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Functional variation in rhodopsin, the dim-light-specialized visual pigment,

frequently occurs in species inhabiting light-limited environments. Variation

in visual function can arise through two processes: relaxation of selection or

adaptive evolution improving photon detection in a given environment.

Here, we investigate the molecular evolution of rhodopsin in Gymnoti-

formes, an order of mostly nocturnal South American fishes that evolved

sophisticated electrosensory capabilities. Our initial sequencing revealed a

mutation associated with visual disease in humans. As these fishes are

thought to have poor vision, this would be consistent with a possible sen-

sory trade-off between the visual system and a novel electrosensory

system. To investigate this, we surveyed rhodopsin from 147 gymnotiform

species, spanning the order, and analysed patterns of molecular evolution.

In contrast with our expectation, we detected strong selective constraint in

gymnotiform rhodopsin, with rates of non-synonymous to synonymous

substitutions lower in gymnotiforms than in other vertebrate lineages. In

addition, we found evidence for positive selection on the branch leading

to gymnotiforms and on a branch leading to a clade of deep-channel special-

ized gymnotiform species. We also found evidence that deleterious effects of

a human disease-associated substitution are likely to be masked by epistatic

substitutions at nearby sites. Our results suggest that rhodopsin remains an

important component of the gymnotiform sensory system alongside electro-

location, and that photosensitivity of rhodopsin is well adapted for vision in

dim-light environments.
1. Introduction
Animals rely on information from multiple sensory systems to navigate, avoid

predators and find mates. However, sensory systems are generally energetically

expensive [1], and suboptimal sensory systems are rapidly reduced and even-

tually lost [2]. For example, the transition from aquatic to terrestrial

environments resulted in the loss of the lateral line and electrosensory organs

of many fishes because neither sensory system is effective out of water [3].

Also, regressive evolution of eyes is observed in vertebrate lineages inhabiting

lightless caves and deep-sea habitats [2,4].
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However, regressive evolution in one sensory modality

can be correlated with adaptive evolution in an alternative

sensory system better suited for the environment [5], an evol-

utionary pattern described as a sensory trade-off [6]. Reduced

visual performance in bats and cetaceans is associated with

the evolution of echolocation [7–10], and organisms as

diverse as mammals [6] and Drosophila [11] exhibit trade-

offs between olfactory and visual systems. Molecular genetic

evidence for sensory trade-offs has been reported in bats, the

naked mole-rat, the star-nosed mole and the blind Mexican cave

fish. In these taxa, the molecular evolution of vision genes is

relaxed coincident with an expansion of auditory, mechanosen-

sory or gustatory sensory systems [7,9,10,12,13]. However,

interpretation of trade-offs is not always straightforward [7],

and in some taxa, such as vipers with infrared-detecting pit

organs, trade-offs with vision are not observed [14].

The electric knifefishes of South and Central America

(Order Gymnotiformes) are capable of active electrolocation.

This sensory system involves the production of stereotypical

electric fields by specialized electric organs made up of modi-

fied muscle or neuronal tissue [15]. Disturbances in the

weak self-generated fields are detected by specialized high-

frequency-sensitive tuberous electroreceptors and interpreted

by the brain [15]. Active electrolocation allows navigation in

the absence of light, and gymnotiforms are mostly noctur-

nally active and often live in turbid and tannin-stained

rivers [16,17]. Gymnotiforms have small eyes and are thought

to have poor vision [18]. This suggests a possible sensory

trade-off between vision and active electrolocation, with elec-

trolocation providing a clear advantage in highly obscured

river environments where downwelling light is rapidly

attenuated, especially at night.

Rhodopsin is the key visual pigment for dim-light vision.

Because of this, we expected rhodopsin to be the visual

pigment most likely to be involved in a trade-off with electrolo-

cation, an adaptation for perception in low light. Rhodopsin

mediates the first step in the visual transduction cascade

within the rod photoreceptor cells of the eye. Rod photoreceptors

show specializations for dim-light activation, including high

photosensitivity and signal amplification [19]. Rhodopsin acti-

vation has an extremely high signal-to-noise ratio and exhibits

highly efficient activation of downstream second messenger

molecules [20]. These properties appear to place rhodopsin

under considerable functional constraint [21]. In humans,

mutations in rhodopsin can cause genetic degenerative eye dis-

eases such as retinitis pigmentosa (RP) [22]. Rhodopsin has long

served as a model system for studies of the molecular evolution

of sensory systems, and also for investigations of the broader

superfamily of pharmacologically important G protein-coupled

receptors (GPCRs), resulting in a wealth of related resources,

including large disease databases, sequence databases and crys-

tal structures, as well as numerous in vitro mutagenesis studies of

rhodopsin and other GPCRs [20,22–24].

In this study, we investigate the molecular evolution of

gymnotiform rhodopsin. We ask whether the evolution of

active electrolocation in gymnotiforms has reduced selective

constraint on rhodopsin as part of a sensory trade-off, or

instead whether rhodopsin has undergone adaptive evol-

ution to improve photosensitivity in extremely light-limited

environments. Using models that measure site-specific substi-

tution rates across a gene, we investigate rates and patterns of

rhodopsin evolution within Gymnotiformes, and we compare

patterns of gymnotiform rhodopsin evolution with those of
other fishes. Finally, we investigate the relevance of a dis-

ease-associated mutation newly discovered in gymnotiforms

for the structure and function of rhodopsin.
2. Results
(a) Gymnotiform rhodopsin is under stronger purifying

selection than in other vertebrates
Analysis of the molecular evolution of rhodopsin sequences

generated for 147 gymnotiform species reveals no evidence

for relaxed selection, in contrast with predictions of a hypoth-

esized sensory trade-off between vision and electrolocation

(figure 1a). Instead, estimates of non-synonymous to synon-

ymous substitutions (dN/dS) using the random-sites models

in PAML [25] suggest that gymnotiform rhodopsin is evol-

ving under strong purifying selection (figure 1a). We

observe among-site rate variation in dN/dS in rhodopsin,

but find no evidence for a class of positively selected sites

(m1a versus m0: p , 0.0001; m2a versus m1a: p ¼ 1.00; m8

versus m7: p ¼ 1.00; electronic supplementary material,

table S1), or support for a class of neutrally evolving sites

(M3 versus m2aREL: p , 0.0001; electronic supplementary

material, table S1). In PAML, a discrete model with three

site classes, each with a dN/dS estimate below 0.5 fits the

data best (figure 1a). FUBAR analyses in HYPHY [26] con-

firm that gymnotiform rhodopsin is evolving under strong

purifying selection, with 256 of the 276 sites tested evolving

under purifying selection with a posterior probability above

0.8 (electronic supplementary material, figure S1), and no

sites found to be positively selected using the same cut-off.

To test if the low dN/dS estimates for gymnotiform rho-

dopsin are significantly different from other vertebrates, we

applied clade models C and D in PAML [27] to a vertebrate

rhodopsin dataset (figure 1b). We find a subset of sites in

the rhodopsin gene of gymnotiforms have dN/dS estimates

that are half that of other vertebrates, indicating stronger pur-

ifying selection (figure 1b). Estimating dN/dS separately for

the gymnotiform clade is significantly better fitting than

nested null models that assume a uniform dN/dS across the

entire vertebrate phylogeny (figure 1b, CmC versus

M2aREL: p , 0.0001, CmD versus M3: p , 0.0001; electronic

supplementary material, table S2). Using RELAX [28] and

clade models [27], we directly compared dN/dS in the gymno-

tiform clade with the Cypriniformes (minnows and their

allies), a diverse group of highly visual fishes also belonging

to the superorder Ostariophysii. More parameter-rich clade

models with both clades set as independent foreground

lineages are not better fitting than a model with gymnoti-

forms set as the sole foreground clade (figure 1b; electronic

supplementary material, table S2). Similarly, RELAX reveals

an intensification of purifying selection in gymnotiforms rela-

tive to Cypriniformes (RELAX alternative versus RELAX

null: p ¼ 0.004). These tests indicate that a subset of sites in

rhodopsin are evolving under stronger purifying selection

in gymnotiforms than in cypriniforms and other vertebrates.

(b) Episodic positive selection in a background of
purifying selection in gymnotiform rhodopsin

We found significant evidence for positive selection on the

branch leading to the gymnotiform clade (figure 1b). An

alternative branch-sites model [29] was a significantly better
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fit than a nested null model without a positively selected site

class (branch-sites versus branch-sites null: p ¼ 0.0455; elec-

tronic supplementary material, table S2). Bayes empirical

Bayes (BEB) analyses [30] most strongly support the inclusion

of sites 216, 220 and 271 in the positively selected class of

sites, with posterior probabilities of 0.939, 0.956 and 0.837,

respectively (figure 1b).

We also find evidence for positive selection within gym-

notiforms on a branch leading to a clade of deep-channel

specialists within the family Apteronotidae using models

that do not specify phylogenetic partitions a priori (branch-

sites REL [31], full adaptive model versus baseline model:

corrected p-value ¼ 0.0014; figure 1a). This shift in selection

pressure corresponds to an ecological transition to deep habi-

tats of large rivers in the Amazon basin, and not differences

in the electric organ discharge (electronic supplementary

material, figure S2 and table S1). BEB analysis using the

branch-sites model identifies site 214 to be under positive

selection on this branch (figure 1a). Ancestral reconstruction

recovers a threonine to phenylalanine substitution at site

214 along this branch with high posterior probability.

The phenylalanine is subsequently conserved throughout

the deep-channel clade. Other fishes with phenylalanine at

site 214 are typically deeper-dwelling than fishes with a

threonine (electronic supplementary material, figure S4).

(c) Structural differences mask the effects of a
visual disease-associated mutation found in
gymnotiform rhodopsin

We were surprised to observe an amino acid in rhodopsin

(cysteine at site 220), found in all 147 gymnotiform species
sequenced in this study, that in humans is associated with

RP, a genetic disorder characterized by progressive night-

blindness, tunnel vision and in some cases the complete

loss of sight [22,32]. We investigated if differences in the gen-

etic background of gymnotiform and human rhodopsin

might alter the pathogenicity of the F220C substitution.

Ancestral reconstructions using the vertebrate rhodopsin

dataset identified numerous amino acid residues in close

proximity to site 220 in gymnotiforms that differ from those

found in human rhodopsin (figure 2; electronic supplemen-

tary material, table S3). We hypothesize that substitutions

at sites 217 and 258 to phenylalanine (Phe) mitigate the

disease-associated loss of Phe at 220. These two substitutions

are found in all gymnotiforms and precede the evolution of

the disease-associated substitution (figure 2b). In the meta-II

active-state structure of rhodopsin [33], the side chain of

site 258 is closer to the phenylalanine at site 220 than any

other residue in rhodopsin (figure 2a). The F220C mutation

has been shown to impair both rhodopsin dimerization [34]

and its kinetic properties [35]. These structural differences

in helices 5 and 6, critical domains for rhodopsin dimeriza-

tion and activation [20], might act to mitigate, or even mask

the pathogenic effect of the substitutions at site 220.
3. Discussion
In contrast with our expectations of a possible sensory trade-

off between vision and active electrolocation, we find no

evidence for relaxed selection in the rhodopsin gene of Gym-

notiformes. Instead, we find that the dN/dS estimate for

gymnotiform rhodopsin is much lower than values pre-

viously reported for other groups of fishes [36–39],
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indicating that it is even more conserved. However, we do

find evidence for positive selection on a branch leading to

the gymnotiform clade, as well as on another branch repre-

senting a transition into deep-channel habitats, suggesting

episodic adaptive evolution in gymnotiforms. This is also

supported by the nature of the substitutions observed along

the positively selected branches. Finally, we find surprising

evidence for a substitution (F220C) that is associated with

RP in humans but is conserved throughout gymnotiforms.

Analysis of gymnotiform rhodopsin structure and evolution

suggests that the effects of this substitution are likely to be

compensated or masked by substitutions at sites in close

proximity. We discuss below the implications of these results

for the ecology and evolution of gymnotiforms, the evolution

of their vision and the sensory trade-off hypothesis.

Overall, our analysis of rhodopsin evolution indicates that

gymnotiforms have a highly conserved dim-light visual

system that appears to be well adapted to the turbid noctur-

nal environment in which they live. This is counter to the

sensory trade-off hypothesis, suggesting that for gymnoti-

forms, there is an advantage of integrating information

from multiple sensory modalities. The integration of sensory

information can help recover more robust representations of

an environment by minimizing the effects of noise produced

by any one sensory modality [40]. Poor vision in gymnoti-

forms has been primarily suggested on the basis of their

small eyes [18]. However, physiological studies have shown

that electric fishes use vision and active electrolocation for

the respective detection of near and far objects [41]. Other

studies show that vision improves the sensory ability of gym-

notiform fishes by integrating information received from the

visual and electrosensory systems [42], and may be used to
corroborate signals from the electrosensory system when

hunting [18]. Thus, our results would be consistent with the

idea that dim-light vision and electrolocation interact via

either integration or a division of labour, rather than a

trade-off.

Our results also suggest that adaptations in rhodopsin

for improved photosensitivity in dim-light environments

have occurred concurrently with the evolution of more

specialized electrosensory systems in early gymnotiforms,

and may have facilitated transitions into deeper, darker

and more turbid environments as well as a more nocturnal

life history. We found positively selected substitutions in

the lineage leading to gymnotiforms in helices that are

known to undergo the largest molecular movements upon

rhodopsin photoactivation [33], and where substitutions

have been shown in mutagenesis studies to affect the kin-

etics of chromophore release by rhodopsin [43–45].

Substitutions that affect rhodopsin kinetics are known to

have evolved convergently in distantly related species

inhabiting dim-light environments [46,47], including other

fishes inhabiting the same rivers of the Amazon basin

[37]. Interestingly, mutagenesis studies in bovine rhodopsin

have also shown that the F220C substitution experimentally

decreases the rate of retinal release [35]. Although the link

between these shifts in rhodopsin kinetics and effects on

visual physiology remains to be investigated, our results

suggest that shifts in important aspects of rhodopsin func-

tion are coincident with the evolution of electrosensory

systems in gymnotiforms.

Reconstructions of protein evolutionary history can be

used to infer ancestral visual environments [48,49]. The orig-

ination of gymnotiforms pre-dates the bulk of Andean uplift

and the formation of the modern Amazonian watersheds

[50]. Whether the ancient rivers occupied by ancestral gym-

notiforms were similar in optical qualities to the rivers

making up the present-day Amazon river basin is unclear

[17]. However, some geomorphological evidence does

suggest that the major water types characteristic of the con-

temporary Amazon basin (white water, black water and

clear water) have existed since the origination of gymnoti-

forms [17]. Molecular evidence of positive selection along

the ancestral gymnotiform lineage provides additional indi-

cation that dimmer black water and white water rivers were

present when gymnotiforms originated.

We also found evidence for positive selection on a branch

within the gymnotiform clade representing a transition into

large-river deep-channel habitats by a lineage within the

family Apteronotidae. Members of this lineage primarily

inhabit epibenthic habitats of large turbid and tannin-stained

rivers of the Amazon and Orinoco drainages where ambient

light levels drop within only 10 m of the surface to intensities

similar to those observed in the deep sea [16]. In fact, many of

these species have only recently been discovered due to the

secrecy afforded to them by the depths they inhabit [16].

Visual adaptation has been extensively examined in deep-

dwelling fishes, but these studies have focused on spectral

tuning in deep-sea species [24]. Like deep-sea species, deep-

channel gymnotiforms have multiple morphological adap-

tations to deep-water habitats, including feeding and diet

specializations, and reduced skin pigmentation and eye size

[16]. However, the blue-shifting substitutions in rhodopsin

often observed in deep-sea fishes are not observed in gymno-

tiforms. This is probably because of differences in available
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light spectra in freshwater versus marine environments.

Interestingly, we find that members of this deep-channel

gymnotiform lineage have a rare rhodopsin amino acid

substitution (T214F) found more frequently in fishes that

live in marine mesopelagic or twilight zone habitats. In

other opsins, substitutions at site 214 have been shown to

alter dimer formation [51], a process important for maintain-

ing thermal stability and improving signal amplification

following the detection of light [52].

Future investigations of sensory trade-offs between vision

and electrolocation in gymnotiforms could consider the role

of other vision genes. Interestingly, opsins and other genes

involved in sensory systems have exceptionally high rates

of gene birth and death [53]. This dynamic evolutionary pro-

cess suggests that factors more typically associated with

population genetics, such as the strength of selection,

effective population size and mutational load [54], may

play a significant role in setting the threshold for gene loss

in sensory trade-off scenarios. Some gymnotiforms lack

genes encoding cone opsins SWS1 and SWS2 that are

sensitive to the short-wavelengths of light most rapidly

attenuated in turbid and tannin-stained waters, and

express only LWS, the long-wavelength sensitive opsin

gene and rhodopsin in their eyes [55]. A reduced opsin

complement is also observed in the other electrogenic

clade of fishes, the mormyroids [56]. Thus, while the evol-

ution of rhodopsin in gymnotiforms fails to match the

predictions of the sensory trade-off hypothesis, the evol-

ution of opsins that are less well adapted to turbid

underwater habitats may better reflect the trade-offs

observed in other taxa with alternative sensory modalities

for light-limited environments [8–10,12].

Surprisingly, one of the positively selected substitutions

in gymnotiforms involves an amino acid that is associated

with visual disease in humans. This substitution (F220C) is

conserved throughout the gymnotiform clade, but in

humans is associated with the degenerative eye disease RP

[32]. Disease-associated mutations are generally quite rare

in nature, and usually occur at highly conserved sites that

are typically characterized by lower rates of dN/dS [21].

Given the evidence for functional vision in gymnotiforms

[18,41,42], this would suggest that the persistence of this dis-

ease-associated substitution is probably compensated, or

masked by substitutions at nearby sites. Substitutions at

sites 217 and 258 might allow for the re-establishment of

the dimerization interface [34] or restore normal membrane

integration in the photoreceptor outer segment [35]. Similar

compensatory effects have been proposed in other systems,

including mammals and insects [57,58]. The approach of

mining natural variation for disease-associated substitutions

can improve understanding of the molecular underpinnings

of genetic disease by illuminating the compensatory mechan-

isms required to establish normal function. Rhodopsin

represents an ideal system for such studies, as expansive dis-

ease databases already exist for the gene, and rhodopsin

sequences are available from a wide array of vertebrate

species that have evolved unique solutions to a diverse set

of selective pressures. The functional flexibility of rhodopsin

has allowed its adaptation to many different environments,

and appears to have cemented its place in vertebrate vision

and in the overall integration of sensory information, even

in taxa with novel sensory systems like the gymnotiforms.
4. Methods
(a) Rhodopsin datasets
We amplified and sequenced an 828 bp fragment, spanning all

transmembrane helices, of rhodopsin from 147 gymnotiform

species using PCR and Sanger sequencing (detailed methods in

electronic supplementary material). Sequences are deposited in

GenBank (electronic supplementary material, table S4). A rho-

dopsin gene tree was generated in PhyML [59] using the best-

fitting nucleotide substitution model, HKY þ I þ G (see elec-

tronic supplementary material, figure S2). We also assembled a

vertebrate rhodopsin sequence dataset for analyses of molecular

evolution, including only species with sequence lengths longer

than 700 bp, and with robust phylogenetic placement in a

multi-gene species tree of vertebrates (electronic supplementary

material, table S5).
(b) Analyses of molecular evolution
Codon-based models of evolution were used to investigate pat-

terns of selection. Random sites, branch-sites and clade models

as implemented in the codeml program in the PAML 4 software

package [60] were used to investigate changes in selective con-

straint in both the gymnotiform and vertebrate rhodopsin

datasets (see electronic supplementary material for detailed

descriptions). We also conducted analyses, including FUBAR,

RELAX and branch-sites REL, in the HyPhy package [61]. We

tested for positive selection in gymnotiforms using random-

sites models in PAML [25] and FUBAR [26]. Clade models

C and D [27], as well as RELAX [28], were used to compare

dN/dS in gymnotiforms with other vertebrates. The fit of the

clade models were compared with nested null models M2aREL

and M3, where the dN/dS estimate for the divergent site class

in CmC and CmD is collapsed to uniformity across the phylo-

geny. We used branch-sites models to test for positive selection

on the branch leading to gymnotiforms [29]. Branch-sites REL

models were also used to identify positively selected sites on a

branch detected to be under positive selection within the gymno-

tiform clade, composed of deep-channel specialist species [31].

Support for sites under positive selection was inferred using

BEB [30]. Ancestral sequences were reconstructed in PAML

using the best-fitting empirical amino acid substitution model,

mtZOA þ IþG4, and codon model, m3, for both the gymnotiform

and vertebrate datasets.

Data accessibility. New sequence data are available from GenBank
(accession nos MN031442–MN031588) and listed in electronic
supplementary material, table S4.

Authors’ contributions. A.V.N., N.R.L. and B.S.W.C. conceived and
designed the study. K.B., F.H.J., J.A.M-O., N.R.L. and W.G.R.C. col-
lected specimens in the field. K.B., F.H.J. and A.V.N. carried out
the molecular laboratory work. A.V.N. analysed experimental data,
conducted computational and statistical analyses and drafted the
manuscript. A.V.N., N.R.L. and B.S.W.C. interpreted the results
and revised the manuscript, with assistance from W.G.R.C.

Competing interests. We declare we have no competing interests.

Funding. Funding was provided by NSERC Discovery grants (to
B.S.W.C. and N.R.L.) and a Vision Science Research Fellowship
(to A.V.N.).

Acknowledgements. For assistance with tissues and specimens, we thank
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