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As one of nature’s most striking examples of collective behaviour, bird flocks

have attracted extensive research. However, we still lack an understanding of

the attractive and repulsive forces that govern interactions between individ-

uals within flocks and how these forces influence neighbours’ relative

positions and ultimately determine the shape of flocks. We address these

issues by analysing the three-dimensional movements of wild jackdaws

(Corvus monedula) in flocks containing 2–338 individuals. We quantify the

social interaction forces in large, airborne flocks and find that these forces

are highly anisotropic. The long-range attraction in the direction perpendicu-

lar to the movement direction is stronger than that along it, and the

short-range repulsion is generated mainly by turning rather than changing

speed. We explain this phenomenon by considering wingbeat frequency

and the change in kinetic and gravitational potential energy during flight,

and find that changing the direction of movement is less energetically

costly than adjusting speed for birds. Furthermore, our data show that

collision avoidance by turning can alter local neighbour distributions and

ultimately change the group shape. Our results illustrate the macroscopic

consequences of anisotropic interaction forces in bird flocks, and help to

draw links between group structure, local interactions and the biophysics

of animal locomotion.
1. Introduction
Highly coordinated collective motion is a cornerstone of many biological

systems at all scales, from cell colonies [1,2] to insect swarms [3–6], fish schools

[7,8], bird flocks [9–11], ungulate herds [12–14] and even human crowds

[15,16]. Moving together in large groups and using social information can

provide numerous benefits, including enhanced predator avoidance [17–19],

more efficient resource exploitation [20,21], energy savings [22–24] and efficient

learning of migration routes [25,26]. Thus, understanding the mechanisms

driving the emergence of collectivity in natural systems has significant ecologi-

cal, evolutionary and cognitive implications [27]. Over the past few decades,

theoretical models [28–37] have demonstrated that global-level collective

motion can be generated by simple local interactions. However, verification

of these interaction rules using data from real moving animals has lagged

behind due to measurement challenges. Now that new measurement technol-

ogies have made it more feasible to track animal movement, characterizing

the local interactions in animal groups in natural environments is critical for

advancing our understanding of collective behaviour [38,39].

Bird flocks are one of the most striking and frequently studied examples of

collective behaviour. They are often modelled using agent-based frameworks

[40–42] where individuals follow simple interaction rules such as long-range

attraction, short-range repulsion and intermediate-range alignment. These

interactions are treated as social ‘forces’ [43] imposed by the presence of

nearby neighbours that thus determine the acceleration of each agent. Although
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Figure 1. Anisotropic neighbour structure caused by repulsion. (a) Turning-based
repulsion creating a side-by-side neighbour structure. (b) Speeding-based
repulsion forming a front – back neighbour distribution. (Online version in colour.)
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many empirical measurements of bird flocks have been made

[44–56], the fundamental interaction rules assumed in the

models have still not been fully tested. In particular, the effec-

tive attractive and repulsive forces that birds experience while

flying in large flocks have not been studied. It thus remains

unclear how interaction forces vary depending on the relative

positions of neighbouring individuals. Characterizing such

interaction forces is, however, critical for understanding the

flock mechanics, since the forces acting on individuals will

determine their velocities, relative positions in the group

and ultimately the shape of the entire group [42,44].

Moreover, from an adaptive perspective, the morphology of

animal groups and the distribution of individuals within

them influences group members’ access to social information

and vulnerability to predation [42,57–59].

One way to infer the effective attractive and repulsive

forces between group members is by analysing the accelera-

tions of individuals [60,61], since forces are proportional to

accelerations. Based on this idea, Katz et al. [60] used optical

tracking to measure the acceleration of individuals as a func-

tion of the distance to neighbours (known as a ‘force map’) in

schools of two or three captive fish, finding evidence for both

long-range attraction and short-range repulsion. Similarly, by

fitting observational data to a zonal model [43] where indi-

viduals’ accelerations are explicitly related to the interaction

forces, Lukeman et al. [50] found long-range attraction and

short-range repulsion in large flocks of sea ducks (surf sco-

ters) congregated on the surface of the sea. In airborne

flocks, the only study of forces to date [44] reported force

maps for isolated pairs of homing pigeons based on GPS

(Global Positioning System) tracking, though the measured

forces had large uncertainties, with a position uncertainty

of more than two times the bird body size. Thus, well-

resolved force maps similar to those measured in fish schools

are currently unavailable for bird flocks in flight. More gener-

ally, given the reliance of previous research on small groups

of (often captive) animals, the interaction forces at play in

large, natural collective aggregations such as aerial bird

flocks remain unknown. Since birds interact with more than

one other individual in large groups [48,55], the forces

measured in isolated pairs may not be representative of

how birds interact in large flocks.

Current research also tells us little about the mechanisms

governing the side-by-side neighbour structure seen in

flocks of small birds (e.g. pigeons, starlings or jackdaws)

[44,48,49,55], which in turn may determine the overall shape

of flocks. One hypothesis, proposed in previous studies

[44,62], is that the mechanism of short-range repulsion

determines the local neighbour distribution. This hypothesis

is illustrated in figure 1: avoiding collisions by changing

speed (speeding-based repulsion) is thought to lead to a front-

to-back distribution, while avoiding collisions by turning

(turning-based repulsion) should result in a side-by-side struc-

ture [42]. This hypothesis has been verified in small groups

of fish that use speeding-based repulsion [60,62,63], and by

pigeons in groups of two that use turning-based repulsion

[44]. However, it is not known whether birds in large groups

avoid collisions by turning. Therefore, whether this hypothesis

explains the side-by-side neighbour structure observed in large

bird flocks has yet to be tested.

Moreover, the reason why birds flying in small groups

prefer to use turning-based repulsion, as reported in a

previous study [44], is not fully understood. Previous
researchers [38,44] have suggested that the cause is due to the

relative ease of turning as opposed to changing speed when

flying through a low-density fluid like air and contrasted this

with schools of fish moving in denser water, where changes

in speed seem to be simpler [60,62–64]. This argument is

reasonable, since flight speed is directly related to power con-

sumption for flapping flight [65,66]. However, the energetic

cost difference between making turns and changing speed

has not been examined for birds flying in flocks. Whether turn-

ing is easier than changing speed, and thus the ultimate cause of

birds’ use of turning-based repulsion, is unclear.

Finally, it remains unclear how the positions of neighbours

determine the overall shape of flocks. In fish schools, there is

evidence that the local structure scales up to the school level,

leading the entire group to be elongated along the movement

direction [62,64]. By contrast, the group-level consequences

of the side-by-side local structure typical of many bird

flocks have yet to be examined. Consequently, we lack an

understanding of the connection between individual

interaction forces, local neighbour structures and the overall

shape of flocks.

Here, we address these open questions using jackdaws

(Corvus monedula), a small corvid species, as a model

system. Jackdaws are an excellent system for testing move-

ment interactions since they are highly social on several

levels [67]. They form long-term monogamous pair bonds,

and bonded pairs frequently fly together, but they also fly

in large groups of up to thousands of individuals during

the winter roosting season [68]. Flock flight paths are very

predictable, allowing us to measure the three-dimensional

(3D) trajectories of individuals in these flocks using a

ground-based stereo-imaging system [56]. Our uncertainty

in the measurement of bird position is about 0.04 m—much

smaller than both the body size of a jackdaw (0.3–0.4 m)

and substantially lower than in previous studies [44]—allow-

ing very accurate acceleration measurements. Using these

measurements, we are able to construct well-resolved force

maps, and test for the existence of long-range attraction and

short-range repulsion in both isolated pairs and large
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Figure 2. (a) Recorded images for isolated pairs. The time step between two consecutive images of the same bird is 1/60 s. (b,c) Reconstructed 3D trajectories for
birds shown in (a) coloured by (b) flight speed jvj and (c) acceleration jaj. More samples are provided in electronic supplementary material, figure S1. (Online
version in colour.)
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flocks. We confirm that birds modulate their distance to

nearby neighbours primarily by turning rather than changing

speed even in large flocks, and therefore explain the side-

by-side neighbour distribution. By measuring the wingbeat

frequency, we provide evidence that the dominance of

turning-based interactions is likely to be due to the biophys-

ics of bird locomotion, as turning is energetically cheaper

than changing speed. Finally, we show that the side-by-side

local structure does indeed scale up to the flock level, leading

to flocks that are elongated transverse to the direction of

motion. These results give a more firm foundation for the

structure of local interactions in bird flocks, which can be

used to develop more accurate theoretical models.
2. Material and methods
(a) Data collection
We used a stereo-imaging system to measure the 3D trajectories

of each individual bird within both isolated pairs and large

flocks. The system used four synchronized, high-speed USB-3

cameras (Basler ace acA2040–90um, pixel size of 5.5 mm,

sensor resolution of 2048 by 2048 pixels) with overlapping

fields of view. We placed the imaging system along the typical

flight paths of flocks such that the birds flew directly over the

camera array. The maximal distance between cameras was

between 50 and 60 m, which was on the same order of the dis-

tance from the camera to the birds (approx. 50 m). At a height

of 50 m, we were able to image an area of 60 by 60 m2 and deter-

mine bird positions with an uncertainty of 0.04 m—much

smaller than the jackdaw body length (0.3–0.4 m). We recorded

the birds’ movement continuously for 3–20 s at 60 fps. Each

flocking event consisted of 180–1200 frames. The imaging

locations were in the vicinity of winter roosts near Mabe and

Gwennap, Cornwall, UK. More details of the stereo-imaging

system can be found in Ling et al. [56]. The camera calibration

procedure can be found in the electronic supplementary material.

After recording the image data, we reconstructed the trajec-

tories of individual birds in 3D space (details of the 3D

reconstruction and tracking procedures can be found in the elec-

tronic supplementary material). Along each bird’s trajectory, we
measured the position xi, velocity vi and acceleration ai corre-

sponding to the bird bodies in a Cartesian coordinate system,

where i ranges from 1 to 3. The direction of gravity was aligned

to 2x3. We use x, v and a to denote the vectors of the correspond-

ing quantities, and t to denote time. Moreover, following our

previous studies [55,56], we measured the time series of

wingbeat frequency along each bird’s trajectory, denoted as fwb

(see electronic supplementary material). We also measured the

total energy of birds as E ¼ 0.5jvj2 þ gx3, where g ¼ 9.8 m s22

is the gravitational acceleration. We defined the rate of change

of E as E0 ¼ (E(t þ dt) 2 E(t))/dt, where dt is the time step.

E0 . 0 indicates an increase in power output, assuming a

constant drag force.

(b) Flocking events
We recorded a number of flocking events from December 2017 to

March 2018. The events included groups consisting of as few

as two to as many as several hundred individuals. We defined

two birds to be an isolated pair if (i) the two birds were not in

a large group and (ii) the distance to the closest third bird was

larger than 20 m, five times the average distance separating a

pair of birds. We obtained 305 isolated pairs of jackdaws with

the mean trajectory length of 4.0 s. Recorded bird images and

reconstructed 3D trajectories for a sample isolated pair are

shown in figure 2. More samples are shown in electronic

supplementary material, figure S1.

We also recorded six flocks, which we label #1–#6, consisting

of 26–338 jackdaws. Criteria for the selection of flocking events

are provided in the electronic supplementary material. Recorded

bird images and reconstructed 3D trajectories for flock 1 are

shown in figure 3. Trajectories for flocks 2–6 are shown in elec-

tronic supplementary material, figure S2. Statistics of the distance

to nearest neighbours, flight speed and acceleration are listed in

table 1. Since the flight speed was primarily in the horizontal

plane (v3� jvj), we neglect the component in the gravity

direction in the following analysis.

(c) Data analysis
As shown in figures 2 and 3, both speed and movement direction

varied both in time and between different birds. To understand

how birds adjust their velocity, we adopt the force-based
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Table 1. Statistics of bird flight in isolated pairs and in groups. NND denotes the first nearest neighbour distance, v3 denotes the velocity in the gravity
direction, and aWing and aMove are the accelerations in the wing and movement directions, respectively. The values provided in the table are the means and
standard deviations. Positive (negative) values of aMove mean speeding up (slowing down) and positive (negative) aWing implies turning right (left).

event
total
no. birds

trajectory
length (s) NND (m)

jvj
(m s21) v3 (m s21)

aWing

(m s22)
aMove

(m s22)

isolated pairs 610 4.0+2.0 2.6+1.7 9.4+2.8 20.3+1.5 20.3+3.5 20.1+1.6

flock 1 338 2.4+1.1 1.6+0.9 13.6+1.7 20.9+0.8 22.7+3.3 20.7+1.8

flock 2 112 3.1+1.0 1.7+0.8 13.8+0.5 20.3+0.6 20.4+0.8 1.5+1.8

flock 3 106 2.9+1.4 1.7+1.0 12.0+0.7 20.6+0.7 20.1+1.1 0.8+1.8

flock 4 81 4.5+1.0 2.9+2.7 10.1+1.0 20.8+0.8 20.4+2.1 20.1+1.4

flock 5 31 2.0+1.2 1.3+0.6 15.2+0.8 21.4+1.6 22.1+4.3 21.2+1.8

flock 6 26 3.4+1.0 2.9+2.7 9.3+0.3 0.6+0.4 21.0+0.5 20.6+0.7

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

286:20190865

4

approach used by Katz et al. [60]. We approximate the attraction

or repulsion force F of a focal bird in response to a neighbouring

bird by measuring the relative acceleration between the two,

so that F ¼ a focal 2 aneighbour, where the superscripts ‘focal’

and ‘neighbour’ denote quantities measured for the focal and

neighbour birds, respectively. We subtracted the neighbour accel-

eration aneighbour in order to remove the environmental effects

acting similarly on both birds. For example, when both birds

are linearly accelerating, a focal can be very large but does not

represent the force due to the neighbour. Only the relative

quantity F captures the interaction between two birds.

Using the local coordinate system sketched in figure 4a, we

decompose F into two components: one projected in the move-

ment direction of focal birds that we denote as a ‘speeding

force’ FSpeed, and one projected perpendicular to the flight direc-

tion that we denote as a ‘turning force’ FTurn. Therefore, positive

(negative) FSpeed implies speeding up (slowing down), and
positive (negative) FTurn implies turning right (left). For simplicity,

we will call the direction perpendicular to the movement direction

the wing direction. We label distances in the wing direction as dWing

and distances in the movement direction as dMove. Therefore, posi-

tive (negative) dWing values mean that a neighbouring bird is

located on the right (left), and positive (negative) dMove values

mean that a neighbouring bird is located in the front (back). The

details of our calculation of 2D force maps and 1D force curves

are described in the electronic supplementary material.
3. Results
(a) Interaction forces
In isolated pairs, the turning force (FTurn) strongly depends on

dWing and is relatively insensitive to dMove (figure 4b). When
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plotting FTurn as a function of dWing (figure 4d ), long-range

attraction zones where the focal bird turned right (left)

when a neighbour was far on the right (left) and short-range

repulsion zones where the focal bird turned left (right)

when a neighbour was just on the right (left) are

clearly evident. FTurn switches from repulsive to attractive at

jdWingj ¼ 0.9 m (approx. 2.5 jackdaw body lengths).

Conversely, the speeding force (FSpeed) strongly depends on

dMove and is insensitive to dWing (figure 4c). Plotting FSpeed

as a function of dMove (figure 4d ) reveals attraction zones

where the focal bird slowed down (sped up) when a neigh-

bour was in back (front), but no repulsion zones. The

observation that repulsion is only present in the map of the

turning force indicates that birds avoid collisions mainly by

turning. Moreover, the magnitude of the turning force is

about twice as large as the speeding force in the attraction

zone. The anisotropy of the force in the wing and movement

directions is consistent with the observation that the standard

deviation of a in the wing direction was larger than that in the

movement direction (table 1). We also find that jFSpeedj
increases with the flight speed of focal birds, similar to fish

[60], while jFTurnj does not show a clear relationship with

speed (electronic supplementary material, figure S3).

When flying in large flocks (flocks 1–6), the anisotropy of

attraction and repulsion in the wing and movement directions

persists, with the absolute value of the turning forces larger

than that of the speeding forces and with repulsion governed

by turning (figure 5). Note that the anisotropy was independent
of whether the entire group was making small turns (flock 1,

where a in the wing direction was larger than in the movement

direction) or changing speed (flocks 2–6, where a in the move-

ment direction was larger than in the wing direction). The

results are also consistent for flock sizes ranging from 26 to

338 individuals (figure 5 and table 1).
(b) Neighbour structure and group shape
For both isolated pairs (figure 6a) and large flocks (figure 6b;

electronic supplementary material, figure S4), we find that

birds prefer to fly side by side, in that the most probable

location for a neighbouring bird was at dWing ¼ 1.0 m

(approx. 2.8 jackdaw body lengths) and dMove ¼ 0. In a

previous study [55], we found that these anisotropic spatial

distributions of neighbours become isotropic for large

topological distance (as in starlings [48]), a feature that we

used to estimate the interaction range. We found that birds

not part of a bonded pair typically interacted with seven to

eight neighbours [55].

We then examined whether this local anisotropic

structure scales up and causes the overall shape of the flock

to be elongated. As shown in figure 6c and electronic

supplementary material, figure S5, entire flocks typically

appear to consist of several distinguishable subgroups separ-

ated along the movement direction. We thus partitioned each

flock into Ns subgroups using k-means clustering, where Ns

was the number of distinguishable peaks in the distribution
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of bird positions along the flight direction (figure 6d; elec-

tronic supplementary material, figure S5). We considered

the largest subgroup in each flock and calculated its extent
in the movement and wing directions, which we label as

LMove and LWing, respectively. We find that all subgroups

are elongated in the wing direction (figure 6e), indicating
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that the side-by-side local structure does indeed percolate

upscale and has group-level consequences. The generation

of multiple subgroups along the movement direction is

likely due to weaker attractive forces in that direction com-

pared to the wing direction (figure 5). The flocks as a

whole are however still elongated in the wing direction (elec-

tronic supplementary material, figure S6), though with a

smaller LWing/LMove when compared with subgroups.
(c) Wingbeat frequency and flight power output
To understand why birds avoid collision mainly by turning

instead of changing speed, we examined the dependence of

dfwb ¼ f focal
wb – fneighbour

wb as a function of dWing and dMove, as

shown in figure 7a,b, respectively. We also studied the depen-

dence of dE0 ¼ E0 focal – E0 neighbour on dWing and dMove, as

shown in figure 7c,d, respectively. Both dfwb and dE0 are close

to zero for all values of dWing, indicating that turning towards

a neighbouring bird does not require a change of wingbeat fre-

quency and power output. However, dfwb is up to 10% of the

mean wingbeat frequency for large dMove and dE0 increases

linearly with dMove, indicating that focal birds must increase

their wingbeat frequency and power output to achieve a

positive speeding force when the neighbouring bird is far to

the front. Our results suggest that turning is energetically

cheaper than changing speed, and thus provide a possible

explanation for the turning-based repulsion used by birds.

Additionally, comparing between rear and front birds in

isolated pairs shows that rear birds are more likely to change

their behaviour (e.g. to generate positive speeding forces, rear

birds are more likely to increase their wingbeat frequency and

speed up) in response to front birds (see details in electronic

supplementary material).
4. Discussion
Characterizing the social interactions in large groups of birds

is critical for understanding the mechanisms of flocking

behaviour. Here, by measuring the acceleration of a focal

bird in response to its neighbours, we quantified the social

interaction forces in groups with sizes ranging from two to

hundreds of individuals. Our measurements of short-range

repulsion and long-range attraction in bird flocks agree

with agent-based models [29–34,40,41,59] and empirical

measurements in insects [61,69,70], fish [8,60,71], birds

[44,50] and mammals [72]. Moreover, we find that the

effective attraction force (that is, the magnitude of the accel-

eration) increases linearly with distance in a spring-like

fashion, consistent with assumptions made in theoretical

models [33,34] and observational results from fish schools

[60]. Critically, our analyses reveal that the social forces are

highly anisotropic: long-range attractive forces are larger in

the wing direction than in the movement direction, and short-

range repulsive forces are generated mainly by turning.

Although similarly anisotropic forces have been reported pre-

viously for pairs of pigeons [44], we show here that this effect

extends to large flocks.

Thus, we also provide empirical support for the hypoth-

esis [44,62] that the side-by-side neighbour structures

typical of pigeon and passerine bird flocks [44,48,49,55] are

a result of the turning-based repulsion mechanism.

As shown in previous studies [10,55,56], both jackdaws

and pigeons flying in side-by-side configurations in large

flocks expend more energy than they do when flying alone.

Therefore, the side-by-side neighbour structure is unlikely

to arise from aerodynamic interactions, in contrast with

V-formation flight of some waterfowl and large migratory

birds [22,23,73].
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Furthermore, by measuring the wingbeat frequency and

the sum of the potential and kinetic energy during flight

for birds in isolated pairs, we give an explanation for why

birds use turning-based repulsion rather than the speeding-

based repulsion seen in fish schools [60,62]. We find that

generating large speeding forces requires birds to change

their wingbeat frequency and power output, while producing

a large turning force does not. Our results suggest that turn-

ing is likely to be energetically cheaper than changing speed.

This observation can be explained by the physics of bird loco-

motion: as they travel through the air, birds have to maintain

sufficient speed to gain enough lift force and minimize the

mechanical power output [65] (since both increasing and

reducing speeds may result in an increase in power output).

On the other hand, since the drag force in air is relatively

small due to its low density, slightly adjusting the flight

direction (e.g. by changing body posture [74,75]) will not

cause a significant change of speed and thus will require

little additional power output. Therefore, it is likely that

the physics of bird locomotion make turning easier and

energetically cheaper than changing speed, resulting in domi-

nantly turning-based repulsion, in contrast with the changes

in speed that control repulsion in fish moving through the

higher density medium of water [60,62,63].

Finally, we demonstrate that the local side-by-side struc-

ture scales up to the global level, making the entire flock

elongated in the direction perpendicular to the movement.

This is similar to the way in which fish schools are elongated

in the movement direction as a result of the front-to-back

local configuration of neighbours [42,62–64]. We note, how-

ever, that the elongated group shape was observed here for

birds travelling together in a particular direction (in this

case, towards evening roosts). Display flocks that make

more complex manoeuvres (such as the classic murmura-

tions of starlings) may show different behaviour. For
example, when a group of starlings makes a turn, it was

found that the group was initially elongated along the direc-

tion perpendicular to the movement before the turn but

became elongated along the travelling direction after the

turn [49].

In conclusion, although many previous models have

assumed that interaction forces depend only on the distance

between neighbours, we show that due to the physics of

bird locomotion (and in particular that turning is easier than

changing speed), the social interaction forces in real animal

groups are highly anisotropic. Such anisotropic forces have

significant consequences both for the local neighbour struc-

ture and the macroscopic group shapes, which ultimately

impact key functions such as information transfer [64] and

predator avoidance [18]. We thus strongly suggest that

future models should consider the physics of animal loco-

motion and the properties of the medium through which

animals are travelling when formulating interaction rules.
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