three-node cascades with cooperative, high 

nc complexes (fig. S21B). Results of Dox pulse titration experiments were consistent with 

these predictions: a two-node circuit with a low valency assembly demonstrated linear 

filtering, while a three-node circuit with highly co-operative assemblies showed sharp 

filtering (Fig. 4A).

As a final demonstration, we identified sets of circuits capable of differentially responding to 

distinct input frequencies (Fig. 4B). We computationally identified a pair of circuits, both 

coherent feed-forward loops (CFFL), activated by distinct square-wave frequencies (fig. 

S22). This included low-pass filters (LPF), which only respond to low frequency input, and 

band-stop filters (BSF), which filter medium frequency while activating at high frequency 

(both with 33% duty cycle). For both circuits, cooperative, high nc assemblies were critical 

for sharp filtering (fig. S22C). To test filtering function, we created two strains: a BSF circuit 

driving a GFP reporter, and an LPF with mKate reporter. As predicted, at different input 

frequencies, strains differentially activated within a mixed population (BSF at ~10−4; LPF at 

~10−5 Hz) (Fig. 4B, fig. S23).

Our work demonstrates that cooperative assembly is a powerful, highly flexible design 

strategy for engineering non-linear circuit behavior, and offers clues as to why TF 

assemblies evolved as a dominant mode of transcriptional regulatory control (29, 30). 

Adjusting promoter assemblies may have provided networks with a simple way to 

interpolate between diverse regions of functional space (31, 32). Use of engineering 

approaches that incorporate cooperative assembly could facilitate creation of signal 
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processing circuitry (33), enabling precision control in applications where non-linear 

temporal and spatial signal processing are critical, such as circuit-directed cell differentiation 

or dynamic regulation of homeostasis in engineered tissues.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Design scheme for assembly-mediated regulatory control of synthetic gene circuits. (A) 

Nodes in cellular networks use one-to-one regulatory interactions to execute simple 

computational tasks (top); cooperative interactions within multivalent assemblies enable 

complex, nonlinear signal processing (bottom). (B) Design of synthetic TF regulatory 

assemblies. Complexes are built from interaction domains (ZF and PDZ) and their respective 

binding partners (DBM and PDZ ligand). Clamp-mediated synTF complex-formation (TA, 

transcriptional activator domain drives coding sequence transcription). Interaction affinities 
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(Kt and Kp) and the number of repeated complex units (nc) determine thermodynamics of 

assembly. (C) In vitro assembly of purified cooperative complex components. Fluorescence 

anisotropy for synTF titration of DBM oligo probe (FITC labeled) was measured in the 

presence or absence of clamp (5 μM) and converted to fraction probe bound (see 

Supplementary Materials and Methods) (Nb, synTFs with binding-deficient PDZ ligand 

mutants; nc, number of PDZ domains per clamp and DBMs probe). Points represent mean 

values for three measurements ± SE. (D) Testing in vivo complex assembly in yeast using a 

synthetic gene circuit (GFP output). All genes are chromosomally-integrated (left, see Table 

S3). Small molecule-inducible expression systems (ncTET and ncZEV) control intracellular 

expression levels (see fig. S4) of synTF (induced by ATc, 2 – 500 ng/mL) and clamp (EST, 

0.05 – 12.5 nM), respectively. Adjusting molecular features of assembly (Kt, Kp, nc) tunes 

overall circuit transfer function (right). (E) Parameterization of thermodynamic complex 

assembly model. Dose response data for circuit configurations with various Kt, Kp, nc values 

were fit to a thermodynamic model (fig. S7–8, Supplementary Materials and Methods); 

regression plot showing residual from fit are shown at the right. MAE, mean absolute error.
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Figure 2. 
Constructing gene circuits using cooperative TF assemblies enables expanded steady-state 

signal processing behavior. (A) Computational model-driven approach for exploring 

engineerable circuit behavior. Our parts collection (left) defines available configuration 

space (middle: PDZ-ligand variants, Kp; synTF-DBM variants, Kt; clamp/synTF/DBM units, 

nc). Our model (fig. S7–9) computes input-output functions for this space, mapping the 

potential circuit behavior range (behavior space, right). (B) Programmed complex assembly 

enables tuning of single-input circuit dose response. For a single-input (2-node) circuit, 
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synTF is induced by ATc addition (input node) and assembles with constitutively-expressed 

clamp to regulate GFP transcription (reporter node, left). In model-computed circuit 

behavior space (right) colors indicate different complex sizes (nc). Five circuits with 

different assemblies (parameters: Kt affinity in blue, Kp affinity in red, nc), were constructed 

and tested by inducing with ATc and measuring GFP by FACS after 16 h (below). Points 

represent mean values for three experiments ± SE. (C) Programmed complex assembly 

enables tuning of two-input dose response between linear and non-linear computations. In a 

two-input circuit, synTFI and synTF2 are induced by ATc and EST respectively (input 

nodes), assembling with constitutively-expressed clamp to regulate a downstream reporter 

node (left). Behavior space for the full set of available circuit configurations (center) are 

plotted as Kullback-Leibler divergence (DKL): “similarity” between model-computed output 

surfaces and archetypal Boolean AND and OR surfaces (see fig. S13). Grey areas in the plot 

indicate regions of AND- and OR-like behavior. Selected circuits, with corresponding 

reporter complex parameters (Kt affinity, blue; Kp affinity, red; nc), were constructed and 

their 2D output surfaces experimentally measured (right) by inducing with ATc and EST and 

measuring GFP by FACS after 16 h (see Supplementary Materials and Methods).
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Figure 3. 
Controlling gene circuit dynamics using programmed complex assembly. (A) Tuning 

assembly cooperativity to control phases of circuit activation. synTF complex formation 

(left) determines circuit activation and deactivation kinetics (green) in response to transient 

inducer input (orange). Model-generated dose response profiles for two-node cascades 

regulated by non-cooperative two-TF (grey) or cooperative four-TF (green) assemblies are 

shown. Data from time course experiments using time-lapse microscopy in a microfluidic 

device (lines = mean fluor. Cell−1, shaded boundaries = ± 1 SD of population mean; τa, 

activation half-time; τd, deactivation half-time) were compared to model-fitted behavior 
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(dots) (see Supplementary Materials and Methods). (B) Cooperative assemblies enable 

activation and decay phases to be broadly and independently tuned for a three-node cascade 

motif. Model-predicted dynamic behavior space compares τa and τd for two-node (orange) 

and three-node motifs with (light blue) and without (light green) feedback (‘No decay’, 

configurations did not return to basal activity upon input removal). Highlighted circuits were 

tested by time-lapse microscopy/microfluidics (16 h Dox induction, light orange; lines = 

mean fluor. Cell−1 normalized to maximum output, shaded boundaries = ± 1 SD) and 

compared to model simulations (dots). See movies S1 and S2 for time-lapse videos.
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Figure 4. 
Circuits engineered with cooperative assemblies perform temporal signal processing 

behavior. (A) Persistence filtering in cooperative assembly circuits. Computationally 

identified two- and three-node motifs reveal persistence filtering behavior – activation in 

response to an input of a sufficient duration (left, fig. S21). Circuits predicted to show linear 

(shallow, grey) and nonlinear (sharp, green) filtering were tested in microfluidic time course 

experiments (lines = mean fluor. Cell−1, shaded region = ± 1 SD of cell population) by 

inducing with increasing Dox pulse lengths (light orange). “temporal dose response” curves 

(line = measured data, dots = model) were generated from normalized time course output 

maxima (see Supplementary Materials and Methods). (B) Population-level temporal 

decoding of frequency input. Computationally identified (fig. S22) two- and three-node 

network motifs (left) were tested for frequency filtering behavior in microfluidic 

experiments. Mixed populations of yeast harboring low-pass filtering (LPF) and band-stop 

filtering (BSF) feed-forward circuits (driving mKate and GFP, respectively) were tested for 

their ability to decode a frequency-modulated square wave Dox pulses (fig. S23). Model-

predicted frequency responses are shown next to each circuit. Experimentally measured 

frequency response is shown to the right. Maximum reporter output for each input frequency 
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was normalized to maximum output for constitutive Dox. (fig. S22). Representative mixed 

population fluorescence images are shown for frequencies highlighted in orange: 

constitutive Dox (‘always ON’), medium frequency treatment (~10−5 Hz, 33%), and high 

frequency (~10−4 Hz, 33%). Cells without Dox treatment (‘OFF’) are shown to the right. In 

images, cells harboring LPF and BSF circuits are false-colored red and green, respectively; 

cell boundaries were determined by segmentation software (see Supplementary Materials 

and Methods). Scale bar, 10 μM.
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