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Climate change is one of the most important threats to biodiversity and crop

sustainability. The impact of climate change is often evaluated on the basis

of expected changes in species’ geographical distributions. Genomic diver-

sity, local adaptation, and migration are seldom integrated into future

species projections. Here, we examine how climate change will impact popu-

lations of two wild relatives of maize, the teosintes Zea mays ssp. mexicana
and Z. mays ssp. parviglumis. Despite high levels of genetic diversity

within populations and widespread future habitat suitability, we predict

that climate change will alter patterns of local adaptation and decrease

migration probabilities in more than two-thirds of present-day teosinte

populations. These alterations are geographically heterogeneous and suggest

that the possible impacts of climate change will vary considerably among

populations. The population-specific effects of climate change are also evi-

dent in maize landraces, suggesting that climate change may result in

maize landraces becoming maladapted to the climates in which they are cur-

rently cultivated. The predicted alterations to habitat distribution, migration

potential, and patterns of local adaptation in wild and cultivated maize raise

a red flag for the future of populations. The heterogeneous nature of pre-

dicted populations’ responses underscores that the selective impact of

climate change may vary among populations and that this is affected by

different processes, including past adaptation.

1. Introduction
Climate change is having detrimental effects on the geographical distribution,

local abundance, and levels of genetic diversity of species [1–6] and is a

major contributor to the current loss of biodiversity. In cultivated species,

these impacts will have significant economic and alimentary repercussions at

local and global scales [2,4,7]. The development of strategies to mitigate the

impacts of climate change on cultivated species has been a high priority,

with recent proposals highlighting the importance of genetic diversity and

local adaptation of wild relatives for crop improvement and mitigation [4,8–12].

Cultivated landraces of maize (Zea mays ssp. mays) have had a close associ-

ation with their wild relatives, the teosintes, throughout their evolutionary

history. Maize was domesticated in Mexico from lowland teosinte (Zea mays
spp. parviglumis) nearly 9000 years ago [13], with subsequent introgression

from highland teosinte (Zea mays spp. mexicana) that allowed cultivated

maize to grow at higher elevation environments, particularly in Central

Mexico [14,15]. More than 200 Latin-American landraces of maize have been

described, which are the result of past and ongoing sociocultural processes

that shape and maintain extraordinary biodiversity in this species [16,17]. Teo-

sintes grow wild in Mexico under a wide range of climatic conditions, from very
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hot and humid coastal environments to temperate and dry

inland regions [10,18,19]. Maize landraces have an even

wider geographical and environmental range [4,15,20]. His-

torical (as mentioned above) and current evidence of gene

flow from teosintes into maize and the presence of fertile

hybrids [21,22] indicates that gene introgression into land-

races is possible. Such introgression could be important in

enabling maize to continue to evolve in response to new

environmental challenges [18,23].

Both the teosintes and several maize landraces are threatened

by habitat loss and climate change [4,7,16,20,24], primarily

increasing temperature and aridity [4,6]. Genomic analyses in

teosintes have identified significant genetic differences

between populations that are associated with varying local

climates, suggesting local adaptation to contrasting environ-

ments (e.g. warm and dry climates) is common in teosintes

[18,25–27]. Teosinte populations locally adapted to warm

and dry environments are likely to contain alleles that

could reduce the negative effects of global warming and

increased aridity. Given that teosintes are not cultivated in

Mexico, genetic variation should not have been directly

affected by the cultural and agronomical practices influencing

maize landraces [10,28]. Thus, patterns of gene–environment

associations in teosinte populations might prove useful as a

blueprint of local adaptation for crop improvement and

mitigation in maize landraces.

Ecological niche modelling has become a powerful tool to

assess the impacts of climate change on species’ geographical

distribution and persistence [29–31]. Commonly used ecologi-

cal niche models assume that populations within a species

are identical and share the same environmental tolerance

limits [31–34], disregarding differences in the local adaptive

response of populations to climate [35,36]. Given that local

adaptation is common, among-population variation in climatic

tolerances and varying levels of climate–gene relationships

across the genome are expected [26,35]. This variation could

have important consequences for population and species

responses to a changing climate [32,34]. However, there are

relatively few studies that have integrated adaptive divergence

among subpopulations into ecological niche modelling to

predict species’ response to climate change [34,35,37,38].

Here, we examined how climate change is expected to

affect the geographical distribution and the frequency of

single-nucleotide polymorphisms (SNPs) associated with

climate-related traits in two teosinte subspecies: Z. mays
ssp. mexicana and Z. mays ssp. parviglumis (hereafter referred

to as mexicana and parviglumis, respectively). These teosintes

thrive under distinct environmental conditions: mexicana is

native to the dryer and colder highland regions of Central

Mexico, whereas parviglumis is native to more tropical

lowlands of southwestern Mexico [10,18,19,26].
2. Material and methods
(a) Ecological niche models
For each of the two teosintes, we built species distribution

models using Maxent v.3.3.3 [39] and present-day climate data

from the WorldClim [40] database. We used 254 (mexicana) and

329 ( parviglumis) occurrence data points and the 19 bioclimatic

variables available in WorldClim [40] at a resolution of

30 arc/sec (approx. 1 km2), with an area extent of 908–1208W,

108–308N and background sampling points randomly chosen
across the study area (electronic supplementary material). We

examined predicted range shifts under four climate models:

two general circulation models (Community Climate System

Model (CCSM), Model for Interdisciplinary Research on Climate,

(MIROC)) and two greenhouse gas concentration models

adopted by the Intergovernmental Panel on Climate Change

(Representative Conservation Pathways: RCP 4.5, RCP 8.5) at

each of two future projections (2050, 2070). After validating the

models, we generated binary presence/absence maps to quantify

the degree of change in the geographical distribution of the two

teosinte species (electronic supplementary material).

(b) Population genomic data
We merged the datasets of [25,26] (available from the Dryad

Digital Repository: https://doi.org/10.5061/dryad.8m648 [41]

and https://doi.org/10.5061/dryad.tf556 [42]), both obtained

using the MaizeSNP50 Illumina Bead chip, to construct a dataset

of 33 454 high-quality single-base bi-allelic genetic variants,

known as SNPs, distributed along the 10 chromosomes of

maize [25,26]. The dataset comprises 23 populations for mexicana
and 24 populations for parviglumis, covering the entire geo-

graphical and environmental distribution of teosintes [26]. The

sets of locally adapted SNPs used here are described in detail

by Aguirre-Liguori et al. [26], who used Bayescenv [43] and

Bayenv [44] to identify SNPs with significant genetic differen-

tiation among populations (FST) and significantly associated

with temperature and precipitation (electronic supplementary

material). SNPs that show genetic differentiation within the

expected distribution of FST across the genome are presumably

affected mainly by neutral processes (hereafter referred to as

reference SNPs). On the contrary, the presence of SNPs with

significantly high genetic differentiation is presumably affected

by divergent selection enhancing allele frequency differences

between populations. The SNPs identified through these

methods bear statistical signatures consistent with local adap-

tation to climate. However, we caution that their functional

importance has not been experimentally validated and statistical

approaches to identify locally adapted genetic variants, such as

those used here, are likely to include false positives and may

include variants that differ due to non-adaptive processes.

Recent genomic scans in the two teosinte subspecies [26]

identified 68 SNPs bearing a signal of local adaptation. We

divided these SNPs into two groups based on the results of a

discriminant analyses on principal components (DAPC) using

climatically defined groups of populations and the 68 putatively

locally adapted SNPs. The SNPs with the greatest power to

discriminate among populations (the upper third quartile of

the distribution of loadings) are hereafter referred to as puta-

tively adaptive SNPs (paSNPs) and the others as candidate

SNPs (canSNPs) (electronic supplementary material, figure S1).

The DAPC was conducted for each subspecies separately using

the adegenet package [45] in R [46] (electronic supplementary

material). We estimated levels of genetic diversity (Hs) for reference

SNPs within each population using the adegenet package [45] and

hierfstat package [47] in R [46]. Genetically poor populations were

defined as those with an Hs lower than 0.2 [25].

(c) Gradient Forest
Recently, species ecological distribution modelling techniques

have been developed to consider intraspecific genetic variation

in the assessment of the impact of climate change [31,35,37,38].

Among these is Gradient Forest [48], a regression tree-based

approach that implements nonlinear regressions to estimate

patterns of turnover in species (or allelic) composition as a func-

tion of environmental variables [35] (electronic supplementary

material). The algorithm identifies regions along an environ-

mental gradient associated with a high rate of change in allele
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frequencies, irrespective of the underlying allele frequencies.

Gradient Forest then uses this information to construct allele

turnover functions [35], which can be used to model the

change in allele frequencies throughout a species’ range as a

function of climatic variables.

To examine the potential effect of climate change on the gen-

etic composition of local populations, we applied an extension of

Gradient Forest [48] developed by Fitzpatrick & Keller [35] to

predict how climate change will alter the frequencies of three

sets of SNPs (see above). We used the gradientforest package

[48] in R [46] to construct turnover functions for each SNP dataset

(i.e. reference, candidate, putatively adaptive) with the 19 biocli-

matic variables used for the species distribution models. We used

these models to predict within-population genetic turnover

throughout the teosintes’ geographical range [35,48]. For each

SNP dataset, we estimated the allelic frequencies for each subspe-

cies and implemented Gradient Forest using 100 trees and a

correlation threshold of 0.5 [35]. Based on the best allele turnover

models for each set of SNPs, we constructed landscape models

for the present and each of the eight future climate models

using the raster package [49] in R [46].

By integrating the present and future allele turnover models,

we predict the extent of observed allele frequency changes

through time as a function of climate change [48], hereafter

referred to as genomic offset [35,37,38]. This provides insights

into the disruptive effect of climate change on the frequencies

of alleles within contemporary populations. Geographical

regions and populations with the greatest genomic offset are

those in which climate change is predicted to have the greatest

disruptive impact on current gene–environment relationships

(electronic supplementary material).

To gauge the robustness of the Gradient Forest models to the

use of different sets of SNPs, we ran additional analyses using:

(i) a set of reference SNPs with an allele frequency distribution

similar to those of candidate and putatively adaptive SNPs,

(ii) different sets of outlier SNPs identified by Aguirre-Liguori

et al. [26], and (iii) the complete set of 33 454 SNPs (electronic

supplementary material).

(d) Allele distribution models
Since the climates of the future are predicted to be warmer, we

were interested in modelling the distribution of the putatively

warm-adapted alleles at each putatively adaptive SNP (electronic

supplementary material). For this, we used Maxent v. 3.3.3 [39]

to predict the future geographical distribution of warm-adapted

alleles, using the corresponding populations’ geographical coor-

dinates where these alleles were recorded as input. We used the

same settings and validation procedures used for the species dis-

tribution models (see above). We generated binary presence/

absence distribution models for each warm-adapted allele for

the present and for future climate models (electronic supplemen-

tary material). We estimated the geographical overlap between

the present model and each future model to define areas where

at least five alleles are predicted to occur in the future, indicating

favourable areas where the current gene–environment relation-

ships will remain. We cross-validated the allele distribution

models using the Gradient Forest models by inspecting the geno-

mic offset of populations for three sets of regions: present-only,

future-only, and overlap.

(e) Barriers to migration
Based on the joint distribution models for the putatively warm-

adapted alleles, we approximated the potential capacity of popu-

lations to migrate into the new regions predicted under future

climate scenarios using circuit theory [50]. This represents a sim-

plified model of population migration based solely on a handful

of alleles and assumes that population migration would be
mostly limited by current local adaptation. We constructed

maps of potential migration using the present and future distri-

bution models for putatively warm-adapted alleles to

determine landscape resistance (environmental distances) as a

proxy of limitation to successful migration, where increasing

resistance indicates decreasing probabilities of allele movement

(electronic supplementary material). These maps of potential

migration are based on the joint distribution of warm-adapted

alleles, for which suitable areas were defined as those predicted

with at least five alleles. For each sampled population, we con-

strained our analyses to a 18 � 18 grid-cell centred on that

population. We used the 10-percentile of resistance values as a

minimum threshold to estimate migration potential, which can

be interpreted as the resistance to successful migration into at

least 10% of the future areas of potential settlement (electronic

supplementary material).
( f ) Identifying putative adaptive SNPs in maize
landraces

We explored whether the putative adapted SNPs identified for

teosintes have been documented in particular landraces of

maize [51]. For this, we downloaded the genotype data for

maize described by Arteaga et al. [51], consisting of 36 931

SNPs across 46 landraces in Mexico. After identifying warm-

adapted alleles across landraces, we estimated a relative ‘adap-

tive’ score for each landrace by adding up warm-adapted allele

frequencies across all putative adapted SNPs (electronic sup-

plementary material).

We evaluated the correlation between the adaptive scores

and temperature, genomic offset and the geographical extension

of each landrace (electronic supplementary material). For this, we

employed simple linear regressions using the adaptive score as

the response variable and climatic and geographical data for

landraces as the predictors. We used the estimated genomic

offset for the two teosintes under the less extreme climate

change models (CCSM_2050_RCP4.5) to extract the mean

genomic offset values from the geographical occurrences of

each landrace. To assess the possibility of uncovering positive

regressions between predictors and the adaptive score of land-

races irrespective of their potential for adaptation, we

calculated linear regressions using adaptive scores estimated

from 1000 different sets of randomly sampled reference SNPs

(13 per set).
3. Results and discussion
Ecological niche models can be used to predict suitable geo-

graphical ranges [29–34]. The predicted shifts and shrinkage

in the teosintes’ geographical range represent a potential

threat to their persistence under climate change [20]. We

employed ecological niche modelling and climate averages

from 1960 to 1990 [40] to build geographical distribution

models for the two teosinte subspecies under eight projec-

tions of climate change. As expected due to geographical

constraints [6,20,52,53], the highland teosintes (mexicana) are

predicted to be more susceptible to climate change than the

lowland teosintes ( parviglumis) [19,20]. These models predict

that the potentially suitable geographical range for mexicana
will be reduced by 30–39% in the next 30–50 years, whereas

parviglumis range is predicted to be reduced by 4–9%

(electronic supplementary material, figure S2 and table S1).

Consistent with the predicted contraction in geographical

range, 29 and 15% of populations of mexicana and parviglumis,

respectively, are predicted to fall outside of suitable habitat
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by 2050 (45 and 29% by 2070). However, these models do not

provide direct information on the potential effects that cli-

mate change will have on the genetic composition of local

populations [36].

To have a more comprehensive assessment of the

potential effects of climate change on wild teosintes, we pre-

dicted how climate change would alter the frequencies of

three sets of SNPs (see above). The set of putatively adaptive

SNPs (paSNPs) is comprised of nine parviglumis and eight

mexicana SNPs with frequencies that differ strongly among

populations living either in warm or cold environments, a

signal that these loci might be contributing to local adap-

tation to climate. The majority of these SNPs are in or near

genes involved in responses to heat, drought, and other

environmental stress [26] (electronic supplementary material,

table S2). The candidate SNPs (canSNPs) include 24 parviglu-
mis and 25 mexicana SNPs that are also significantly associated

with climate, but not as strongly as putatively adapted SNPs

(electronic supplementary material). The reference SNPs

were randomly selected from the 33 454 SNPs, and showed

some, but not particularly strong, population differentiation

(FST values within the 10 and 90% percentiles of the

distribution of per-SNP population FST).

Our estimates of genomic offset based on Gradient Forest,

in combination with projections of future climate change,

allowed us to predict the temporal patterns of within-

population genetic turnover throughout the teosintes’

geographical range [35,48]. The extent of genetic offset

observed for the putatively adaptive and candidate SNPs,

relative to reference SNPs, provides insights into the

disruptive effect of climate change on patterns of gene–

environment associations among contemporary populations.

In this case, the higher genomic offset in several populations

is indicative of stronger shifts in the frequencies of climate-

associated SNPs than populations having a lower genomic

offset.

Although a more pronounced geographical contraction is

predicted for mexicana than parviglumis, genomic offset at

putatively adaptive and candidate SNPs is higher in parviglu-
mis than in mexicana (mean ¼ 0.27 versus 0.06 across all

models, respectively; electronic supplementary material,

tables S3–S5). The higher genome-wide offset in parviglumis
(electronic supplementary material, figures S3 and S4) likely

reflects greater population genetic structure (i.e. higher gen-

etic differentiation among populations) in parviglumis than

mexicana [26]. The higher genomic offset might also indicate

that the genetic composition of parviglumis populations will

be more affected by climate change than mexicana popu-

lations. The levels of genomic offset are, however, highly

variable among populations (figure 1a,b), with genomic

offset lower for populations either having higher frequencies

(greater than 0.5) of the warm-adapted alleles or having little

expected change in climatic conditions (electronic sup-

plementary material, figure S5). The among-population

variation underscores that both the selective impact of climate

change and the genomic consequences of subsequent evol-

utionary response may both vary among populations and

are affected by past local adaptation.

The considerable levels of genomic offset predicted in

most populations have the potential to greatly alter patterns

of local adaptation to climate, or at least the genetic basis of

local adaptation. The genomic offset may also limit the adap-

tive potential of populations, thereby leading to reduced
population sizes and possibly increase the probabilities of

local extinction [3,26,31,37,38,52]. This points towards more

complex impacts of climate change on teosinte populations

than those predicted using geographical distribution

models alone [20,32,34,36].

To complement the use of Gradient Forest, we used the

same modelling tools employed for species distributions to

predict the present and future geographical distribution of

the putatively warm-adapted alleles (electronic supplemen-

tary material). This modelling showed that by 2050, the

predicted geographical distribution of most of these warm-

adapted alleles is expected to contract by approximately

45% in mexicana and by 36% parviglumis (electronic sup-

plementary material, table S6). The geographical areas not

suitable for the warm-adapted alleles in the future also

show higher levels of genomic offset (electronic supplemen-

tary material, figure S6), indicating that areas outside the

predicted distribution of alleles are expected to have big

shifts in climate–gene relationships, either due to a lower

starting allele frequency or to a larger change in climate.

The putatively warm-adapted alleles are expected to

confer selective advantages to expanding warmer and drier

environments, yet populations lacking these alleles might

follow a different evolutionary trajectory to adapt to climate

change. In this context, standing ‘neutral’ genetic diversity

or new mutations could act as an important source of vari-

ation for future local adaptation [1,5,54,55] through the

generation of novel allele combinations serving as the basis

of future adaptive evolution. We found a significantly nega-

tive association between genetic diversity at reference SNPs

(Hs) and the predicted genomic offset for putatively adaptive

SNPs (electronic supplementary material, figure S7). These

results suggest that, on average, genetically rich populations

will be less vulnerable to climate change, probably because

the adaptive potential of populations is maximized with

intermediate allele frequencies. This result is consistent with

the relevance usually given to standing genetic variation to

allow responding to a changing climate [54,55]. However,

more than two-thirds of teosinte populations (71% in parvi-
glumis and 91% in mexicana) show high levels of genetic

diversity (Hs greater than 0.2, [25]), yet even under the

most conservative climate model, many of these populations

will experience high levels of genomic offset (figure 1a,b).

While some populations might adapt to the conditions of

a changing climate, other populations might migrate to track

the climatic conditions to which they are currently adapted

[52,53]. With a focus on the alleles with major associations

with current climatic conditions, we evaluated the potential

for sampled populations to migrate to locations with future

climates that are similar to the climates they experience

today. To do this, we used the distribution models for puta-

tive warm-adapted alleles to estimate environmental costs

[50,56] (i.e. lower probabilities of populations successfully

migrating) along all potential migration routes radiating

from each sampled population.

Depending on the climate model, as the climate changes,

46–54% of parviglumis populations and 22–52% of mexicana
populations are expected to have the possibility of migrating

into sites in which the alleles of major effect will remain

advantageous (electronic supplementary material, table S7).

Although more mexicana populations are predicted to have

no migration capabilities (i.e. infinite migration costs) into cli-

matically suitable sites, probably due to isolation from areas
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predicted to have suitable conditions in the future, the

remaining populations of mexicana actually showed lower

migration costs than populations of parviglumis
(figure 1c,d ). Thus, although migration costs are expected to

be higher for parviglumis than for mexicana, populations

living in the Central Highlands of Mexico are expected to

have the highest migratory constraints (figure 1c). The vari-

ation in migration costs might result from the differing

rates of estimated temperature change between highland

environments compared to lowland regions [53]. The

predicted likelihood of successful migration into a climati-

cally suitable location was positively correlated with

within-population frequency of warm-adapted alleles

(electronic supplementary material, figure S8).

Under the most conservative model of climate change

(CCSM_4.5_2050), our species distribution models predicted

88 and 84% of sampled populations within future suitable

areas for parviglumis and mexicana, respectively (electronic

supplementary material, table S1). In addition, most of

these populations exhibited high levels of genetic diversity
[26]. However, the heterogeneous geographical patterns of

genomic offset and migration potential suggest that the

impacts of climate change will vary considerably among

populations. Overall, eastern populations of mexicana and

western populations of parviglumis showed high levels of

genomic offset and lower migration potential (figure 1),

thus we expect that these populations will experience stron-

ger pressures to adapt to climate change than other teosinte

populations. From this basic comparison, we conclude that

integrating ecological niche modelling and genomic data is

an important step forward to better understand the impacts

that climate change will have on natural populations.

Locally adapted populations of teosintes can be used as a

source of advantageous genetic diversity for landraces of

maize [4,19,23], through the introduction of ‘new wild alleles’

into cultivated populations [8,9,11,12]. Experimental evi-

dence has proven that teosintes germplasm can be

successfully transferred into maize and can increase crop

yields and drought resistance [16,17,22,57]. Alternatively,

maize improvement under warmer climates can be achieved
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rences for the 46 maize landraces in Mexico coloured by the mean annual temperature. Black stars represent accessions for landraces with high adaptive scores that
have been used for maize improvement and white circles represent accessions for restricted landraces with low adaptive potential. (c – e) Association of adaptive
scores versus the geographical range size, mean annual temperature, and genomic offset estimated for 46 maize landraces. Regression coefficients for range size:
b ¼ 0.02, F ¼ 1.1, d.f. ¼ 45, p ¼ 0.31; for temperature: b ¼ 0.01, F ¼ 17.7, d.f. ¼ 45, p , 0.001, R2 ¼ 0.27; for genomic offset: b ¼ 23.31, F ¼ 3.76,
d.f. ¼ 45, p ¼ 0.06. ‘Conico Norteño’ (CN), ‘Ratón’ (R), ‘Tabloncillo’ (Ta), ‘Tabloncillo Perla’ (TaP), ‘Tuxpeño’ (Tx), ‘Tuxpeño Norteño’ (TxN), ‘Vandeño’ (V), ‘Zapolote
Chico’ (ZC), ‘Arrocillo’ (A), ‘Bofo’ (B), ‘Cristalino de Chihuahua’ (CC), ‘Palomero Toluqueño’ (PT), and ‘Tehua’ (Te). (Online version in colour.)
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more easily by selecting warm-adapted alleles already

present in maize landraces. Thus, we estimated the frequency

of putatively warm-adapted alleles identified for teosintes in

46 Mexican landraces of maize [51] (electronic supplementary

material, table S8).

We found an uneven presence of warm-adapted alleles

across distinct maize landraces in Mexico (figure 2a), with a

positive trend of increasing allele frequency in maize land-

races with larger geographical ranges and higher mean

annual temperatures (figure 2c,d ) (b ¼ 0.01, F ¼ 17.7, d.f. ¼

45, p , 0.001, R2 ¼ 0.27). Although the positive relationship

between the frequency of adaptive alleles and range size

was non-significant, several landraces with narrow distri-

bution ranges, such as the almost extinct ‘Tehua’ landrace,

and other highly restricted landraces [16] (depicted as

open circles in figure 2b– e), showed warm-adapted alleles

at fewer loci and at lower frequencies. In turn, we found a

negative relationship between adaptive scores and the

genomic offset (figure 2e). However, the relationship

between warm-adapted allele frequencies and both

temperature and genomic offset were greater than those

estimated between reference SNPs and these factors,

for all but 0.5% of the subsamples (electronic

supplementary material, figure S9).

The statistically significant relationships between warm-

adapted alleles identified in teosintes and the climatic

environment in which maize landraces are grown, could
result from past introgression of adaptive genes into maize

via gene flow from teosintes [14,15,18,23,58]. However,

hybridization between maize and teosintes appears to be lim-

ited to areas of sympatry [23,58] and thus, it seem more likely

that the higher adaptive scores for landraces growing in

warmer climates reflect past adaptation to these conditions

[4]. The non-significant regression observed for genomic

offset (figure 2e) may partially result from the transferability

of models of teosinte into maize or the quantitative nature

of phenotypic traits associated with adaptation to climate

[59–62]. Nonetheless, to the extent that the warm-adapted

alleles identified in teosinte contribute to local adaptation in

maize, our results suggest that climate change will alter the

genetic basis of local adaptation in maize landraces. This dis-

ruption might result in maize landraces becoming locally

maladapted to the climatic conditions in which they have

been grown historically [4]. Such maladaptation may lead

to yield declines in many of these landraces as temperatures

increase [7].

Based on our analyses, we identified several maize land-

races (depicted as black stars in figure 2b–e) with moderate to

high adaptive scores and known to be drought resistant [16]

(electronic supplementary material, table S9). Indeed, several

of these landraces have been used to improve maize lines

with enhanced heat and drought resistance, with increased

yields [16,57]. We acknowledge that adaptation to climate

very likely involves quantitative traits [54,59–62], yet
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identifying alleles with small effects on polygenic traits

remains a major challenge [62], especially in species with

complex genetic structures, such as teosintes. Nonetheless,

the putatively adaptive and candidate SNPs we identified

are promising candidates to test the response of maize and

teosintes to changing climate under experimental settings.

The convergence between the adaptive score of landraces,

together with historical agronomical practices, opens up the

opportunity to fully integrate the vast cultural knowledge

on maize landraces with analyses of genomic data in an

ecological context.

In an era in which population-level genomic data are

accessible for an increasing number of non-model species,

approaches integrating genomic and environmental data pro-

vide powerful tools to better understand the impacts of

climate change on natural populations [5,35–38]. Predictions

of the impact of climate change on species based solely on

projected shifts in species’ ranges, although valuable, only

provide partial information [30–34]. By building spatio-

temporal models of climate–gene relationships, we show

that the future of wild populations of teosintes and possibly

of several landraces of maize appears to be much harsher

than previously estimated [20].

Although it is tempting to directly relate our results to

future declines in population fitness [38], the association

between climate and fitness should be properly validated

using experimental or at least simulation approaches

[37,63]. Nevertheless, the fact that future climate change pre-

dicts significant alterations to habitat distribution, migration

potential, and patterns of local adaptation raises a red flag

for the future of wild and cultivated populations of maize.

Our results show the relevance of moving beyond the

standard species distribution models to assess climate
change impacts [30–38] and prove how the analysis of geno-

mic data can identify important genetic resources to aid

wildlife conservation and crop sustainability under a rapidly

changing climate. However, our approach remains an

oversimplification of the complex evolutionary and ecological

processes affecting populations [36,52,54,62,63]. This under-

scores the need for continued integration of agronomical

practices, genomic data, and climate models to better

understand the impacts of a rapidly changing climate on

cultivated and wild species.
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