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Abstract

The pyroptotic cell death effector, Gasdermin D (GSDMD), is required for murine models of 

hereditary inflammasome-driven, interleukin-1β (IL-1β)-dependent, autoinflammatory disease, 

making it an attractive therapeutic target. However, the importance of GSDMD for more common 

conditions mediated by pathological IL-1β activation, such as gout, remain unclear. In this study 

we address whether GSDMD, and the recently described GSDMD inhibitor, necrosulfonamide 

(NSA), contribute to Monosodium Urate (MSU) crystal-induced cell death, IL-1β release and 

autoinflammation. We demonstrate that MSU crystals, the aetiological agent of gout, rapidly 

activate GSDMD in murine macrophages. Despite this, the genetic deletion of GSDMD, or the 

other lytic effector implicated in MSU crystal killing, mixed lineage kinase domain-like (MLKL), 

did not prevent MSU crystal-induced cell death. Consequently, GSDMD or MLKL loss did not 

hinder MSU crystal-mediated release of bioactive IL-1β. Consistent with in vitro findings, IL-1β 
induction and autoinflammation in MSU crystal-induced peritonitis was not reduced in GSDMD 

deficient mice. Moreover, we show that the reported GSDMD inhibitor, NSA, blocks 

inflammasome priming and caspase-1 activation, thereby preventing pyroptosis independent of 

GSDMD targeting. The inhibition of cathepsins, widely implicated in particle-induced 

macrophage killing, also failed to prevent MSU crystal-mediated cell death. These findings i) 

demonstrate that not all IL-1β-driven autoinflammatory conditions will benefit from the 

therapeutic targeting of GSDMD, ii) document a unique mechanism of MSU crystal-induced 

macrophage cell death not rescued by pan-cathepsin inhibition, and iii) show that NSA inhibits 

inflammasomes upstream of GSDMD to prevent pyroptotic cell death and IL-1β release.
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Introduction

Damaging environmental and host-derived particulate substances can elicit numerous 

inflammatory disorders, such as asbestosis, atherosclerosis, silicosis and osteoarthritis. Gout, 

one of the most common crystal-induced arthropathies, is a leading cause of inflammatory 

arthritis, and has also been associated with conditions such as the metabolic syndrome, renal 

disease and cardiovascular disease (1). Despite some advances in treatment strategies, there 

is no cure for gout and many patients experience recurrent flares that cause significant 

functional impairment and affect quality of life (2). There is evidence to suggest that distinct 

crystallopathies can share conserved biological mechanisms, such as the ability to activate 

proinflammatory inflammasome protein complexes and induce a necrotic-like, immune-

modulatory, cell death (3). Therefore, a better understanding of the pathogenesis of gout-

induced inflammation and cell death, and other particulate-mediated inflammatory 

conditions, will help guide the development of new therapeutics to improve patient 

outcomes.

Gout is characterized by the activation of inflammatory cascades that are caused by the 

precipitation of Monosodium Urate (MSU) in and around articular cavities. Animal models 

of gout and MSU crystal-driven inflammation implicate the caspase-1 activated cytokine, 

IL-1β, and consequently the IL-1 Receptor, as mediators of the MSU crystal-induced 

inflammatory response (4–8). These in vitro and murine studies have been confirmed by 

successful IL-1 inhibitor clinical trials (9, 10), although the expense of anti-IL-1 biologics, 

compared to traditional gout therapy, has to date limited wide-spread uptake.

IL-1β-driven autoinflammation results from the activation of intracellular multiprotein 

complexes known as inflammasomes (11). Inflammasome sensor proteins, including 

members of the NOD-like Receptor (NLR) family NLRP1, NLRP3 and NLRC4, the 

tripartite-motif family member Pyrin, and AIM2 (absent in myeloma 2), are innate immune 

cell pattern recognition receptors (PRRs). These cytosolic inflammasome PRRs specifically 

detect, and respond to, host- and pathogen-derived danger molecules to recruit and activate 

caspase-1, often via homotypic Caspase Activation and Recruitment Domain (CARD) 

interactions with the adaptor protein Apoptosis-associated Speck-like protein containing a 

CARD (ASC). Caspase-1 subsequently cleaves and thereby activates the cytokines IL-1β 
and IL-18, and also causes a lytic cell death, known as pyroptosis, to drive inflammatory 

responses. Of note, the NLRP3 inflammasome specifically senses inflammatory particulate 

matter, such as silica (12–14), alum (12, 15), cholesterol (16), amyloid-β (17) asbestos (13, 

14), hydroxyapatite (18, 19) and MSU (4). Consequently, there is significant interest in 

defining how these potentially damaging particulate substances trigger NLRP3, IL-1β and 

cell death.

Studies have implicated particle phagocytosis, lysosomal membrane rupture, cathepsin 

activity and cellular potassium ion efflux as key events in their ability to initiate NLRP3 

inflammasome signalling (12–18, 20–22). Imaging and chemical inhibitor studies also imply 

a similar, and possibly conserved, mechanism of particle-induced cell death, which has been 

reported to occur via particle-mediated lysosomal membrane rupture and be dependent on 

cathepsin activity (21, 23–26). However, attempts to genetically deplete cathepsins have 
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revealed either no, or only a minor, impact on particle-induced cell killing, with the addition 

of chemical pan-cathepsin inhibitors, such as high doses of CA-074 methyl ester (CA-074-

Me), or K777, required for substantial protection (16, 21, 23, 27). Moreover, the ability of 

cathepsin inhibition to prevent macrophage cell death induced by MSU crystals has not been 

explored. Intriguingly, in neutrophils and kidney epithelial cells, it has been reported that 

several particles, such as calcium oxalate and MSU, induce programmed cell death via the 

necroptotic cell death machinery, Receptor Interacting Protein Kinase 3 (RIPK3) and its 

substrate, MLKL (28–30). This suggests that particles can elicit cell-type specific responses, 

or that distinct mechanisms of death occur in response to the type of particle.

The release of caspase-1 activated mature IL-1β into the extracellular milieu is also 

associated with necroptosis independent, caspase-1-mediated, pyroptotic killing, which can 

further contribute to inflammatory responses via the release of immunogenic cellular 

molecules (31, 32). Recently, it was discovered that caspase-1, and other inflammatory 

caspases such as caspase-11, induce pyroptosis by cleaving GSDMD to release an activated 

GSDMD N-domain that oligomerizes and forms pores in the plasma membrane (33–40). 

Consequently, in macrophages lacking GSDMD, not only is pyroptotic cell death ablated, 

but activated IL-1β accumulates in the cytosol, and its release is severely compromised (36–

38). These studies indicate that GSDMD is required for the inflammation initiated by diverse 

inflammasome stimuli, such as nigericin activation of NLRP3, cytosolic LPS activation of 

caspase-11, bacterial toxin-induced activation of Pyrin and NLRC4, and DNA activation of 

the AIM2 inflammasome (36–38). Consistent with this idea, GSDMD loss prevents IL-1β 
responses following LPS injection in vivo (38) and, more recently, it was discovered that 

human disease-mimicking autoactivated Pyrin or NLRP3 mutant mice, and consequent 

sterile IL-1-driven autoinflammation, is rescued by GSDMD deficiency (41, 42). These 

findings lend weight to the idea that recently reported inhibitors of GSDMD (43, 44), may 

facilitate the development of novel drugs to target aberrant inflammasome and IL-1-driven 

inflammation. How beneficial GSDMD inhibition might be for the treatment of more 

widespread IL-1-driven autoinflammatory conditions, such as gout, has yet to be assessed, 

but is important for defining the scope, and potential benefit, of GSDMD targeted 

therapeutics. In this study we therefore sought to determine whether MSU crystals can 

activate GSDMD, and if so, how important GSDMD might be for MSU crystal-driven 

inflammation using gene targeted GSDMD mice and the recently described GSDMD 

inhibitor, necrosulfonamide (NSA) (43).

Materials and Methods

Antibodies and reagents

The primary antibodies used were against IL-1β (AF-401-NA, R&D), caspase-1 

(AG-20B-0042-C100, Adipogene), GSDMD (ab210070, Abcam), MLKL (generated in 

house (74), available from Millipore, MABC604, clone 3H1) and β-actin (A-1978, Sigma-

Aldrich). Flow cytometric staining utilized the following antibodies from BioLegend; 

purified anti-mouse CD16/32 antibody (101302), APC-conjugated anti-Ly6G (127614), 

FITC-conjugated anti-F4/80 (123108), PE-conjugated anti-B220 (103208), APC-CY7-

conjugated anti-CD3 (100222) and Brilliant Violet 421-conjugated anti-CD11b (101236). 

Rashidi et al. Page 3

J Immunol. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



123 count eBeads were purchased from Thermo scientific (01-1234-42). Ultrapure LPS (tlrl-

smlps) and nigericin (tlrl-nig) were purchased from InvivoGen. MSU was generated in 

house, as previously described(63, 75). Imject™ Alum Adjuvant (77161, thermo scientific), 

Z-VAD-fmk (187389-52-2, Santa Cruz Biotechnology), CA-074-Me (sc-214647, Santa Cruz 

Biotechnology), necrosulfonamide (ab143839, Abcam), potassium chloride (P954, Sigma-

Aldrich) and glycine (G7126; Sigma-Aldrich) were purchased as indicated.

Cell culture

Bone marrow-derived macrophages (BMDMs) were generated from WT C57BL/6, Gsdmd
−/−, Caspase-1−/− and Mlkl−/− mice (aged 8–12 weeks). The Gsdmd−/− (38), 

Caspase-1−/− (76)(also harbouring an inactivating caspase-11 mutation) and Mlkl−/− (74) 

mice were either generated on a C57BL/6 background (Mlkl−/−, Gsdmd−/−), or backcrossed 

for 10 generations or more (Caspase-1−/−). Cells from tibiae and femora were cultured in 

DME, 10% FCS (Sigma-Aldrich) and 20% L929 conditioned-medium (in-house, WEHI) at 

37°C in a 10% CO2 incubator. After 6 days, adherent cells were harvested and seeded at a 

density of 1.5 × 105 in 200 μl of medium in replicates, in flat-bottom 96-well plates. 

Following overnight rest, the medium was changed and cells were primed with ultrapure 

LPS (50 ng/ml) for 2.5 h and then exposed to the indicated concentrations of MSU, alum 

and nigericin. Supernatant was collected after 1 h of Nigericin exposure or 6 h of MSU or 

alum exposure for further analysis.

Cytokine ELISAs

Levels of IL-1β (#DY401, R&D Systems), TNF (#5017331, eBioscience) and IL-6 

(#5017219, eBioscience) were assayed by ELISA according to instructions of the 

manufacturer.

LDH assay

LDH release into the cell supernatants was measured with a 30-minute coupled enzymatic 

assay, using the CytoTox 96 Non-Radioactive Cytotoxicity Assay kit according to the 

manufacturer’s instructions (#G1780, Promega).

Immunoblot analysis

BMDM cell lysates and supernatants (reduced and denatured) were fractionated by sodium 

dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) (4–20% NuPAGE gels, 

Invitrogen). Proteins were then electrophoretically transferred to nitrocellulose membranes 

and blocked in 5% w/v skim milk in PBS containing 0.1% Tween20 (SM-PBST) prior to 

incubation with primary antibody (diluted 1:1000 in SM-PBST, unless stated otherwise) 

overnight at 4 °C. Following 4–5 washes for 5 min each in PBST, membranes were 

incubated with HRP-conjugated secondary antibody (diluted in SM-PBST) for 1–2 hours at 

room temperature. Membranes were then washed 4–5 times for 5 min each in PBST and 

proteins of interested detected by enhanced chemiluminescence (ECL) and an X-OMAT 

developer (Kodas), or the ChemiDoc Touch Imaging System (Bio-Rad) and Image Lab 

Software.
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Flowcytometry analysis

Peritoneal cells were incubated with anti-mouse CD16/32 antibody and fluorescent-

conjugated antibodies in round-bottom polystyrene tubes for 15 min on ice in 50 μl of cold 

FACS buffer (PBS, 2% FCS, 2 mM EDTA) at the concentrations indicated by the 

manufacturer (BioLegend); APC-conjugated anti-Ly6G, FITC-conjugated anti-F4/80, PE-

conjugated anti-B220, APC-CY7-conjugated anti-CD3, Brilliant Violet 421-conjugated anti-

CD11b. Propidium iodide staining was used to exclude dead cells and 123count eBeads 

Counting Beads were used for absolute counting of cells (Thermo Scientific). Cells were 

analyzed via a FACSVerse flow cytometer (BD Biosciences).

MSU crystal injections

The indicated (figure legends) female or male C57BL/6, Caspase-1−/− and Gsdmd−/− mice 

aged 8–12 weeks were injected with MSU crystals (3 or 5 mg i.p.) or carrier (PBS). After 4 

h, mice were culled by CO2-induced asphyxia. Peritoneal lavages were performed using 1.5 

ml of PBS containing 5mM EDTA. The peritoneal fluid was spun down and the supernatant 

were collected for measurement of cytokines by ELISA. Cells were identified by antibody 

staining (neutrophils: CD11b+, Ly6G+, Monocytes: CD11b+, Ly6G−, macrophages: CD11b
+, F4/80+ upon exclusion of T cells (CD3+), B-cells (B220+) and dead cells (PI+)) and 

analyzed by flow cytometry.

Imaging

BMDMs were seeded at 4×105 cells in a 24 well tissue culture plates and stimulated as 

indicated in the figure legends. Cells were then stained with propidium iodide (PI, 8 μg/ml) 

and imaged using an Olympus IX70 florescent microscope and cellSens Standard software. 

Quantification of PI staining was performed using Fiji software.

Results

MSU crystals activate GSDMD, but GSDMD is dispensable for MSU crystal-induced IL-1β 
release and cell death in vitro

Consistent with past research (4, 12), the stimulation of LPS primed bone marrow derived 

macrophages (BMDMs) with alum particles or MSU crystals for 1.5–6 hours resulted in 

significant activation and secretion of caspase-1 and IL-1β as reflected by processing to their 

p20 and p17 fragments, respectively, and their release into the cell supernatant (Fig. 1A). In 

parallel with these events, within 1.5 hours of MSU crystal or alum treatment, we detected 

cleavage of GSDMD into its active p30, pore-forming, N-domain in both the cell lysate and 

cell supernatant (Fig. 1A), suggesting that GSDMD may contribute to MSU crystal-

dependent IL-1β release and/or cell death.

It was initially reported that after 16 hours of MSU crystal treatment, IL-1β release (as 

measured by ELISA) was not different between wildtype (WT) and GSDMD deficient cells 

(38). However, as demonstrated in Fig. 1, particulate NLRP3 activators, such as MSU, can 

engage caspase-1 to activate GSDMD and IL-1β within 1.5 hours. Moreover, NLRP3 stimuli 

that initially release IL-1β in a GSDMD-dependent manner, such as ATP and nigericin, 

undergo a secondary mode of cell death that allows GSDMD-independent IL-1β release 
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upon prolonged treatment (36–38, 45, 46). Therefore, as recently highlighted (5), whether 

GSDMD might participate in MSU crystal-generated inflammation and cell death remains 

unclear.

To genetically define if MSU crystal-activated GSDMD contributes to MSU crystal-induced 

IL-1β release, or cell death, we primed wildtype (WT), Gsdmd−/− and Caspase-1−/− 

BMDMs with LPS and then exposed cells to increasing concentrations of MSU crystals, 

alum particles or the soluble NLRP3 activator, nigericin. As expected, compared to WT 

macrophages, IL-1β release after 1 hour of nigericin treatment was blocked in both 

caspase-1 and GSDMD deficient BMDMs (Fig. 1B), although TNF secretion was not 

impacted (Fig. 1C). In contrast, although IL-1β release following MSU crystal or alum 

treatment was abrogated in caspase-1 deficient BMDMs when compared to WT cells, it was 

not altered upon deletion of GSDMD at any time point examined, from 1.5 to 6 hours (Fig. 

1B and Fig. S1A). The genetic deletion of Caspase-1 or GSDMD also had no impact on 

TNF secretion upon particle stimulation (Fig. 1C and Fig. S1A).

To directly measure the impact of GSDMD loss on MSU crystal-induced NLRP3 responses, 

we examined caspase-1 and IL-1β cleavage by Western blot. Unlike ELISA analysis that 

detects both inactive precursor and mature IL-1β (47), Western blotting provides a direct 

measure of both caspase-1 and IL-1β cleavage, and hence, activation status. Consistent with 

our ELISA data, MSU crystal-induced caspase-1 cleavage and IL-1β maturation and release 

was comparable between WT and GSDMD deficient BMDMs, but was undetectable upon 

caspase-1 loss (Fig. 1D). On the other hand, caspase-1 and GSDMD were both required for 

efficient release of nigericin activated IL-1β, although at higher nigericin concentrations 

some GSDMD-independent IL-1β release was detected (Fig. S1B).

Because GSDMD-induced cell death can, in some circumstances, be separated from 

GSDMD-dependent IL-1β secretion (45, 48), we next examined if GSDMD might 

contribute to MSU crystal or alum particle killing. However, MSU crystal- or alum-induced 

cell death, as measured by propidium iodide uptake and fluorescence microscopy (Fig. 2A, 

2B), or cellular LDH release (Fig. 2C), was not impacted by GSDMD or caspase-1 loss at 

any time point, or any particle concentration, examined. In contrast, caspase-1 or GSDMD 

deletion prevented nigericin-induced cell death after 1 hour of treatment, while after 5 hours 

of stimulation Gsdmd−/− BMDMs also succumbed to nigericin killing (Fig. 2A–2C).

Therefore, although MSU crystals can induce a robust caspase-1 and GSDMD activation 

response within 1.5 hours of stimulation, the ability of MSU crystals to induce cell death and 

trigger IL-1β release in vitro is not dependent on GSDMD.

Necrosulfonamide, a recently described GSDMD inhibitor, blocks inflammasome-mediated 
caspase-1 activation to limit MSU crystal and nigericin induced IL-1β release

Necrosulfonamide (NSA) was initially identified as binding to cysteine 86 of human MLKL 

to inhibit MLKL-mediated necroptotic cell death (49). Recently, Rathkey et al., reported that 

NSA also inhibits processed GSDMD activity by binding cysteine 191 to block GSDMD N-

domain oligomerization and pore formation, and NSA thereby limits IL-1β release and 

pyroptotic killing, but not GSDMD cleavage (43). Consequently, we reasoned that NSA 
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should not limit MSU crystal- or nigericin-mediated caspase-1 processing, or intracellular 

IL-1β maturation to its active p17 fragment, as all of these events occur upstream, and 

independent of, GSDMD.

Unexpectedly, particularly in view of our data demonstrating that MSU crystal-mediated 

IL-1β release is GSDMD-independent (Fig. 1 and Fig. S1), the treatment of LPS primed 

BMDMs with similar concentrations of NSA used by Rathkey et al., (1–10 μM) efficiently 

inhibited MSU crystal-induced IL-1β release in a dose dependent manner, akin to its ability 

to limit nigericin-mediated IL-1β release (Fig. 3A, 3B). On the other hand, MSU crystal-

mediated cell death was not altered by NSA treatment in either WT or MLKL deficient 

macrophages, whereas NSA efficiently blocked nigericin killing (Fig. 3A, 3B, Fig. S2A and 

Fig. S3C).

Further examination by Western blotting revealed that NSA efficiently prevented ATP, 

nigericin- and MSU crystal-induced caspase-1 processing and, consequently, cleavage and 

activation of IL-1β (Fig. 3C, 3D, Fig. S2B, S2C and Fig. S3B). Moreover, consistent with 

our data documenting NSA-mediated blockade of caspase-1 activation, we observed that 

NSA inhibited GSDMD processing to the active N-terminal p30 domain (Fig. 3C, 3D and 

Fig. S2B). Importantly, NSA effectively blocked the accumulation of intracellular processed 

caspase-1 and IL-1β that occurs upon GSDMD deletion, thereby demonstrating that NSA 

must inhibit inflammasome activity independent of GSDMD (Fig. 3C and Fig. S2B). 

Consistent with this, we observed that NSA also limited nigericin-induced ASC speck 

formation, which is required for proximity-induced caspase-1 activation (Fig. 3E). 

Interestingly, NSA potently blocked IL-1β precursor production upon LPS stimulation (Fig. 

S2D), suggesting it can limit IL-1β activation, at least in part, by reducing LPS-induced gene 

transcription. Collectively, these data demonstrate that the impact of NSA on inflammasome 

activity and pyroptosis can occur independent of its ability to target GSDMD.

MSU crystal-induced cell death does not require the necroptotic effector MLKL

Necroptotic, membrane-associated, MLKL causes potassium ion efflux to induce cell 

intrinsic NLRP3 inflammasome activation and IL-1β secretion, independent of GSDMD 

(50). MLKL-induced cellular responses thereby resemble MSU-crystal stimulation, with 

both activating NLRP3 in a potassium efflux dependent manner and inducing cell death and 

IL-1β release independent of GSDMD. In fact, it has been reported that MSU crystal-

induced kidney and neutrophil cell death requires MLKL (28–30, 51), the first reported 

target of NSA (49). Therefore, we considered if MSU crystal-mediated macrophage killing 

or NLRP3 activation requires MLKL. We exposed WT and MLKL-deficient BMDMs to 

MSU crystals or nigericin in the presence or absence of the pan-caspase inhibitors, Z-VAD-

fmk or IDN-6556. Both MSU crystal- and nigericin-induced cell death, as well as caspase-1 

and IL-1β processing and release, were unaffected by the loss of MLKL when compared to 

WT cells (Fig. 4A–D). As expected, treatment of LPS primed WT or Mlkl−/− BMDMs with 

Z-VAD-fmk or IDN-6556 to inhibit caspase activity prevented both nigericin- and MSU-

induced caspase-1 cleavage to its p20 subunit, limited GSDMD processing, and blocked 

IL-1β maturation and release (Fig. 4D and S3A). However, MSU crystals did not trigger 

significant caspase-8 or caspase-3 activation (Fig. S3A), and pan-caspase inhibition had no 
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impact on MSU crystal-induced cell death in either WT or Mlkl−/− macrophages (Fig. 4C). 

As expected, LPS and Smac-mimetic, or LPS and caspase inhibitor, co-treatment induced 

caspase- and MLKL-dependent cell death, respectively (Fig. 4C). Therefore, in 

macrophages, the combined loss of MLKL-mediated necroptosis and caspase-dependent cell 

death modalities (i.e. apoptosis and pyroptosis) do not inhibit MSU crystal-mediated killing, 

and MLKL is not required for MSU crystal-induced NLRP3 inflammasome activation.

MSU crystal-induced cellular rupture is not significantly protected by the osmoprotectant 
glycine, inhibition of cellular cathepsins, or the prevention of potassium ion efflux

Our data, and those of others (52), support the idea that particle-induced loss of plasma 

membrane integrity is required for mature IL-1β release. Both pyroptotic (53) and 

necroptotic (50) induced lytic membrane rupture is delayed by the osmoprotectant glycine, 

and this consequently limits the release of intracellular proteins such as LDH, but does not 

impact mature IL-1β secretion. However, in contrast to the membrane-protective effect of 

glycine on these lytic cell death modalities, glycine failed to limit MSU crystal-induced 

LDH release (Fig. 5A). As expected, glycine did afford significant protection from nigericin-

induced pyroptotic membrane rupture (Fig. 5A), but had no impact on either MSU crystal- 

or nigericin-induced caspase-1 and GSDMD processing, or IL-1β maturation (Fig. 5B, 5C 

and 5D). Similarly, increasing extracellular potassium chloride levels to prevent potassium 

ion efflux, like glycine treatment, had no effect on MSU crystal-induced LDH release in 

either WT, Gsdmd−/− or Caspase-1−/− BMDMs, despite effectively blocking NLRP3 

inflammasome pyroptotic killing by nigericin (Fig. 5A). This finding contrasted with the 

ability of increased extracellular potassium chloride to inhibit both MSU crystal- and 

nigericin-mediated caspase-1, GSDMD and IL-1β processing (Fig. 5B, 5C and 5D). 

Therefore, although potassium ion efflux is a common denominator by which MSU crystals, 

MLKL, and GSDMD trigger NLRP3 activation, MSU crystal-induced cellular rupture is 

distinct from glycine-inhibited pyroptotic- and necroptotic-associated membrane lysis.

The current paradigm argues that particulate NLRP3 activators are phagocytosed by 

macrophages to rupture lysosomal membranes, and that this triggers cathepsin release into 

the cytosol and cathepsin-dependent NLRP3 signaling and cell death (54). The cathepsin B 

inhibitor CA-074-Me efficiently targets multiple cathepsins at concentrations greater than 1 

μM (20), and at 10–20 μM it can inhibit lysosomal-induced cell death, similar to the 

inhibition of particle killing by 10–20 μM treatment with K777, another pan-cathepsin 

inhibitor (21). Surprisingly however, we observed that the levels of cell death, as measured 

by LDH release or propidium iodide uptake, in BMDMs treated with 20–40 μM CA-074-Me 

and then stimulated with MSU crystals, was only marginally reduced compared to control 

MSU crystal-treated cells, even when CA-074-Me was used at 40 μM on a GSDMD or 

caspase-1 deficient background (Fig. 5A, 6A and Fig. S4A). This was despite the fact that 

40 μM of CA-074-Me limited nigericin-induced pyroptosis, and also inhibited alum-

mediated cell death (Fig. 5A, 6A and Fig. S4A). Moreover, at doses up to 40 μM, the pan-

cathepsin inhibitor K777 failed to reduce MSU crystal-mediated macrophage death, even 

though K777 limited alum-dependent cell killing and blocked alum-induced NLRP3 

inflammasome responses (Fig. 6A, 6B, 6C and Fig. S4A). Overall, these data show that pan-

cathepsin inhibition does not abrogate MSU crystal-mediated macrophage cell death.
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Although CA-074-Me did not greatly impact MSU crystal-induced macrophage killing, 20–

40 μM of CA-074-Me abrogated MSU crystal-induced caspase-1, GSDMD and IL-1β 
processing and release, and also inhibited nigericin-mediated NLRP3 responses in a dose 

dependent manner (Fig. 5B, 5C and 6A and Fig. S4A). Therefore, although CA-074-Me 

does not efficiently block MSU crystal-dependent macrophage death, it targets a pathway 

that is required for the activation of NLRP3 by both particulate and soluble stimuli. The 

impact of K777 on MSU crystal-induced NLRP3 and IL-1β activation was less clear 

because it dramatically reduced cellular precursor IL-1β levels (Fig. 6C, 6D), consistent 

with evidence that it, and to a lesser extent CA-074-Me, can inhibit inflammasome priming 

(Fig. 6D)(20).

In vivo MSU-induced inflammation and IL-1β production does not require GSDMD

To test whether GSDMD is required for MSU crystal-induced inflammatory responses in 
vivo, WT (C57BL/6) and GSDMD deficient mice were injected intraperitoneally with MSU 

crystals (3 mg or 5 mg), or carrier (PBS) control. After 4 hours mice were culled and their 

peritoneal cells and fluid analyzed for neutrophil and monocyte influx, and cytokine levels, 

respectively.

MSU crystal injection resulted in similar increases in both IL-1β and IL-6 in the peritoneal 

fluid of WT and GSDMD deficient mice when compared to carrier control treated animals 

(Fig. 7A and 7B). Consistent with no difference in the levels of these inflammatory 

cytokines, MSU crystal-induced neutrophil and monocyte infiltration into the peritoneal 

cavity did not differ between WT and Gsdmd−/− animals (Fig. 7C and 7D). The injection of 

MSU crystals into caspase-1 deficient animals also did not significantly impact cytokine 

levels or neutrophil and monocyte infiltration into the peritoneal fluid when compared to 

WT control animals (Fig. S4B and S4C). Therefore, caspase-1 and GSDMD are not 

essential for MSU crystal-induced autoinflammation in vivo.

Discussion

MSU crystals drive autoinflammation in gout through the activation of IL-1β and cell death 

(5). The inflammasome sensor, NLRP3, and its downstream signaling components, ASC, 

Caspase-1, IL-1β and the IL-1R, have all been reported to contribute to MSU crystal-driven 

inflammation, both in vitro and, albeit to varying extents, in vivo (4–8, 55–59). However, as 

recently highlighted (5), whether activated GSDMD participates in MSU crystal-generated 

IL-1β release and inflammation has not been established. Here we demonstrate a number of 

important features of cellular MSU crystal-induced responses that distinguish it from other 

IL-1β-driven, autoinflammatory, diseases. First, although MSU crystals rapidly activate 

GSDMD, GSDMD is dispensable for MSU crystal-mediated inflammation and cell death, 

both in vitro and in vivo. Despite this, the recently reported GSDMD inhibitor, NSA (43), 

still efficiently limits MSU crystal activation of caspase-1 and IL-1β, indicating NSA blocks 

inflammasome signaling upstream of GSDMD. Second, the necroptotic lytic cell death 

effector MLKL is not required for MSU-crystal induced death or NLRP3 activation in 

macrophages, which contrasts with the reported role for MLKL in MSU crystal-mediated 

death of other cell types (28–30, 51). Third, cathepsin inhibition, or the blockade of 
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potassium ion efflux, despite preventing MSU crystal- and nigericin-mediated NLRP3 

inflammasome responses, had no significant impact on MSU crystal-induced killing.

GSDMD pores are important for IL-1β release and pyroptotic cell death following the 

activation of numerous inflammasomes, such as NLRP3, NLRC4, Pyrin, AIM2, and the 

non-canonical caspase-11 inflammasome (36, 38). However, prolonged NLRP3 and AIM2 

stimulation can also result in GSDMD-independent cell death and IL-1β release (36–38, 45, 

46). Nevertheless, the importance of GSDMD for autoactivating NLRP3 and Pyrin mutant, 

IL-1β-driven, disease in vivo has recently been established (41, 42). These observations 

highlight the need to assess the role of GSDMD in other IL-1-dependent inflammatory 

conditions. In this regard, our data suggest that targeting GSDMD would not be 

therapeutically beneficial in alleviating gout-associated inflammation nor, most likely, other 

crystallopathies (60). Interestingly, we also show that in vivo administration of MSU crystals 

induces peritoneal IL-1β production and inflammatory cell infiltration independent of 

caspase-1, in agreement with the idea that other enzymes, particularly in vivo, can 

significantly contribute to IL-1β activation and the ensuing inflammatory response (57). 

While it has been reported that caspase-1 deficiency partially reduces in vivo MSU crystal 

responses (7, 56, 58), differences in the amount of MSU crystals used, their route of 

administration (e.g. intraarticular versus intraperitoneal), the time points examined, and the 

tissue types sampled, may all explain variable results.

Despite GSDMD being dispensable for MSU crystal-induced death and IL-1β release, both 

MSU crystals and alum particles rapidly activate GSDMD. We have recently shown that Bax 

and Bak mediated mitochondrial apoptotic signaling can engage caspase-1 to cleave 

GSDMD yet, akin to MSU crystals, GSDMD is also not required for Bax and Bak-driven 

cell death or IL-1β release (61). Similarly, the necroptotic effector MLKL can trigger 

NLRP3 and IL-1β release independent of GSDMD (50, 62). In all these scenarios, it is 

likely that GSDMD-independent membrane damage and potassium ion efflux is requisite for 

NLRP3 activation and, consequently, GSDMD will be activated after the terminal damage to 

cellular membranes has already been initiated. This model is consistent with our 

observations here, and other reports (14, 15, 21, 23, 60), demonstrating that particulate 

induced macrophage killing occurs independent of potassium ion efflux, NLRP3 

inflammasome formation, and caspase-1 activity. However, the robust MSU crystal and alum 

activation of GSDMD we observed raises the theoretical possibility that GSDMD may 

contribute to particulate inflammatory responses under different conditions. For example, in 

cell types that cannot readily engage the canonical MSU crystal-induced cell death pathway, 

GSDMD-dependent death may become dominant. Although some controversy exists (63), it 

is interesting to note that in neutrophils and kidney cells MSU crystals have been reported to 

engage the necroptotic effector MLKL to induce cell death (28–30, 51). While our genetic 

data show that MLKL is not required for macrophage cell death or NLRP3 inflammasome 

responses elicited by MSU crystal stimulation, this serves to highlight the potential for cell-

type specific responses to inflammatory particles.

The unique killing mechanism by which MSU-crystals induce macrophage cell death is 

emphasized by our findings demonstrating that i) unlike pyroptosis (64, 65) and necroptosis 

(50), the osmoprotectant glycine does not limit MSU crystal-induced cellular rupture and ii), 
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MSU-crystal killing is not significantly reduced by cathepsin inhibition. The later 

observation is surprising given that numerous studies have utilized CA-074-Me (12, 17, 18, 

21), or K777 (21), to block cathepsin activity and inhibit particle-induced macrophage 

responses. However, to our knowledge, the impact of these cathepsin inhibitors on MSU 

crystal-dependent macrophage death has not been examined. The doses of cathepsin 

inhibitor we used (up to 40 μM) exceed those (10–20 μM) that have been demonstrated to 

inhibit cell death and/or inflammasome activity mediated by other particulate NLRP3 

activators (12, 18, 21, 22). Although high dose CA-074-Me afforded a small degree of 

protection against MSU crystal killing, it remains to be determined whether this represents 

specific CA-074-Me inhibition of cathepsin activity or off-target effects. Unlike cell 

impermeable CA-074, CA-074-Me has dramatically reduced specificity for cathepsin B, 

inhibits multiple cathepsins, and targets a number of proteins of undetermined identity, 

possibly upstream of lysosomal disruption (66, 67). The potential off-target impact of 

CA-074-Me is emphasized by its ability to inhibit diverse cellular functions, such as 

necroptotic cell death (68), apoptotic killing (69), and ATP and nigericin induced NLRP3 

activation and pyroptosis (24, 70). Hence, given the potential unreliability of CA-074-Me, 

and that high dose K777, a pan-cathepsin inhibitor, afforded no protection to MSU crystal 

macrophage killing, we conclude that cathepsin activity is unlikely to be essential for MSU 

crystal killing. We suggest that irreversible particle-induced lysosomal membrane rupture, 

reported to occur independent of cathepsin activity (23, 24), defines the point of no return 

for MSU crystal-mediated macrophage killing. Hence, although cathepsin inhibition may 

delay cell death for some particulate stimuli, ultimately it will not prevent it. This concept is 

similar to that demonstrated for mitochondrial apoptosis, whereby Bax/Bak-mediated 

disruption to mitochondrial membrane integrity suffices to induce cell death, even when the 

apoptosome caspase-activating complex, which forms in response to the release of 

mitochondrial cytochrome c, is eliminated (71, 72).

Whether lysosomal cathepsin activity is required for MSU crystal-dependent NLRP3 

activation requires more detailed experimentation. Although CA-074-Me efficiently blocked 

MSU crystal activation of caspase-1 and IL-1β it has likely off-target effects at the doses 

required to inhibit NLRP3. Our data also demonstrates that the pan-cathepsin inhibitor 

K777, and to a lesser extent CA-074-Me, dramatically blunts LPS-induced IL-1β and 

NLRP3 protein production to prevent inflammasome priming, likely at the level gene 

transcription (20). Genetic deletion of cathepsin B, C and S combined with siRNA targeting 

of cathepsins X and L, only results in, at best, a minor loss to silica-induced IL-1β secretion. 

While compensatory upregulation of cathepsin activity and/or redundancy has been 

suggested to account for the inability of genetic experiments to pin down a conclusive role 

for specific cathepsins in activating NLRP3 (20), cathepsin substrates that trigger potassium 

ion efflux to activate NLRP3 remain unknown. Interestingly, however, unlike other 

particulate NLRP3 activators (16, 22), the inhibition of lysosomal function with Bafilomycin 

A1 has been reported to have no impact on MSU crystal-induced IL-1β maturation and 

release (27)(our data not shown). Evidence indicates that particles, such as alum (73) and 

MSU (25, 73), can engage membrane lipids to trigger damage and/or phagocytic pathways, 

and that cholesterol crystal-induced disruption of plasma membrane homeostasis may 

directly precipitate cell death (60). These findings need to be reconciled with other studies 
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suggesting that cholesterol crystals disrupt lysosomes and require cathepsin activity for 

NLRP3 signaling and cell killing (16, 21). Similarly, despite reports implicating lysosomal 

rupture and cathepsin function in alum-induced NLRP3 inflammasome activation (12, 15), 

alum has been suggested to activate IL-1β in dendritic cells through plasma membrane lipid 

engagement without internalization (73). Clearly, more research is required to clarify how 

particulate inflammatory mediators trigger cell death and inflammation to cause disease. We 

suggest that differences in the modality of particle-mediated cell death and in IL-1β 
activating mechanisms vary, depending on both the type and size of particle, and on the 

nature of the responding cell. Nevertheless, our findings document a unique mode of 

macrophage cell death induced by MSU crystals and demonstrate that therapeutic targeting 

of GSDMD is unlikely to be uniformly beneficial for IL-1β-associated autoinflammatory 

conditions.
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Key Points:

• MSU crystals and alum rapidly activate GSDMD

• GSDMD is dispensable for MSU crystal- and alum-induced IL-1β release and 

cell death

• Cathepsins, caspases and MLKL are not required for MSU crystal-induced 

cell killing
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Figure 1. MSU crystals and alum activate IL-1β and GSDMD, but GSDMD is dispensable for 
IL-1β release.
(A) Bone marrow-derived macrophages (BMDMs) from WT (C57BL/6) mice were pre-

incubated for 2.5 hr with LPS (50 ng/ml) and then treated with MSU crystals or alum (300 

μg/ml) for the indicated times. Cell supernatant and total cell lysates were analyzed by 

immunoblot. Ponceau stain depicts protein loading. (B) IL-1β and (C) TNF levels in the cell 

supernatant of BMDMs from WT (C57BL/6), Gsdmd −/− and Caspase-1−/− mice pre-

incubated for 2.5 hr with LPS (50 ng/ml) and then treated with the indicated concentrations 

of MSU crystals (6 hr), nigericin (1 hr) and alum (6 hr). (D) BMDMs from WT (C57BL/6), 

Gsdmd−/− and Caspase-1−/− mice were pre-incubated with LPS (50 ng/ml, 2.5 hr) and then 

treated with the indicated concentrations of MSU crystals (6 hr) and the cell supernatant and 

total cell lysates analyzed by immunoblot. Ponceau staining depicts protein loading. (B and 

C) Mean ± SD of 7–9 replicates pooled from three independent experiments (symbols). (A 

and D) One of two independent experiments.

Rashidi et al. Page 19

J Immunol. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. GSDMD is not required for MSU crystal- and alum-induced cell death.
(A and B) Imaging of BMDMs from WT and Gsdmd−/− mice pre-incubated for 2.5 hr with 

LPS (50 ng/ml) and then treated with MSU crystals (300 μg/ml), nigericin (10 μM) or alum 

(300 μg/ml) for the indicated times. Cell death was assessed by propidium iodide (PI) uptake 

(red fluorescence). Representative bright field (BF) and PI images are shown in (A) and the 

number of PI positive cells from three independent experiments (symbols) quantified (mean 

± SD) in (B) using Fiji imaging software. (C) LDH levels in the cell supernatant of BMDMs 

from WT (C57BL/6), Gsdmd−/− and Caspase-1−/− mice pre-incubated with LPS (50 ng/ml, 

2.5 hr) and then treated with the indicated concentrations of MSU crystals (6 hr) or nigericin 

(1 hr). Mean ± SD of 9 replicates (symbols) pooled from three independent experiments.

Rashidi et al. Page 20

J Immunol. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Necrosulfonamide inhibits NLRP3 activation and pyroptosis independent of GSDMD 
targeting.
(A) IL-1β (top panel) and LDH (bottom panel) levels in the cell supernantant of BMDMs 

from WT (C57BL/6), Gsdmd−/− and Caspase-1−/− mice primed for 2.5 hr with LPS (50 ng/

ml), with necrosulfonamide (NSA) (10 μM) added in the last 30 min of priming, then treated 

with MSU crystals (300 μg/ml, 6 hr) or nigericin (10 μM, 1 hr). (B) IL-1β and LDH levels in 

the supernatant of BMDMs from WT (C57BL/6) mice primed with LPS (50 ng/ml, 2.5 hr), 

with the indicated concentration of NSA added in the last 30 min of priming, followed by 

treatment with MSU crystals (300 μg/ml, 6 hr) or nigericin (10 μM, 1 hr). (C) WT 

(C57BL/6) and Gsdmd−/− BMDMs were treated as in (A) and supernatant and total cell 

lysates analyzed by immunoblot. (D) WT (C57BL/6) BMDMs were treated as in (B) and 

supernatant and total cell lysates analyzed by immunoblot. Ponceau staining depicts protein 

loading. (E) Immortalized BMDMs (iBMDMs) expressing ASC-GFP and FLAG-NLRP3 

were analyzed by fluorescent microscopy for ASC speck formation (green fluorescence) and 
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PI uptake (red fluorescence) after treatment with the indicated concentrations of NSA for 

30–40 min and then nigericin (10 μM, 80 min). ASC specks are indicated with white arrows. 

(A) Mean ± SD of 4–5 replicates (symbols) pooled from two independent experiments. (B) 

Mean ± SD of BMDMs from 3–6 mice (symbols) pooled from two independent 

experiments. (C, D and E) Data are representative of three independent experiments.
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Figure 4. MLKL is not required for MSU crystal-induced death or NLRP3 inflammasome 
activation in macrophages.
(A) IL-1β and (B) LDH levels in the cell supernatant of BMDMs from WT (C57BL/6) and 

Mlkl−/− mice primed with LPS (50 ng/ml, 2.5 hr) and then treated with the indicated 

concentrations of MSU crystals (6 hr) or nigericin (1 hr). (C) LDH levels in the cell 

supernatant of BMDMs from WT (C57BL/6) and Mlkl−/− mice primed with LPS (50 ng/ml, 

2.5 hr), with Z-VAD-fmk (40 μM) or IDN-6556 (20 μM) added in the last 30 min of 

priming, then treated with MSU crystals (300 μg/ml or Smac-mimetic compound (Cp.A, 1 

μM) for 6 hr (D) BMDMs from WT (C57BL/6) and Mlkl−/− mice primed with LPS (50 

ng/ml, 2.5 hr), with Z-VAD-fmk (20 μM) added in the last 30 min of priming, were then 

treated with the indicated concentrations of MSU crystals (6 hr) or nigericin (1 hr). Cell 

supernatants and total cell lysates were analyzed by immunoblot, as indicated. Ponceau 

staining depicts protein loading. (A, B, C) Mean ± SD of 8 (A, B) or 6 (C) replicates pooled 
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from three (A, B) or two (C) independent experiments. (D) Data are representative of two 

independent experiments.
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Figure 5. MSU crystal-induced membrane lysis is not significantly reduced by the 
osmoprotectant glycine, the prevention of potassium ion efflux, or the inhibition of cathepsin 
activity.
(A) LDH and (B) IL-1β levels in the cell supernatant of BMDMs from WT (C57BL/6), 

Gsdmd−/− and Caspase-1−/− mice primed with LPS (50 ng/ml, 2.5 hr), with the indicated 

concentrations of CA-074-Me, glycine and potassium chloride (KCl) added in the last 30 

min of priming, and then treated with MSU crystals (300 μg/ml, 6 hr) or nigericin (10 μM, 1 

hr). (C and D) BMDMs from WT (C57BL/6) and Gsdmd−/− mice were treated as (A) and 

cell supernatant and total cell lysates analyzed by immunoblot, as indicated. Ponceau 

staining depicts protein loading. (A, B) Mean ± SD of 7–9 replicates pooled from three 

independent experiments. (C, D) Data representative of two independent experiments.
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Figure 6. The cathepsin inhibitors, K777 and CA-074-Me, do not prevent MSU crystal-induced 
death but do reduce inflammasome priming.
(A) BMDMs pre-treated with the indicated cathepsin inhibitors for 40–60 min were then 

stimulated with MSU (300 μg/ml), alum (300 μg/ml) or nigericin (10 μM) for 4–5 hrs, 

stained with propidium iodide (PI), and imaged. PI uptake was quantified using Fiji. See 

Figure S4 for representative images. (B) BMDMs from WT and Gsdmd−/− mice primed with 

LPS (50 ng/ml, 2.5 hr), and treated in the last 30 min with K777 (20 μM or 40 μM), were 

then stimulated with MSU (300 μg/ml) or alum (300 μg/ml) for 6 hr. Levels of IL-1β, TNF 

and LDH in the cell supernatant were measured. (C) BMDMs were treated as in (B) and cell 

supernatant and total cell lysates analyzed by immunoblot. (D) BMDMs were pre-treated 

with the indicated cathepsin inhibitor (40 μM) for 40–60 min then stimulated with LPS (100 

ng/ml) and total cell lysates examined by immunoblot. *IL-1β band. (A) Mean ± SD of two 

(nigericin) or three (MSU and alum) pooled independent experiments. Similar symbols 

represent multiple images per experiment. Different symbols represent independent 
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experiments. (B) Mean ± SD of 6–9 replicates (symbols) pooled from three independent 

experiments. (C and D) Data are representative of two (C) or three (D) independent 

experiments.
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Figure 7. GSDMD is dispensable for MSU crystal-induced IL-1β release and neutrophil and 
monocyte influx in vivo.
C57BL/6 and Gsdmd−/− mice were injected i.p. with carrier (PBS) or MSU crystals (3 mg 

[triangles] or 5 mg [circles]) and (A) IL-1β and (B) IL-6 levels measured in the peritoneal 

lavage fluid supernatant after 4 hr. (C) Gating strategy for neutrophil and monocyte 

quantification in peritoneal lavage fluid. (D) Quantification of peritoneal influx of 

neutrophils and monocytes in C57BL/6 and Gsdmd−/− mice i.p. injected with carrier (PBS) 

or MSU crystals (3 mg [triangles] or 5 mg [circles]) for 4 hr (A, B and D) Mean ± SD, n=11 

mice per group (symbols) pooled from two independent experiments.
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