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Abstract

Hip geometry is an important predictor of fracture. We performed a meta-analysis of GWAS 

studies in adults to identify genetic variants that are associated with proximal femur geometry 

phenotypes. We analyzed four phenotypes: (i) femoral neck length; (ii) neck-shaft angle; (iii) 

femoral neck width, and (iv) femoral neck section modulus, estimated from DXA scans using 

algorithms of hip structure analysis. In the Discovery stage, 10 cohort studies were included in the 

fixed-effect meta-analysis, with up to 18,719 men and women ages 16 to 93 years. Association 

analyses were performed with ~2.5 million polymorphisms under an additive model adjusted for 

age, body mass index, and height. Replication analyses of meta-GWAS significant loci (at adjusted 

genomewide significance [GWS], threshold p ≤ 2.6 × 10−8) were performed in seven additional 

cohorts in silico. We looked up SNPs associated in our analysis, for association with height, bone 

mineral density (BMD), and fracture. In meta-analysis (combined Discovery and Replication 

stages), GWS associations were found at 5p15 (IRX1 and ADAMTS16); 5q35 near FGFR4; at 

12p11 (in CCDC91); 11q13 (near LRP5 and PPP6R3 (rs7102273)). Several hip geometry signals 

overlapped with BMD, including LRP5 (chr. 11). Chr. 11 SNP rs7102273 was associated with 

any-type fracture (p = 7.5 × 10−5). We used bone transcriptome data and discovered several 

significant eQTLs, including rs7102273 and PPP6R3 expression (p = 0.0007), and rs6556301 

(intergenic, chr.5 near FGFR4) and PDLIM7 expression (p = 0.005). In conclusion, we found 

associations between several genes and hip geometry measures that explained 12% to 22% of 

heritability at different sites. The results provide a defined set of genes related to biological 

pathways relevant to BMD and etiology of bone fragility.

Keywords

HIP BONE GEOMETRY; FRACTURE; GENOMEWIDE ASSOCIATION STUDY; META-
ANALYSIS; CANDIDATE GENES; POLYMORPHISMS

Address correspondence to: David Karasik, PhD, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel. 
karasik@hsl.harvard.edu.
*KE and EE contributed equally to this work.
Authors’ roles: Study design: YHH, TB, AU, FR, DPK, DK. Study conduct: TB, TC, JC, CLC, SRC, KG, AK, DAL, MLo, BM, AN, 
CN, MP, JBR, JR, GS, KS, ES, US, JT, SW, CZ. Data collection: KA, TB, SB, LC, JC, CLC, SRC, SC, ME, KG, TH, CK, JK, ML, 
MLo, FMG, CMG, BM, AN, CN, CO, MP, SR, JBR, JR, GS, TS, ES, US, JT, LV, SW, MY, FR, DPK, DK. Data analysis: YHH, KE, 
EE, SB, SD, DE, JK, DLK, ML, FMG, CMG, CN, KT, LV, LYA. Data interpretation: CAB, KA, TB, TC, CLC, ME, CF, KG, DAL, 
CMG, CO, SR, KT, SW, CZ. Drafting manuscript: YHH, KE, EE, CLC, FMG, SR, DK. Revising manuscript content: CAB, TB, TC, 
CF, ML, JT, FR, SW, DPK. Approving final version of manuscript: YHH, KE, EE, SC, ME, TH, AK, BM, AN, CO, TS, AU, DPK. 
DK takes responsibility for the integrity of the data analysis.

Disclosures
On behalf of all authors, the corresponding author states that there is no conflict of interest.

HHS Public Access
Author manuscript
J Bone Miner Res. Author manuscript; available in PMC 2019 July 23.

Published in final edited form as:
J Bone Miner Res. 2019 July ; 34(7): 1284–1296. doi:10.1002/jbmr.3698.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Introduction

Osteoporosis and associated fractures are common world-wide. In the United States alone, a 

total of 340,000 hip fractures occur each year, and the number of hip fractures is predicted to 

more than triple worldwide from 1.66 million in 1990 to 6.26 million in 2050.(1) In older 

individuals, hip fractures are a source of increased mortality, morbidity, and healthcare 

expenses. They are associated with a more than twofold increase in the likelihood of 

mortality, a fourfold increase in the probability of requiring institutional care, and a twofold 

increase in entering low-income status 1 year postfracture as compared to patients who do 

not sustain hip fractures.(2) Hip fractures may be preventable in as many as 50% of cases 

through the use of the available pharmacotherapies,(3) but improvements in the identification 

of high-risk patients are necessary.(4,5)

The most often studied phenotype for genetic studies of osteoporosis is bone mineral density 

(BMD) as assessed by dual-energy X-ray absorptiometry (DXA) of the hip. BMD is a two-

dimensional measure and does not account for the cross-sectional distribution of bone mass 

in the femur. BMD is an imperfect predictor of hip fracture and increasing attention has 

focused on contribution of other factors to bone strength, such as hip geometry.(6,7) Indeed, 

hip geometry traits have been associated with fracture risk, independent of BMD in most,
(8–11) but not all, studies.(11) Like BMD, hip geometry traits have a strong genetic 

component with a heritability of 28% to 70%.(12) Although some candidate-gene association 

studies(13–15) and modest-size genomewide association studies (GWASs) have been 

performed,(16–18) a powerful large-scale GWAS meta-analysis is essential in order to provide 

a comprehensive picture of the genetic architecture of hip geometry and to determine if 

novel genetic pathways independent of (BMD) BMD influence hip geometry. Understanding 

the genetics of hip geometry provides the potential to identify additional genetic architecture 

of fracture risk above and beyond BMD. There is also a complex relationship between adult 

height, bone geometry, and fracture risk. The premise of this study is that geometry of the 

proximal femur influences its predilection to fracture and that genetic factors responsible for 

determining the geometric features of the proximal femur could be involved in hip fracture 

risk.

In this study we performed a GWAS discovery analysis of hip geometry indices measured by 

DXA-derived hip structural analysis conducted on a large sample of women and men of 

predominantly European ancestry from the cohorts of the Genetic Factors for Osteoporosis 

(GEFOS) consortium.(19) The model adjusted for covariates, including body mass index 

(BMI) and height, was tested. This was followed by replication of the top findings in seven 

additional independent human cohorts. In order to prioritize variants that were novel for hip 

geometry, we then determined whether the genomewide association findings had also been 

found in previous GWASs of BMD phenotypes, height, or fracture. Finally, we assessed the 

functional relevance of the identified loci for bone biology using information from relevant 

sources, including gene expression data on cellular or whole animal models, as well as 

transcriptome and experimental studies in skeletal biopsies from human donors.
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Methods

Study subjects and hip geometry phenotypes

The Discovery stage of this study utilized data from 10 cohort studies and totaled data from 

18,719 adult men and women for whom genomewide SNP data and relevant hip geometry 

phenotypes were available. These individuals were from populations across North America, 

Europe, and East Asia, members of the Genetic Factors for Osteoporosis (GEFOS) 

consortium (Supporting Table 1a). The GEFOS consortium is an international collaboration 

of investigators dedicated to the identification of genetic determinants of osteoporosis and 

fragility fracture.(20–22) Additional descriptive information about the participating cohorts is 

available in Supporting Table 1a. Supporting Figure 1 illustrates the general schematic 

representation of the present study design.

We sought in silico independent replication, using summary results from seven cohorts (n = 

8334 men and women) with genomewide SNP data that became available after the initial 

discovery meta-analysis was completed. Characteristics of the replication cohorts are 

summarized in Supporting Table 1b. All studies were approved by institutional ethics review 

committees at the relevant organizations and all participants provided written informed 

consent.

Hip geometry measures were derived from DXA scans using the Hip Structural Analysis 

(HSA)(23) algorithm or a software supplied by a DXA machine manufacturer (see 

Supporting Table 1a,b). In each cohort study the following hip geometry indices were 

measured: femoral neck length (FNL), neck-shaft angle (NSA), the narrowest width of the 

femoral neck (NNW), and its section modulus (NNZ).(12) Coefficients of variation for hip 

geometry traits were reported to range from 3.3% (NN outer diameter) to 9.1% (FNL).(24)

In each cohort, at the time of the DXA exam or on a visit preceding it, standing height was 

measured and BMI calculated (Supporting Table 1a,b).(25)

GWAS of bone phenotypes

Genotyping and imputation methods—All the cohorts were genotyped using 

commercially available Affymetrix (Affymetrix Inc., Santa Clara, CA, USA) or Illumina 

(Illumina Inc., San Diego, CA, USA) genotyping arrays (Supporting Table 2). Quality 

control was performed independently in each study according to standard manufacturer-

provided protocols and within study procedures. To facilitate meta-analysis, each group 

performed genotype imputation with IMPUTE(26) or MACH(27) software (see Supporting 

Table 2 for details) using genotypes from the HapMap Phase II release 22, NCBI build 36 

(CEU or CHB/JPT as appropriate [for Hong-Kong cohort]) as reference panels. More recent 

reference panels such as HRC42 were not available at the time of the analyses. Each 

imputation software provides an overall imputation quality score for each single-nucleotide 

polymorphism (SNP). Analysis of imputed genotypes used either the dosage information 

from MACH or the genotype probabilities from IMPUTE (Supporting Table 2). Before 

performing an analysis, poorly imputed and low-frequency or rare polymorphisms were 

excluded. Specifically the quality control filters applied for exclusions of SNPs were: 

imputation quality score <0.3 for MACH and <0.4 for IMPUTE, average minor allele 
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frequency (MAF) of <1% across studies, and SNPs missing from ≥50% of the cohorts 

contributing to each outcome (at the meta-analysis stage). After quality control, up to ~2.5 

million SNPs were available from each cohort for the Discovery meta-analysis.

Association analyses—In the Discovery phase, each cohort conducted analyses 

according to a standard prespecified analysis plan under an additive (ie, per allele count) 

genetic model. Phenotypes were defined as the sex-specific standardized residuals derived 

from linear regression of each outcome variable on age, age2, BMI, and height. The 

assumption of normality of residuals in the linear regression model was checked within each 

cohort for each phenotype and no deviations were reported. The SNP–phenotype 

associations in each study were adjusted for potential confounding by population 

substructure using principal components as appropriate; pedigree and twin-based studies 

additionally corrected for family structure (using the R Kinship2 package: https://cran.r-

project.org/web/packages/available_packages_by_name.html ). Sex-specific analyses were 

performed, except for the family-based cohorts, where combined-sex models were generated 

with additional adjustment for sex. Cohort-specific summary statistics (beta-coefficients, 

standard errors, and p values) were used for the meta-analysis of each outcome variable 

(standardized residuals of FNL, NSA, NNW, and NNZ) with the genomewide SNPs. The 

replication analyses used the same analytical procedures as the Discovery analyses (eg, 

using study-specific standardized residuals from the covariate-adjusted model, as outcomes).

Meta-analysis—Meta-analysis of the GWAS discovery results was conducted and tested 

independently in two collaborating centers (Broad Institute and Hebrew SeniorLife, both in 

Boston, MA, USA). Because of potential power limitations to detect sex-specific 

associations (n males = 5510, n females = 11,701, see Supporting Table 1), we performed 

sex-combined meta-analysis. A fixed effects, sample size–weighted meta-analysis (using 

METAL software) was conducted in the Discovery set. Double genomic correction to 

control for potential inflation of the test statistics was performed, in individual studies and in 

the meta-analysis. The genomewide level of statistical significance (GWS) after adjustment 

for multiple correlated traits (effective n = 1.92), was set at p ≤ 2.6 × 10−8 and the suggestive 

level of significance at p < 5 × 10−6. The quantile-quantile (QQ) plots were generated for 

each phenotype, by pruning association results at a linkage disequilibrium (LD) threshold of 

0.50 (calculated with SNAP(28) using 1000 Genomes(29) data). Regional plots were 

generated with LocusZoom with modifications,(30) using chromosome position coordinates 

as provided in GrCh37/hg19.

In silico Replication and Combined meta-analysis—Because the in silico 

replication was performed in cohorts with existing genomewide data (and not by de novo 

genotyping), all the region-wide SNPs in the LD (r2 threshold of 0.7) interval with a 

genomewide significantly associated SNP(s) for hip geometry were taken forward for 

replication. Meta-analysis of the replication results was conducted by three collaborating 

centers (Broad Institute, Hebrew SeniorLife, Boston, MA, USA; and Ioannina, Greece). A 

fixed-effects model was used for meta-analysis of studies in the replication set and also in 

the final combined analyses of the discovery and replication sets, for each phenotype. 

Replication was proclaimed for any SNP when in the combined (joint) meta-analysis, (i) 
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GWS threshold was achieved and (ii) combined analysis p value was lower than that in the 

Discovery.

In silico search for independent signals (conditional analyses, Discovery 
stage)—To identify secondary (independent) association signals in the regions containing 

SNPs that were genomewide significant, we performed region-wide association analyses 

conditioning on the most significant hip-geometry SNP within a 1 megabase (Mb) window 

of the SNP with the lowest p value in a given locus, by including the other SNPs as a 

covariate in the regression models.

In silico search for height-associated SNPs, BMD-associated SNPs, and any 
type of fracture GWAS (Discovery stage)—In order to test for independence between 

the hip geometry and adult height signals, we looked up SNPs at least suggestively 

associated (p < 5 × 10−6) in our Discovery analysis, in the dataset of SNPs associated with 

height in the Genetic Investigation of ANthropometric Traits (GIANT) Consortium meta-

analysis of 183,727 subjects.(25) Furthermore, in order to determine if our GWS SNPs for 

hip geometry phenotypes were co-localized with previously identified SNPs for BMD, we 

looked up nearby “BMD SNPs.”(31) To assess the potential relevance of discovered loci to 

fracture risk, we looked up hip-geometry SNP associations (SNPs that were at least 

suggestively associated in our discovery analysis with one of the four hip geometry 

phenotypes, adjusted for covariates) with fracture using a large study from the GEFOS 

consortium (37,857 cases and 227,116 controls).(32,33)

LD score regression: SNP heritability and genetic correlations

LD score regression was used to estimate the SNP heritability (h2) of the studied traits and 

to estimate the genetic correlation (rg) (i) between hip geometry phenotypes and (ii) between 

hip geometry phenotypes and 235 traits and diseases with publicly available summary 

GWAS data using LD Hub.(34) This tool is a centralized database of summary-level GWAS 

results for hundreds of diseases/traits, as well as a Web interface that automates the LD score 

regression analysis pipeline.(35) To correct for multiple testing the rg was deemed significant 

at α = 0.0002 (0.05/235, Bonferroni-corrected for 235 tests).

Bioinformatic annotations and functional validation

Annotation of SNPs used NCBI’s dbSNP build hg19.

Gene expression analysis in human bone

Global gene expression profiling was performed in transiliac bone biopsies obtained from 

postmenopausal white women from Oslo, as described.(36) This permitted us to calculate the 

correlation values between hip geometry SNPs (and their proxies) and the transcript levels of 

genes in the vicinity of the identified loci. In brief, the women undergoing bone biopsies (50 

to 86 years old) were free from diseases other than osteoporosis or receiving medication 

(past or present) possibly affecting bone remodeling or representing secondary causes of 

osteoporosis.(36,37) RNA was purified and analyzed using Affymetrix HG U133 2.0 plus 

arrays as described.(36) Bone total RNA was subjected to global transcript profiling using 

HG-U133 plus 2.0 microarrays (Affymetrix). These data are available at the European 
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Bioinformatics Institute (EMBL-EBI) ArrayExpress repository, ID: E-MEXP-1618 (http://

www.ebi.ac.uk/arrayexpress/experiments/E-MEXP-1618/).(17,38) DXA scans from the bone 

donors were subjected to HSA. Filtered transcript levels from 80 bone biopsies were 

correlated with hip geometry data; results were adjusted for multiple testing using false-

discovery rate (FDR).

cis-Expression quantitative trait loci in human bone tissues

Genomewide genotyping in the sample of women from Oslo was performed by Affymetrix 

Genome-Wide Human SNP Array 6.0/Affymetrix Axiom Biobank array (1,000,000 and 

700,000 SNPs assessed, respectively).(37) We conducted cis-expression quantitative trait loci 

(cis-eQTLs) analysis within a 2-Mb flanking region (1 Mb upstream and 1 Mb downstream) 

of each of the replicated SNPs to evaluate whether they influence transcript levels of genes 

in human whole bone (using the same resource of iliac bone biopsies from 80 

postmenopausal women).(17,38)

Gene expression in primary murine osteoblasts and osteoclasts

Gene expression profiles (“Trajectories”, ie, increase or decrease within the days post-

differentiation) of candidate genes in close proximity to genomewide associated SNPs were 

examined in primary mouse osteoblasts undergoing differentiation. These data have been 

described in detail(39) and are publicly available from the Gene Expression Omnibus 

(GSE54461). For details, see the Supporting Methods.

We also mined publically-available osteoclast expression data (GEO Accession 

GSM1873361; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72846) for 

expression (presence/absence) of candidate genes during osteoclastogenesis.

Coexpression network from mouse cortical bone

We used a coexpression network constructed from mouse cortical bone expression profiles.
(40) By mapping mouse homologs of human genes located in GWAS regions associated with 

BMD, the network previously identified an Osteoblast Functional Module containing 33 

genes implicated by GWAS.(40) For the association with hip geometry phenotypes, the 

following algorithm was applied:

Step 1: Using plink2, we generated LD intervals based on LD data from 1000 

Genomes Phase I. The interval was defined by the upstream-most and 

downstream-most SNP in LD with the index SNP at an r2 threshold of 0.7, 

as described in Calabrese and colleagues.(40) This resulted in the file 

“plink.ld” that contains all the proxies for the index SNPs based on build 

hg19.

Step 2: To define the set of genes mapped to the intervals, we converted the hg19 

LD intervals defined in step one to hg38 intervals using the UCSC lift-over 

tool. A total of 12 unique genes were identified for the 5 (GWAS 

Discovery) regions.

Step 3: We then identified mouse homologs for all 12 unique human genes and 

mapped these onto the bone coexpression network.(40)
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Assay for transposase-accessible chromatin followed by sequencing epigenetic 
intersection analyses

We used two functional epigenomic datasets derived using the Assay for Transposase-

Accessible Chromatin followed by sequencing (ATAC-seq) on embryonic day (E) 15.5 

mouse proximal femora: (i) proximal femur (head+neck+proximal femur growth plate up to 

but not including the osseous diaphysis) ATAC-seq dataset, which consists of 24,804 called 

peaks (n = 2 biological replicates)(41) and (ii) proximal femoral head ATAC-seq dataset, 

which consists of 22,727 called peaks (three biological replicates, unpublished). ATAC-seq 

assays and computational pipelines were performed as described in Guo and colleagues.(42) 

For both types of samples, we used stringent ENCODE recommended IDR (irreproducible 

discovery rate) cutoff of 0.05. Raw sequencing fastq files and processed peak bed files were 

previously deposited on NCBI GEO (GSE100585).

To perform computational intersections of these ATAC-seq datasets with height-adjusted 

hip-geometry-associated loci, Mus musculus (mm10) peak calls were first lifted over to the 

UCSC Genome Browser human genome (hg19). Second, we focused on the top five 

significant loci (Table 1), and for each lead (index) SNP we used the Broad Institute 

HaploReg v.4.1 tool(43) to identify all hg19 variants with an r2 ≥ 0.4 in the European 1000 

Genomes Population dataset. This yielded 513 height adjusted hip geometry variants that 

could serve as linked, putatively causal variants. Third, we used BEDTools v2.18(44) and the 

UCSC Genome Table Browser tool(45) to identify any overlap (≥1 bp) of a height adjusted 

hip geometry variant and an ATAC-seq peak. Fourth, for loci showing intersections, we used 

Mouse Genome Informatics to identify expression patterns for nearby genes, when 

appropriate.

Results

Each participating study analyzed hip geometry phenotypes by GWAS using standard best 

practices (see Methods). A meta-analysis of the individual GWASs was performed first on 

the first set of studies with available GWAS results. The meta-analysis QQ plots did not 

provide evidence of genomic inflation of association test statistics (λ’s ranging from 1.01 to 

1.07, (Supporting Table 3). Results of SNP–phenotype associations (hip geometry 

phenotype, top associated SNPs, their MAF, and functional impact) are presented in Table 1. 

Thus, the discovery analysis identified five loci with genomewide significant associations, in 

IRX1/ADAMTS16 and near FGFR4, NSD1, and RAB24 (chr. 5), a gene-dense region 

(LRP5/PPP6R3/GAL) on chr. 11, CCDC91 (chr. 12), and RUNX1 (chr. 21). The identified 

signals were either intronic or intergenic. Most of the loci were phenotype-specific. The 

chromosome region-wide association analyses with conditioning on the most significant 

SNP did not reveal secondary (independent) association signals.

The in silico replication was performed in the cohorts with existing GWAS, followed by the 

combined (joint) analysis of the Discovery and Replication stages. Thus, in the combined 

Discovery and Replication analysis, SNPs near IRX1/ADAMTS16 (chr. 5), a gene-dense 

region (LRP5/PPP6R3/GAL) on chr. 11, and CCDC91 (chr. 12) became GWS. SNP 

rs6556301 near FGFR4, NSD1, and RAB24 (chr. 5), although still meeting the GWS 
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threshold, became slightly less significant than that in the Discovery (p = 2.3 × 10−8 and 1.4 

× 10−8, respectively). SNPs in RUNX1 (chr. 21) did not replicate.

Some of the hip geometry–associated regions had previously been associated with DXA 

BMD (GEFOS Consortium, Table 2). Indeed, there were several signals overlapping with 

BMD at the suggestive level of significance (p < 5 × 10−6), mostly for narrow-neck section 

modulus phenotype: in/near LRP5 (chr. 11). We further compared the hip-geometry–

associated regions discovered by us with GWAS meta-analysis for height performed by the 

GIANT Consortium(25) (Table 3). Only rs11049605 in CCDC91 (chr. 12) was GWS-

associated with height.

We also looked up the SNPs that were suggestively (p < 5 × 10−6) associated with hip 

geometry in our Discovery analysis in the recent large GWAS of any type of fracture.(32) No 

SNP was nominally-significantly associated with fracture at p < 0.05 (Table 4).

Genetic correlations with hip geometry by LD score regression

LD score regression (Supporting Table 4) estimated that SNPs nominally associated with hip 

geometry phenotypes explained from 12.1 ± 2.7% heritability (NSA) and 12.9 ± 3.3% 

(FNL) to 17.5 ± 2.9% (NNZ) to 22.0 ± 3.2% of NN width. NNZ and NN width significantly 

correlated (0.369 ± 0.095, p < 0.001), whereas FNL and NSA negatively correlated (−0.526 

± 0.179, p < 0.01). We next determined the genetic correlations between hip geometry 

phenotypes and several traits and diseases (Supporting Table 5). Only other DXA-derived 

traits, including femoral, lumbar spine, and forearm BMD, demonstrated strong genetic 

correlation with NNZ (positive) or NNW (negative), at Bonferroni-corrected α threshold.

Gene expression analysis in human bone

We correlated hip geometry phenotypes with gene expression from human transiliac bone 

biopsies (Table 5). A total of 102 different transcripts were correlated with the various 

structural parameters at 10% FDR. Among Physiological System Development and Function 

categories the most significant were: “Connective Tissue Development and Function” (4.62 

× 10−2 to 3.12 × 10−4); “Embryonic Development” (4.63 × 10−2 to 3.12 × 10−4), “Organ 

Development” (4.63 × 10−2 to 3.12 × 10−4); “Organismal Development” (4.93 × 10−2 to 

3.12 × 10−4 ); “Skeletal and Muscular System Development and Function” (4.96 × 10−2 to 

3.12 × 10−4). Notably, several bone structure relevant subcategories (containing at least two 

genes) were identified within these categories, including: “Development of vertebral body” 

(CLEC3B), p = 3.12 × 10−4; “Differentiation of connective tissue cells” (IL1A, LRP8, 

MRPS18B, NIPBL, PIAS1, SOST, TOB1), p = 8.67 × 10−3; “Quantity of osteoclasts” 

(IL1A, SOST, TOB1), p = 1.43 × 10−2; “Ossification of bone” (NIPBL, SOST, TOB1), p = 

2.42 × 10−2.

cis-eQTLs in Human Bone Tissues

The results of the cis-eQTL obtained from whole-bone biopsies are shown in Table 6. For 

genomewide significant SNPs we found two significant eQTLs after multiple testing 

correction (adjusted for number of SNP-gene pairs by Bonferroni correction), namely 

rs7102273 (intergenic, chr. 11) and PPP6R3 (protein phosphatase 6 regulatory subunit 3) 
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expression (p = 0.0007), and rs6556301 (intergenic, chr. 5) and PDLIM7 (PDZ and LIM 

domain 7) expression (p = 0.005).

Primary murine cells

We tested whether mouse homologs of human genes were expressed in mouse calvarial 

osteoblasts and found that for some, the expression changed during cell differentiation. 

Table 7 presents a list of genes whose expression profiles (trajectories) underwent changes. 

Thus, Lrp5 expression increased with osteoblast differentiation; Rab24 expression slightly 

decreased; Irx1 expression increased and then reached a plateau at the late differentiation 

stage. Expression profiles for other genes were less obvious.

We also mined osteoclast expression data (GEO Accession GSM1873361; https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72846) and found evidence of 

expression of some of our genes of interest in control mice in mature osteoclasts. On chr. 5 

(proximal locus), Adamts16 expression, but not Irx1, was present during osteoclastogenesis; 

in distal locus on chr. 5, among the three genes of interest, expression of Rab24 and Nsd1 

was detected but reads mapping to Fgfr4, were not observed in mature osteoclasts 

suggesting a lack of expression of this gene in these cells. On chr. 11, notably Lrp5 and 

Ppp6r3 were expressed in osteoclasts whereas Gal was not.

Coexpression network from mouse cortical bone expression profiles

We previously used a network-based approach to nominate potentially causal genes at BMD 

GWAS associations.(40) In this work, Calabrese and colleagues(40) identified two modules 

from a bone coexpression network that were enriched for genes implicated by BMD GWAS. 

For the hip geometry GWAS results we determined if implicated genes were members of 

these two modules (referred to as modules 6 and 9). We hypothesized that genes implicated 

by hip geometry GWAS and members of modules 6/9 might play a role in the regulation of 

hip geometry and be strong candidates to underlie associations with hip geometry.

A total of 12 genes were identified for the five GWAS regions and all 12 had clear mouse 

homologs. Two (LRP5 and PPP6R3) of the 12 mouse genes belonged to either module 6 and 

or 9. Both of these modules have previously been shown to be enriched for genes with well-

known roles in osteoblast activity.

ATAC-seq epigenomic intersections in mice

We performed computational intersections between two ATAC-seq datasets derived from 

mouse embryonic proximal femora (see Methods) and 513 height-adjusted hip-geometry 

variants from five associated loci to identify putative regulatory variants influencing 

proximal femur geometry. Our intersections with a first dataset derived from all proximal 

femur tissues revealed five hip geometry variants from two loci that overlap with an ATAC-

seq peak (Supporting Table 6). At the IRX1/ADAMTS16 locus on chr. 5, four variants fEll 

within the same ATAC-seq peak, with rs6871994 in the strongest LD to lead variant (r2 = 

0.88) and associated with FNL. At the RUNX1 locus on chr. 21, rs8129061 is at r2 = 0.51 to 

the lead variant, resides within an ATAC-seq peak within a gene desert, and is associated 

with FNL. Intersections with a second dataset, focused specifically on the proximal femoral 
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head cartilage, did not yield any SNPs. All remaining loci (including FGFR4, NSD1, 

RAB24, LRP5, PPP6R3, GAL, and CCDC91) did not yield variant intersections with either 

dataset, although ATAC-seq peaks were identified in the vicinity of each gene (Supporting 

Fig. 2).

Discussion

This is the largest study to comprehensively assess genetic variants associated with proximal 

femur geometry using a GWAS approach with functional validation in human bone 

transcript profiles, cell, and animal data. Despite the contribution of bone geometry of the 

femur to fracture risk,(11) and the known heritability of hip geometry traits measured using 

HSA (28% to 70%(12)), there have been no large-scale GWASs for hip geometry. We 

assessed the evidence of association of the novel markers identified here, in large GWAS 

meta-analyses of height (183,727 participants(25)), DXA-derived lumbar spine (n ≅ 32,000) 

and femoral neck BMD (n ≅ 32,000),(20) as well as fracture (37,857 cases and 227,116 

controls from the GEFOS consortium).

Our GWAS findings identified several noteworthy genes. In the combined discovery and 

replication meta-analysis, significant associations were found for FNL at 5p15 where IRX1 
and ADAMTS16 are mapped (p = 2.4 × 10−8). In height-adjusted NNW, significant 

association was observed at 12p11 (p = 4.9 × 10−12) in the intron of CCDC91. Height-

adjusted NNZ was associated with variants at 11q13 near LRP5 and PPP6R3 (p = 4.3 × 

10−11), which are known genes for BMD. SNPs in FGFR4/NSD1/RAB24 (chr. 5) and in 

RUNX1 (chr. 21) did not replicate. It is of interest that FGFR4 interacts with FGF23, an 

inhibitor of mineralization; and RUNX1 is involved in hematopoiesis and osteogenesis.

Because stature is an important contributor to hip fracture, and because measures of hip 

geometry are dependent on an individual’s size, we performed a systematic study of the 

genetic associations of hip geometry with adjustment for height, in a sample of >27,000 

adults. Importantly, we performed GWAS of hip geometry with adjustment for height at a 

whole-genome scale, not only for the subset of SNPs previously shown to be associated with 

height (to prevent “collider bias”(45)). We did not adjust our hip geometry measures for areal 

BMD because these measures are both DXA-derived (therefore “collider bias”(45) might be 

expected). We also performed non–height-adjusted analysis (not shown here). The following 

chromosomal loci/genes were identified at suggestive-GWS levels: HHIP (chr. 4), ENPP2 
(on chr. 8), ASTN2/TMEM38B (chr. 9), near FAM10A4/DLEU2 (chr. 13), GDF5 and 

DDX27 (both on chr. 20). Not surprising, SNPs in most of these genes were also strongly 

associated with adult height. Of note, in our height-adjusted analysis, only rs11049605 in 

CCDC91 (chr. 12) was still GWS-associated with height, therefore indicating that 

adjustment for height dramatically reduced hip geometry associated signals, probably due to 

body-size contribution to the HG phenotypes.

Of note, one previous GWAS in 1000 European-descent Americans(16) found a common 

genetic variant, rs7430431 in the receptor transporting protein 3 (RTP3) gene, to be in strong 

association with the buckling ratio (p = 1.6 × 10−7), an index of bone structural instability, 
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and with femoral cortical thickness (p = 1.9 × 10−6). The RTP3 gene is located at 3p21.31. 

We were unable to confirm this signal in our much larger study.

We further looked for shared associations between our hip geometry phenotypes and bone 

fractures. SNP rs7102273 (intergenic, 11q13.2) was associated with fracture (p = 7.5 × 

10−5); the allele that was associated with higher NNZ, also corresponded to the lower risk of 

fracture. Of interest, this SNP is in LD (R2 = 0.96; Dˊ = 1) with another intronic variant, 

rs12272917, that was associated with skull BMD in Kemp and colleagues(46) study (the 

distance between the SNPs is ~122.2K). Both SNPs are in PPP6R3 (a.k.a. SAPS3) gene, 

whose Gene Ontology (GO) annotations include “protein phosphatase binding,” and related 

pathways are “Transport to the Golgi and subsequent modification” and “Vesicle-mediated 

transport.” It is still unclear how the gene may be influencing bone geometry. Some of our 

signals fall into known loci for other bone phenotypes. Apart from LRP5 and PPP6R3 (chr. 

11) there were no signals overlapping with BMD at the suggestive level of significance (p < 

5 × 10−6).

By correlating hip geometry phenotypes with gene expression from transiliac bone biopsies, 

we found gene transcripts falling into several functional categories. Among “Physiological 

System Development and Function” categories the most significant were “Connective Tissue 

Development and Function,” “Embryonic Development,” “Organ Development,” 

“Organismal Development,” and “Skeletal and Muscular System Development and 

Function.” Notably, several bone structure relevant subcategories (containing at least two 

genes) were identified within these categories, including: “Development of vertebral body,” 

“Differentiation of connective tissue cells,” “Quantity of osteoclasts,” and “Ossification of 

bone,” supporting the bone-structure role of the genes associated with hip geometry.

To further understand functional implications of our hip geometry signals via molecular and 

cellular mechanisms, we used the bone coexpression network from prior work of Calabrese 

and colleagues.(40) They found that mouse analogues of BMD GWAS genes were enriched 

for genes important to bone (mostly osteoblast) biology. By mapping mouse homologs of 

human genes located in GWAS regions onto murine dataset, they identified an Osteoblast 

Functional Module containing 33 genes implicated by GWAS. These genes are candidates 

for 30 of the 64 BMD GWAS regions discovered by GEFOS in European-descent persons.
(47) Most of the GO ontologies shared between these modules corresponded to cellular 

components, biological processes, and molecular functions pertinent to osteoblasts and 

ossification.(40,48) The top genes for hip geometry included PPP6R3 and LRP5, whose 

expression correlated with osteoblastic modules. We thus suggest that the identification of 

our GWAS top SNPs for hip geometry confirms they are excellent candidates for being 

potentially responsible for the signal in associated loci.

Given that greater than 95% of variants (ie, those with r2 > 0.4 to lead hip-geometry-

associated variants) fall within noncoding regions, they likely function to alter hip geometry 

through their effects on gene regulation. To refine the putative functional roles of hip 

geometry variants in this context and in the absence of inaccessible human developmental 

tissues, we performed computational intersections of all such variants with ATAC-seq 

datasets derived from embryonic mouse chondrocytes, at a stage when proximal femoral 
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morphology is initially determined. These analyses yielded two associated novel loci with 

five variants in strong to modest LD with the lead variant within an ATAC-seq peak. We 

detected variants in distant-acting enhancers at two loci associated with FNL (IRX1/

ADAMTS16 and RUNX1). Although mouse and/or human chondrocyte or bone phenotypes 

have only been reported for Runx1/RUNX1,(49) IRX1 has been shown to influence 

chondrocyte differentiation(50) and it (MGI(51)), along with Adamts16 (MGI(52)) and Runx1 
(MGI(53)) is expressed during mouse femoral development. Although follow-up experiments 

on variants in IRX1 could further demonstrate its role in hip geometry, its re-identification 

here bolsters our computational strategy to whittle down loci to fewer putatively causal 

variants.

We also mined two publicly available datasets, of primary mouse osteoblasts undergoing 

differentiation (GSE54461) and osteoclast expression data (GSM1873361). In mouse 

primary cells, among chr. 11 genes, Lrp5 (but not Ppp6r3) expression increased with 

osteoblast differentiation. For both Lrp5 and Ppp6r3, expression was present during 

osteoclastogenesis, whereas Gal was not expressed in either osteoblasts or osteoclasts. This 

evidence supports the role that LRP5, a well-known bone-active gene, plays in “pleiotropic” 

actions on most bone-related properties.

We then interrogated a unique dataset of global gene expression from transiliac bone 

biopsies obtained from 84 postmenopausal women.(36) In human whole bone biopsies, 

transcripts for LRP5 correlated with FNL of the biopsied persons (p < 0.05), whereas 

transcripts for RUNX1 correlated with their NNZ (p < 0.05). Finding the associations with 

LRP5 confirm earlier results of Wnt signaling system’s candidates associated with BMD and 

fracture risk.(36) Validation of our top genes detected in human bone samples by RT-PCR 

was carried out previously.(36,54)

Because most of these postmenopausal women with transiliac bone biopsies were 

genotyped, eQTLs were also available for our analysis. Thus, for subset of SNPs we found 

two eQTLs, still significant after applying multiple testing correction (by FDR), namely 

rs7102273 (intergenic, chr. 11) to associate with PPP6R3 expression (p = 0.0007), and 

rs6556301 (intergenic, chr. 5) with PDLIM7 expression (p = 0.005). PDLIM7 (PDZ and 

LIM Domain 7/ Enigma) is known to code for the LIM mineralization proteins (LMP), 

which have an important osteogenic role.(55) It seems that alteration of gene expression by 

the variants located in a regulatory region in the vicinity of PPP6R3, similar to PDLIM7, 

may affect bone geometry. We did not observe a link between the associated SNPs in the chr. 

11 region and LRP5 gene expression in human bones. The low expression level in whole 

bone and small sample size in human eQTL studies may limit the statistical power to detect 

cis-eQTLs.

We also estimated that SNPs associated with hip geometry phenotypes explained from 12.1 

± 2.7 heritability in NSA up to 22.0 ± 3.2 (NN width). NN section modulus and NN width 

significantly correlated (0.369 ± 0.095, p < 0.001), whereas FNL and NSA negatively 

correlated (−0.526 ± 0.179, p < 0.01). It is important to note that due to our relatively 

modest sample (n = 18,719), many more SNPs are expected to be uncovered through larger 

efforts, as follows from our experience with GWAS of other phenotypes, namely BMD, 
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height, and BMI, which will explain larger portion of heritability. Moreover, only singular 

signals (loci) generally reached GWS for each hip geometry trait: two for each FNL and 

NNW, one for NNZ, and none for NSA (Discovery). The impact of a single variant on a 

complex polygenic trait is usually small, and multiple variants with small effects, operating 

within a complex network, likely underlie hip geometry variance. Therefore, identification 

of a larger number of gene variants that play a role in bone architecture is necessary before 

real gains in predicting fracture risk can be achieved by using hip-geometry–associated 

variants. Statistical evidence (replication in independent cohorts) and biological evidence 

(from mammalian cells and human whole bone), although not always agree, are both 

indispensable for finding the true genetic loci.

The primary advantage of HSA-measured hip geometry is that bone geometry and areal 

BMD, both of which contribute to bone strength, are considered. This, however, makes our 

task of distinguishing between genetics of hip geometry per se, independent of BMD, 

challenging. It is important to emphasize that hip geometry is actually measured from the 

DXA image data, not estimated via the BMD. The algorithm of HSA was described in detail 

in Beck and Broy.(56) Of note, we found genetic correlations between some hip geometry 

phenotypes and DXA-derived BMD at femur, lumbar spine, and forearm. These genetic 

correlations were positive with NN-section modulus (bone strength measure) but negative 

with NN-width. The latter fully complies with the understanding that wider bones have 

larger cross-sectional area but not necessary higher density; this underlines the potential role 

of expansion of outer femoral neck diameter and cortical thinning that occurs with aging.(11) 

The oldest women had wider femoral necks containing less bone tissue, thinner cortices, less 

bending resistance, and significantly greater buckling ratios.(57)

This study has several limitations that need to be noted. GWAS studies were imputed to 

older imputation panels because the initial imputation began at the early stages of this 

project several years ago; at the present, newer and denser panels exist (1000Genomes, HRC 

and UK10K). More detailed exploration would need fine-mapping and sequencing of the 

loci prioritized here. Also, animal modeling experiments were considered beyond the scope 

of the present study. Given the biologic plausibility of our findings, further exploration is left 

to future studies.

In conclusion, our GWAS-based study provides indications that hip geometry measured 

using HSA may reveal novel molecular pathways influencing skeletal shape and impacting 

mechanical properties. Our findings also suggest that HAS-measured hip geometry might 

capture additional genetic determinants beyond those associated with hip BMD. These 

variants should be prioritized for future functional validation regarding their involvement in 

the regulation of bone strength and risk of hip fracture. At the current stage of genetics 

research, there are few instances where genetic association findings are directly used 

clinically. However, because hip geometry contributes to hip fracture risk,(2) discovery of 

genetic determinants of hip geometry may have utility in predicting fracture as methods to 

derive polygenic risk scores mature further.(3,4) Because hip geometry still evolves in early 

life and even beyond, the identification of genetic determinants of hip architecture could be 

used as potential diagnostic tools and drug targets to improve bone strength.
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