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People express emotion using their voice, face and movement, as well as

through abstract forms as in art, architecture and music. The structure of

these expressions often seems intuitively linked to its meaning: romantic

poetry is written in flowery curlicues, while the logos of death metal

bands use spiky script. Here, we show that these associations are universally

understood because they are signalled using a multi-sensory code for

emotional arousal. Specifically, variation in the central tendency of the fre-

quency spectrum of a stimulus—its spectral centroid—is used by signal

senders to express emotional arousal, and by signal receivers to make

emotional arousal judgements. We show that this code is used across

sounds, shapes, speech and human body movements, providing a strong

multi-sensory signal that can be used to efficiently estimate an agent’s

level of emotional arousal.
1. Introduction
Arousal is a fundamental dimension of emotional experience that shapes our

behaviour. We bark in anger and slink away in despair; we sigh in contentment

and jump for joy. The studies presented here are motivated by the observation

that these and other expressions of emotional arousal seem intuitively to match

each other, even across the senses: angry shouting is frequently accompanied by

jagged, unpredictable flailing and peaceful reassurance with deliberate,

measured movement. These correspondences abound in the art and artefacts

of everyday life. Lullabies and Zen gardens both embody a tranquil simplicity;

anthems and monuments a kind of inspiring grandeur. Remarkably,

expressions of emotional arousal are interpretable not only across cultures

[1,2], but across species as well [3,4]. What accounts for the multi-sensory

consistency and universal understanding of emotional arousal?

Previous research has shown that low-level physical features of shapes,

speech, colours and movements influence emotion judgements [5–10]. These

physical features include the arrangement and number of lines, corners and

rounded edges in shapes, the pitch, volume, and timbre of speech, the hue, sat-

uration and brightness of colours, and the speed, jitter and direction of

movements. In particular, spectral features have been shown to predict

emotional arousal judgements of human speech [11], non-verbal vocalizations

[12] and music [13], as well as of dog barks [4,14,15], and of vocalizations

across all classes of terrestrial vertebrates [3]. Accordingly, determining exactly

how information about internal states (including emotions) is transmitted

using low-level stimulus properties is a necessary step towards understanding

inter-species communication [16,17].

Based on these findings, we propose that expressions of emotional arousal

are universally understood across cultures and species because they are sig-

nalled [18,19] using a multi-sensory code. Here, we test this hypothesis,

showing over five studies that signal senders and receivers both encode and

decode variation in emotional arousal using variation in the spectral centroid

(SC), a low-level stimulus feature that is shared across sensory modalities. We
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Table 1. Summary of findings. Each study tested how well the SC predicted emotional arousal. Studies 1 – 4 used categorical emotion labels, while study 5
used continuous judgements of emotional arousal. The result column indicates the accuracy of a logistic regression classifier that uses the SC to predict
emotional arousal, except for study 5, where we report the b weight associated with the SC for continuous prediction of emotional arousal.

task stimuli emotions result

study 1 emotion judgement

(categorical)

shapes and sounds based on Köhler [20] angry, sad, excited, peaceful 77 – 89%

accuracy

study 2 emotion expression

(categorical)

shapes drawn by participants angry, sad, excited, peaceful 71 – 78%

accuracy

study 3 emotion judgement

(categorical)

procedurally generated shapes

(n ¼ 390) and sounds (n ¼ 390)

angry, sad, excited, peaceful 78% accuracy

study 4 emotion judgement

(categorical)

natural speech and body movements angry, sad 86 – 88%

accuracy

study 5 emotional arousal

judgement (continuous)

natural speech and body movements anger, boredom, disgust, anxiety/fear,

happiness, sadness, neutral

SC b ¼ 0.76
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further show that the SC predicts arousal across a range of

emotions, regardless of whether those emotions are posi-

tively or negatively valenced. (Our hypothesis is limited to

emotional arousal and the SC. We do not intend to suggest,

for example, that the complete form of a shape with a

given level of emotional arousal is recoverable from a simi-

larly expressive sound—only that, all else being equal,

shapes and sounds with the same level of emotional arousal

will have similar SCs.)

Study 1 tests this hypothesis using a classic sound–shape

correspondence paradigm [20,21], comparing judgements of

emotional arousal for shapes and sounds with either high or

low SCs. Study 2 tests whether participants in fact use the SC

to express emotion in the visual domain by asking them to

draw many emotionally expressive shapes and comparing

their SCs. Study 3 tests whether the SC predicts emotional arou-

sal better than other candidate features across a wide range of

shapes and sounds. Study 4 tests whether the SC predicts

judgements of emotional arousal in natural stimuli. Finally,

study 5 tests whether the SC predicts continuously varying

emotional arousal across a wide range of emotion categories.

Findings from all studies are summarized in table 1.
2. Study 1: the spectral centroid predicts
emotional arousal in shapes and sounds

(a) Methods
Participants were 262 students, faculty and staff of Dart-

mouth College. Because these experiments were brief (1–

2 min), participants viewed an information sheet in lieu of a

full informed consent procedure and were compensated

with their choice of bite-sized candies. Sample sizes for all

tasks reported in this manuscript were determined as

described in the electronic supplementary material. Ethical

approval was obtained from the Dartmouth College insti-

tutional review board. For all studies and tasks,

participants were excluded from analysis if they reported

knowledge of Köhler’s [20] experiment. Eight participants

were excluded from study 1 for this reason.

For all reported studies, we compared auditory and visual

stimuli in the same terms: their observable frequency spectra,
obtained via the Fourier transform. In time-varying stimuli

such as human speech and movement, we quantify the cen-

tral tendency of the frequency spectrum as the SC. SC is

defined in the equation

SC(Mi) ¼
P

fiMiP
Mi

, ð2:1Þ

where M is a magnitude spectrum possessing frequency com-

ponents f, both indexed by i [22]. The SC can be understood

as the ‘centre of mass’ of a spectrum—the frequency around

which the majority of the energy is concentrated.

We estimated the SC of two-dimensional drawings using

a different method. When a two-dimensional contour is

closed and non-overlapping, it can be represented by a Four-

ier shape descriptor [23]. Shapes with more sharp corners

require higher-magnitude high-frequency components, push-

ing up their SC (see figure 1 for a visual explanation). Here,

we analysed drawings containing open, overlapping con-

tours, and therefore did not use Fourier descriptors.

Instead, we took advantage of the link between corners and

high-frequency energy components, estimating the SC of

shapes using Harris corner detection [24].

We hypothesized that sounds and shapes with higher SC

relative to similar stimuli would be associated with high-

arousal emotions. Two shape pairs with differing SCs were

created based on Köhler’s [20] shapes, where the general out-

line, positions of line crossings and size were matched for

each pair (figure 2). We used two non-phonetic sounds,

1.5 s in duration, with differing mean SCs (figure 3). One

sound, designed to match the spiky shape, consisted of four

54 ms bursts of white noise in an asymmetrical rhythm.

The second sound, designed to match the rounded shape,
consisted of an amplitude-modulated sine wave at 250 Hz

with volume peaks creating an asymmetrical rhythm similar

to the noise burst pattern. To account for the possibility that

the effect of SC differed across positive and negative

emotions, we used two emotion pairs (angry/sad and

excited/peaceful) differing in valence [25]. In all tasks, each

participant completed a single trial, and the order of

shapes, sounds and emotion words was counterbalanced

across participants.
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Figure 1. Visual explanation of the link between SC and corners.
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(i) Task 1: shape – emotion matching
In the negative valence shape–emotion task, participants

(n ¼ 60) viewed a single shape and chose one of two emotion

labels. The instructions took the form: ‘Press 1 if this shape is

angry. Press 2 if this shape is sad.’ Participants in the positive

valence shape–emotion task (n ¼ 71) viewed a single shape

and answered a pen-and-paper survey reading ‘Is the above

shape peaceful or excited? Circle one emotion.’ Data in the

negative shape–emotion matching task were originally

collected and reported by Sievers et al. [26].

(ii) Task 2: sound – emotion matching
In the negative valence sound–emotion task, participants

(n ¼ 59) heard one sound and chose one of two emotion

labels (angry and sad). The instructions took the form: ‘Click

on the emotion that goes with [noise bursts]’. Participants in

the positive valence sound–emotion task (n ¼ 71) heard one

of the sounds and answered a pen-and-paper survey reading

‘Is the above shape angry or sad? Circle one emotion.’
(b) Results
(i) Matching
Across all matching tasks, participants associated high mean

SC sounds (noise burst) and shapes (spiky) with high-arousal

emotions (angry, excited), and low mean SC sounds (sine

wave) and shapes (rounded) with low-arousal emotions

(sad, peaceful).

The sound–emotion estimated success rate was 89% (95%

confidence interval (CI): 0.80–0.96, n ¼ 59) for negative

emotions and 85% (95% CI: 0.75–0.92, n ¼ 68) for positive

emotions, and the shape–emotion estimated success rate was

83% (95% CI: 0.73–0.91, n ¼ 60) for negative emotions and

77% (95% CI: 0.67–0.87, n ¼ 63) for positive emotions (figure 4).

These results are consistent with the hypothesis that

expressions of emotional arousal are universally understood

because they share observable, low-level features, even

across sensory domains. Specifically, the SC of both auditory

and visual stimuli predicted perceived emotional arousal

across sounds and shapes.
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Figure 2. Shape pairs used in tasks 1 and 2, based on Köhler’s [20] shapes, before and after Harris corner detection. (a) Low SC, low corner count shapes; (b) high
SC, high corner count shapes.
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Figure 3. Spectrograms of sound stimuli. Solid white line shows instantaneous SC; dotted white line shows the mean SC. (Online version in colour.)
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3. Study 2: drawing emotional shapes
(a) Methods
To directly test the hypothesis that people use SC variation to

express emotional arousal, we asked participants to draw

abstract shapes that expressed emotions. Participants (n ¼
68) completed a pen-and-paper survey. The first page of the

survey showed a single shape with the text: ‘Is the above

shape angry or sad? Circle one emotion.’ Below this question,

participants were instructed to draw a shape that expressed

the emotion they did not circle. On the second page, partici-

pants answered two free-response questions: ‘What is

different between the shape we provided and the shape

you drew?’ and ‘Why did you draw your shape the way

you did?’ Participants were given no information about our

hypothesis, and their responses were not constrained to be

either spiky or rounded. We replicated this study using a

second survey (n ¼ 152) that did not show an example

shape, and included the positively valenced emotions excited

and peaceful. This survey had two questions: ‘Below, draw

an abstract shape that is [emotion]’ and ‘Why did you draw

your shape the way you did?’ Surveys are available at

https://github.com/beausievers/supramodal_arousal.

Bayesian logistic regression classification was used to

determine whether the SC, estimated using Harris corner

detection [24], was sufficient to predict emotional arousal.

All classification analyses used fivefold stratified cross-

validation. All receiver operating characteristic (ROC) analyses
were conducted using the same cross-validation training and

test sets as their corresponding classification analysis.
(b) Results
In responses to our first survey, including a prompt image

and using only negatively valenced emotions, drawings of

angry shapes had a mean of 23.3 corners, while sad shapes

had 6.6 corners. Bayesian logistic regression classified

angry and sad shapes with 78% accuracy and 85% area

under the curve (AUC) based on the number of corners

alone. Responses to our second survey, with no prompt

image and including both positive and negative emotions,

showed angry shapes had a mean of 24.2 corners, sad

shapes had a mean of 8.8 corners, excited shapes had a

mean of 17.1 corners and peaceful shapes had a mean of

6.8 corners (figure 5). Bayesian logistic regression classified

angry and sad shapes with 75% accuracy and 84% AUC,

and excited and peaceful shapes with 71% accuracy and

77% AUC (figure 6).

Most participants were aware of their strategy, using

terms such as ‘jagged’ and ‘sharp’, noting that angry emotion

implied ‘pointed’ images with many crossing lines while sad

emotion implied ‘round’ or ‘smooth’ images with fewer or no

crossing lines. Participants sometimes used cross-modal and

affective language to describe their drawings, describing

angry as having ‘fast movement’, being ‘frantic’, etc. while

sad was ‘soft’.

https://github.com/beausievers/supramodal_arousal
https://github.com/beausievers/supramodal_arousal
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4. Study 3: the spectral centroid predicts
emotional arousal across many shapes
and sounds

(a) Methods
In study 3, we procedurally generated 390 shapes and 390

sounds that varied broadly in their observable features.

These features included convexity, area and corner count

for shapes, and onset strength, the number of onsets, dur-

ation and SC for sounds (see electronic supplementary

material for details). Stimuli were separated into 13 equally

spaced bins of 30 stimuli each based on Harris corner count

(range: 1–14) or SC (range: 0–1950 Hz). Stimuli were gener-

ated such that SC and corner count were not strongly

correlated with other features that could contribute to

emotion judgement (figure 7). This enabled accurate

estimation of effect sizes for each feature.

Participants in the positive valence condition (n ¼ 20)

judged whether stimuli were excited or peaceful, and a separ-

ate group of participants in the negative valence condition

(n ¼ 20) judged whether stimuli were angry or sad. A judge-

ment trial consisted of attending to a randomly selected

stimulus (presented on screen or in headphones) then click-

ing on the best fitting emotion label. Stimulus order was

randomized, and the position of emotion label buttons was

counterbalanced across participants. Participants performed

40 trials for each stimulus bin, totalling 520 trials. Four par-

ticipants performed fewer trials (156, 156, 286 and 416

trials) due to a technical error, and 104 trials were excluded

from analysis because participants indicated they could not

hear the sound, giving 9862 total shape trials and 9768

total sound trials.

To test our hypothesis that expressions of emotional arou-

sal are universally understood because they share observable,

low-level features across sensory domains, judgements of

emotional arousal were predicted using Bayesian hierarchical

logistic regression. The contribution of SC to emotional arou-

sal judgements in shapes and sounds was estimated by

training a full model on all trials in both modalities. Predic-

tors included SC/corner count bin, modality and valence.

Additionally, to facilitate comparison of the predictors, separ-

ate models were trained for each single predictor. To assess

the contribution of modality-specific features to emotion jud-

gements, this process was repeated for each modality. For

sounds and shapes, we constructed a full model including

all modality-specific predictors, as well as additional

models for each single predictor. For shapes, predictors

included corner count bin, rectangular bounding box area
and convexity (the ratio of shape area to bounding box

area). For sounds, predictors included SC bin, duration,

number of onsets and mean onset strength. The number

of onsets is sensitive to peaks in amplitude, and onset

strength to changes in spectral flux. Onset features were cal-

culated using LibROSA’s onset_detect and onset_strength

functions [27].

All models used random slopes and intercepts per partici-

pant, as well as weakly informative priors that shrank

parameter estimates towards zero (see electronic supplemen-

tary material). All scalar predictors were z-scored before

model fitting. Model accuracy was determined using fivefold

cross-validation, with folds stratified by participant ID to

ensure each fold contained trials from all participants. ROC

analyses were conducted using the same cross-validation

training and test sets used to determine model accuracy.

Chance thresholds were determined by the base rates of par-

ticipant emotion judgements. Note that because these models

capture inter-participant uncertainty, cross-validated accu-

racy and AUC are conservative estimates of goodness of fit.

(b) Results
Results are summarized in figure 8. The full multimodal

model predicted high-arousal emotion judgements of

shapes and sounds with 78% accuracy (s.d. , 0.001, 86%

AUC, n ¼ 40). The multimodal SC/corner count bin-only

model was comparably accurate (77% acc., s.d. ¼ 0.006, 84%

AUC, n ¼ 40), and the modality and valence models did

not exceed the chance threshold, providing strong evidence

that SC drives judgements of emotional arousal across mod-

alities. Estimates of interaction weights for SC bin with

valence (M ¼ 0.72, s.d. ¼ 0.17) and modality (M ¼ 0.69,

s.d. ¼ 0.15) were positive, indicating sounds were perceived

as having slightly higher arousal than shapes, and that par-

ticipants made more high-arousal judgements when the

choice of emotions was positively valenced. Random effects

terms indicated moderate variability in slopes and intercepts

across participants, suggesting individual differences in the

tendency to identify stimuli as having high emotional arousal

(s.d. ¼ 0.36), and in the effect of SC on emotional arousal jud-

gements (s.d. ¼ 0.42). See electronic supplementary material

for tables summarizing all estimated model weights.

Modality-specific models revealed SC was the best single

predictor of high-arousal emotion judgements for shapes

(75% acc., s.d. ¼ 0.011, 83% AUC, n ¼ 20) and sounds (82%

acc., s.d. ¼ 0.008, 89% AUC, n ¼ 20). For shapes, convexity

(68% acc., s.d. ¼ 0.01, 73% AUC, n ¼ 20) and bounding box

area (61% acc., s.d. ¼ 0.01, 64% AUC, n ¼ 20) also predicted
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high-arousal emotion better than chance. For sounds, the

mean onset strength weakly predicted high-arousal emotion

(63% acc., s.d. ¼ 0.007, 69% AUC, n ¼ 20), while single-

predictor models using the number of onsets and duration

did not perform better than chance. The inclusion of

modality-specific predictors may explain the slightly higher

accuracy of modality-specific models (shapes: 83% acc., s.d.¼

0.004, 91% AUC, n ¼ 20; sounds: 83% acc., s.d.¼ 0.008, 91%

AUC, n ¼ 20).
5. Study 4: spectral centroid analysis of
naturalistic emotion movement and speech
databases

(a) Methods
To test whether SC predicts emotional arousal judgements in

naturalistic stimuli, we analysed the Berlin Database of

Emotional Speech [28] and the PACO Body Movement

Library [29]. The PBML consists of point-light movement

recordings of male and female actors expressing several
emotions. The BDES consists of audio recordings of male

and female actors reading the same emotionally neutral

German sentences while expressing several emotions. We

hypothesized that SC would predict the emotional arousal

of stimuli in both databases. For the BDES, we used the

mean SC of each emotional expression. For the PBML, a col-

lection of point-light movements, we used the mean SC for

each joint axis, reducing each expression to 45 features. The

BDES includes 127 angry and 62 sad expressions, while

the PBML has 60 expressions per emotion.
(b) Results
The mean SC was consistently higher in angry versus sad

speech. This pattern was robust across genders and held for

8 of 10 speakers. To compensate for inter-speaker differences,

SC was standardized per speaker. Using SC alone, Bayesian

logistic regression classified angry and sad expressions with

86% accuracy and 90% AUC (figure 9).

To assess whether the high dimensional structure of

emotional movement data in the PBML could be reduced to

a single arousal dimension, we performed a Bayesian linear
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discriminant analysis using stratified 10-fold cross-validation.

The mean SCs of 45 movement dimensions (15 joints by 3

axes per joint) were projected on to a single linear discrimi-

nant, resulting in 88% classification accuracy and 88% AUC

(figure 10). See electronic supplementary material for

additional results.

6. Study 5: continuous arousal across emotions
The previous studies tested the emotions angry, sad, excited

and peaceful, but did not directly test the hypothesis that the

SC predicts continuously varying arousal levels across a wide

range of emotion categories. To test this, we used the full
BDES and PACO stimulus databases introduced in study 4,

including 775 unique stimuli drawn from all emotion cat-

egories (BDES: anger, boredom, disgust, anxiety/fear,

happiness, sadness, neutral; PACO: angry, happy, sad,

neutral). Participants (n ¼ 50) that were fluent in English

and did not understand German completed 220 arousal jud-

gement trials each, where they attended to a single randomly

selected speech or movement stimulus and used slider bars to

rate its valence and arousal on continuous scales from 0 to

100. Seven participants completed fewer than 220 trials,

giving a final total of 10 934 trials.

Results were analysed using Bayesian hierarchical linear

regression, with valence, arousal, sensory modality (sound
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versus vision) and all interactions as predictors, and with SC

as the dependent variable. Note that predicting the continu-

ous SC is more challenging than predicting discrete

emotion category labels. All models used random slopes

and intercepts per participant and all values were z-scored

before model fitting. All parameters, including the coefficient

of determination (R2), were fitted using fivefold cross-vali-

dation, with folds stratified by participant ID.

(a) Results
The model was able to perform the challenging task of

predicting the SC of a stimulus from its valence and arousal

ratings (R2¼ 0.3), across emotion categories and modalities.

Stimuli rated higher in arousal had higher SCs (b ¼ 0.76, 95%

CI: 0.71–0.81), while stimuli rated as having more positive

valence had slightly lower SCs (b ¼ 20.09, 95% CI: 20.13 to

20.05). These main effects were qualified by arousal–modality

(b ¼ 20.22, 95% CI: 20.26 to 20.18) and valence-modality

(b ¼ 20.06, 95% CI: 20.11 to 20.02) interactions, indicating

that arousal and valence judgements both had slightly stronger

effects on the predicted SCs of movements than speech. We also

observed a valence–arousal interaction (b ¼ 20.1, 95% CI:

20.13 to 0.07), indicating stimuli that were both highly

arousing and positively valenced had slightly lower SCs and

a valence–arousal–modality interaction (b ¼ 0.15, 95% CI:

0.11–0.18) indicating that this effect was slightly weaker

for speech than for movement. The relationships between

valence, arousal and SC are illustrated in figure 11.
7. Discussion
Across a series of empirical studies and analyses of extant

databases, the SC predicted emotional arousal in abstract

shapes and sounds, body movements and human speech.
Study 1 showed that participants map the SCs of shapes

and sounds (similar to those used in Köhler’s classic demon-

stration of the Bouba-Kiki effect) to the arousal level of

emotions. Study 2 asked many participants to draw shapes

expressing high or low emotional arousal. With no additional

instruction, participants matched the SCs of their drawings to

the level of emotional arousal, showing that SC matching is a

consistent feature of emotion expression. Study 3 additionally

tested the generalizability of this matching principle to 390

different shapes and sounds, showing that the SC (over and

above other stimulus features) predicted emotional arousal

judgements. Study 4 further generalized this finding to pre-

viously existing databases of body movements and

emotional speech. Finally, study 5 demonstrated that the SC

predicts continuous emotional arousal judgements across a

wide range of emotion categories, showing that the predictive

power of the SC does not depend on forced-choice exper-

imental paradigms or discrete emotion labels. Taken

together, these studies provide strong evidence that

expressions of emotional arousal are universally understood

because they are signalled using a multi-sensory code,

where signal senders and receivers both encode and decode

variation in emotional arousal using variation in the central

tendency of the frequency spectrum.

Across all of these studies, we estimated the central ten-

dency of the frequency spectrum using SC and Harris

corner detection. We do not suggest that SC and Harris

corner detection are the only tools appropriate for this task,

nor that matching in the frequency domain is the sole cause

of emotional arousal judgements. Study 3 identified several

other features that predict arousal (e.g. convexity in shapes,

mean onset strength in sounds), although none were as accu-

rate as the SC. Additionally, other measures that closely track

the central tendency of the frequency spectrum (e.g. local

entropy, pitch) should also predict emotional arousal.
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We limited our studies to perceptual modalities where the

frequency spectrum is observable, and predict similar results

to obtain whenever this is the case (e.g. in touch and

vibration). However, our results do not speak to cross-

modal mappings when the frequency spectrum cannot be

observed. This is the case for taste and smell, which are sen-

sitive to variation in molecular shape. In such cases, we

predict cross-modal correspondences depend on statistical

learning or deliberative processes. A difference in the under-

lying mechanism may create measurably different behaviour,

and may explain why some cross-modal correspondences

involving taste vary across cultures [30,31].

The findings reported here are consistent with the

‘common code for magnitude’ theory of Spector & Maurer

[32], where ‘more’ in one modality corresponds with ‘more’

in other modalities. Following this theory, it is possible that

people use a single supramodal SC representation to assess

whether there is more emotional arousal. Alternatively, it is

possible that perception of emotional arousal depends on

higher-level abilities such as language use and reasoning

[33]. Although these two accounts are not mutually exclusive,

developmental studies show that perception of relevant

cross-modal correspondences occurs before language and

reasoning competence: pre-linguistic infants show the

Bouba-Kiki effect [34] and associate auditory pitch with

visual height and sharpness [35]. Further, words learned

early in language acquisition are more iconic than those

learned later [36,37], suggesting that cross-modal correspon-

dences come prior to, and are important for the

development of, language competence. Although these find-

ings support a ‘common code’ or supramodal representation

account, additional research is required to characterize the

specific internal representations employed and to chart the

course of their development. In particular, it would be valu-

able to assess to what extent the internal representations used

are innate ‘core knowledge’ endowed by evolution [38], and

to what extent they develop over the lifetime due to the oper-

ation of modality-general statistical learning and predictive

coding mechanisms [39,40].
A supramodal SC representation may arise from natural

selection. To wit, one function of emotional states is facilitating

or constraining action [41]. For example, high emotional arousal

facilitates big, spiky vocalizations and movements that necess-

arily have high SCs. These cross-modal gestures function as

cross-modal emotion signals. Organisms that can send and

receive these signals have obvious fitness advantages: senders

share their emotional states, so receivers know when to

approach or avoid them, making both senders and receivers

more likely to receive care and avoid harm. All else being

equal, organisms with more efficient systems for detecting

and representing emotion signals should have better reproduc-

tive fitness than those with less efficient systems. We should

therefore expect a wide range of species to have an efficient

means of detecting cross-modal signals of emotional arousal,

and a supramodal SC representation is an excellent fit for this

purpose. (Note that we should expect this even if there exist

more accurate means of detecting emotion, such as language

and reasoning, as long as those means tend to be less efficient.)

Accordingly, preliminary evidence suggests the SC predicts

emotional arousal across cultures [26] and across species [3,4].

By understanding how the brain extracts low-level, cross-

modal features to determine meaning, we can build a deeper

understanding of how communication can transcend immense

geographical, cultural and genetic variation.
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